202 research outputs found

    AFDM vs OTFS: A Comparative Study of Promising Waveforms for ISAC in Doubly-Dispersive Channels

    Full text link
    This white paper aims to briefly describe a proposed article that will provide a thorough comparative study of waveforms designed to exploit the features of doubly-dispersive channels arising in heterogeneous high-mobility scenarios as expected in the beyond fifth generation (B5G) and sixth generation (6G), in relation to their suitability to integrated sensing and communications (ISAC) systems. In particular, the full article will compare the well-established delay-Doppler domain-based orthognal time frequency space (OTFS) and the recently proposed chirp domain-based affine frequency division multiplexing (AFDM) waveforms. Both these waveforms are designed based on a full delay- Doppler representation of the time variant (TV) multipath channel, yielding not only robustness and orthogonality of information symbols in high-mobility scenarios, but also a beneficial implication for environment target detection through the inherent capability of estimating the path delay and Doppler shifts, which are standard radar parameters. These modulation schemes are distinct candidates for ISAC in B5G/6G systems, such that a thorough study of their advantages, shortcomings, implications to signal processing, and performance of communication and sensing functions are well in order. In light of the above, a sample of the intended contribution (Special Issue paper) is provided below

    Waveform Design for 5G and beyond Systems

    Get PDF
    5G traffic has very diverse requirements with respect to data rate, delay, and reliability. The concept of using multiple OFDM numerologies adopted in the 5G NR standard will likely meet these multiple requirements to some extent. However, the traffic is radically accruing different characteristics and requirements when compared with the initial stage of 5G, which focused mainly on high-speed multimedia data applications. For instance, applications such as vehicular communications and robotics control require a highly reliable and ultra-low delay. In addition, various emerging M2M applications have sparse traffic with a small amount of data to be delivered. The state-of-the-art OFDM technique has some limitations when addressing the aforementioned requirements at the same time. Meanwhile, numerous waveform alternatives, such as FBMC, GFDM, and UFMC, have been explored. They also have their own pros and cons due to their intrinsic waveform properties. Hence, it is the opportune moment to come up with modification/variations/combinations to the aforementioned techniques or a new waveform design for 5G systems and beyond. The aim of this Special Issue is to provide the latest research and advances in the field of waveform design for 5G systems and beyond

    NR Sidelink Performance Evaluation for Enhanced 5G-V2X Services

    Get PDF
    The Third Generation Partnership Project (3GPP) has specified Cellular Vehicle-to-Everything (C-V2X) radio access technology in Releases 15–17, with an emphasis on facilitating direct communication between vehicles through the interface, sidelink PC5. This interface provides end-to-end network slicing functionality together with a stable cloud-native core network. The performance of direct vehicle-to-vehicle (V2V) communications has been improved by using the sidelink interface, which allows for a network infrastructure bypass. Sidelink transmissions make use of orthogonal resources that are either centrally allocated (Mode 1, Release 14) or chosen by the vehicles themselves (Mode 2, Release 14). With growing interest in connected and autonomous vehicles, the advancement in radio access technologies that facilitate dependable and low-latency vehicular communications is becoming more significant. This is especially necessary when there are heavy traffic conditions and patterns. We thoroughly examined the New Radio (NR) sidelink’s performance based on 3GPP Releases 15–17 under various vehicle densities, speeds, and distance settings. Thus, by evaluating sidelink’s strengths and drawbacks, we are able to optimize resource allocation to obtain maximum coverage in urban areas. The performance evaluation was conducted on Network Simulator 3 (NS3.34/5G-LENA) utilizing various network metrics such as average packet reception rate, throughput, and latency

    6G Enabled Advanced Transportation Systems

    Full text link
    The 6th generation (6G) wireless communication network is envisaged to be able to change our lives drastically, including transportation. In this paper, two ways of interactions between 6G communication networks and transportation are introduced. With the new usage scenarios and capabilities 6G is going to support, passengers on all sorts of transportation systems will be able to get data more easily, even in the most remote areas on the planet. The quality of communication will also be improved significantly, thanks to the advanced capabilities of 6G. On top of providing seamless and ubiquitous connectivity to all forms of transportation, 6G will also transform the transportation systems to make them more intelligent, more efficient, and safer. Based on the latest research and standardization progresses, technical analysis on how 6G can empower advanced transportation systems are provided, as well as challenges and insights for a possible road ahead.Comment: Submitted to an open access journa

    Simulation of WLAN Based V2X Signal Models Using Deterministic Channel

    Get PDF
    Vehicle to everything (V2X) communication is one of the important topics in the telecommunication field aiming to provide a great improvement in the transport sector by increasing safety and comfort while driving as well as reducing traffic congestion and as a result there are a lot of researches , developments and investments made in this field. This thesis presents the use of Unity 3D game engine program for the creation of a deterministic channel model through which we can analyse and study the performance of the WLAN based signal models that are used in the vehicle to everything (V2X) technology.AN open source V2X simulator was used for the process of channel creation and performance assessment making use of its real time stochastic measurements .Two different methods were used to assess the performance of both the IEEE 802.11p and 802.11bd signal models with different calculations but eventually the latter proved to be the superior since it is considered the most advanced and latest version of the IEEE 802.11 family

    Integrated Sensing and Communications: Towards Dual-functional Wireless Networks for 6G and Beyond

    Get PDF
    As the standardization of 5G solidifies, researchers are speculating what 6G will be. The integration of sensing functionality is emerging as a key feature of the 6G Radio Access Network (RAN), allowing for the exploitation of dense cell infrastructures to construct a perceptive network. In this IEEE Journal on Selected Areas in Commmunications (JSAC) Special Issue overview, we provide a comprehensive review on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC). We commence by discussing the interplay between sensing and communications (S&C) from a historical point of view, and then consider the multiple facets of ISAC and the resulting performance gains. By introducing both ongoing and potential use cases, we shed light on the industrial progress and standardization activities related to ISAC. We analyze a number of performance tradeoffs between S&C, spanning from information theoretical limits to physical layer performance tradeoffs, and the cross-layer design tradeoffs. Next, we discuss the signal processing aspects of ISAC, namely ISAC waveform design and receive signal processing. As a step further, we provide our vision on the deeper integration between S&C within the framework of perceptive networks, where the two functionalities are expected to mutually assist each other, i.e., via communication-assisted sensing and sensing-assisted communications. Finally, we identify the potential integration of ISAC with other emerging communication technologies, and their positive impacts on the future of wireless networks

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions

    Wireless communication, sensing, and REM: A security perspective

    Get PDF
    The diverse requirements of next-generation communication systems necessitate awareness, flexibility, and intelligence as essential building blocks of future wireless networks. The awareness can be obtained from the radio signals in the environment using wireless sensing and radio environment mapping (REM) methods. This is, however, accompanied by threats such as eavesdropping, manipulation, and disruption posed by malicious attackers. To this end, this work analyzes the wireless sensing and radio environment awareness mechanisms, highlighting their vulnerabilities and provides solutions for mitigating them. As an example, the different threats to REM and its consequences in a vehicular communication scenario are described. Furthermore, the use of REM for securing communications is discussed and future directions regarding sensing/REM security are highlighted
    • …
    corecore