2 research outputs found

    Performance Analysis of a 3D Wireless Massively Parallel Computer

    Get PDF
    In previous work, the authors presented a 3D hexagonal wireless direct-interconnect network for a massively parallel computer, with a focus on analysing processor utilisation. In this study, we consider the characteristics of such an architecture in terms of link utilisation and power consumption. We have applied a store-and-forward packet-switching algorithm to both our proposed architecture and a traditional wired 5D direct network (the same as IBM’s Blue Gene). Simulations show that for small and medium-size networks the link utility of the proposed architecture is comparable with (and in some cases even better than) traditional 5D networks. This work demonstrates that there is a potential for wireless processing array concepts to address High-Performance Computing (HPC) challenges whilst alleviating some significant physical construction drawbacks of traditional systems

    Modelling and Simulation for Power Distribution Grids of 3D Tiled Computing Arrays

    Get PDF
    This thesis presents modelling and simulation developments for power distribution grids of 3D tiled computing arrays (TCAs), a novel type of paradigm for HPC systems, and tests the feasibility of such systems for HPC systems domains. The exploration of a complex power-grid such as those found in the TCA concept requires detailed simulations of systems with hundreds and possibly thousands of modular nodes, each contributing to the collective behaviour of the system. In particular power, voltage, and current behaviours are critically important observations. To facilitate this investigation, and test the hypothesis, which seeks to understand if scalability is feasible for such systems, a bespoke simulation platform has been developed, and (importantly) validated against hardware prototypes of small systems. A number of systems are simulated, including systems consisting of arrays of ’balls’. Balls are collections of modular tiles that form a ball-like modular unit, and can then themselves be tiled into large scale systems. Evaluations typically involved simulation of cubic arrays of sizes ranging from 2x2x2 balls up to 10x10x10. Larger systems require extended simulation times. Therefore models are developed to extrapolate system behaviours for higher-orders of systems and to gauge the ultimate scalability of such TCA systems. It is found that systems of 40x40x40 are quite feasible with appropriate configurations. Data connectivity is explored to a lesser degree, but comparisons were made between TCA systems and well known comparable HPC systems, and it is concluded that TCA systems can be built with comparable data-flow and scalability, and that the electrical and engineering challenges associated with the novelty of 3D tiled systems can be met with practical solutions
    corecore