362 research outputs found

    Investigating the QoS of Voice over IP using WiMAX Access Networks in a Campus Network

    Get PDF
    VoIP is a very rapid evolving communication technology which supports transportation of voice data via IP based networks. In parallel, IEEE 802.16e standard based WiMAX is a new emerging access technology and the first generation of 4G broadband access wireless technology with an enhanced in-built quality of service (QoS) provision with many benefits including cost reduction, high quality as well as other value added network service solutions especially for communications Service Providers with emphasis on real time services. WiMAX promises manifold benefits in terms of optimal network performance across a long distance in contrast to other wireless technologies such as Wi-Fi and 3G cellular technologies. Hence, this research attempts to identify some of the network performance parameters that Service Providers will focus on to develop a VoIP over WiMAX communication tool that will serve as a voice communication broadband replacement technology to old circuit-switch voice communication. This study adopted a simulation-based network performance analysis to investigate the effects of the application of different voice encoder schemes on QoS of VoIP system deployed with IEEE 802.16e standard WiMAX network. Through different network simulation experiments using realistic network scenarios in OPNET environment, this research provided an in-depth network performance comparative analysis of VoIP over WiMAX using performance parameters which indicate QoS such as voice jitter, voice packet ETE delay, packet-sent-packet-received, WiMAX network delay, voice packet delay variation and throughput. The obtained simulation experiment results indicated that choice of suitable codec scheme can affect the QoS of VoIP traffic over WiMAX network. The results also indicated that the choice of suitable voice encoder scheme with a small number of voice frame-size per packet have a significant impact over VoIP traffic performance when deployed with WiMAX access technology. Keywords: WiMAX, QoS, End-to-End delay, Jitter, IEEE 802.16e, PSTN, OPNET, Simulation, Wi-Fi, Code

    Characteristics of chicken slaughterhouse wastewater

    Get PDF
    The chicken slaughterhouse wastewater is a class of wastewater, which is heavily polluted with organic matters including proteins, blood residues, fats and lard. Therefore, the direct discharged of untreated chicken slaughterhouse wastewater into the environment is associated with the occurrence of eutrophication phenomenon. In the present study, the characteristics of chicken slaughterhouse wastewater were investigated to ascertain the role of these wastes in the adverse effect on the environment and natural water system. The parameter tested included biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solid (TSS), total nitrogen (TN), total organic carbon (TOC), orthophosphate (PO4 3-), temperature and pH. The results revealed available high concentrations of BOD (1,341 - 1,821 ± 242.7 mg L1 ), COD (3,154.19 - 7,719.3 ± 2,282.69 mg L-1), TSS (377.67 - 5,462 ± 2,696.1 mg L-1) which have exceeded the EQA1974 standard limits for disposal of wastewater into the environment. The concentrations of TN (162.6 -563.8 ± 215 mg L-1) and PO4 3- (7.047 - 17.111 ± 4.25 mg L-1) were within the range required for microalgae growth which confirm their role in the occurrence of eutrophication phenomenon. It can be concluded that the direct discharge of chicken slaughterhouse wastewater contributes negatively on the environmental biodiversity and thus they should be subjected for an effective treated before the final disposal

    VoIP Features Oriented Uplink Scheduling Scheme in Wireless Networks

    Get PDF

    A Fair and Efficient Packet Scheduling Scheme for IEEE 802.16 Broadband Wireless Access Systems

    Full text link
    This paper proposes a fair and efficient QoS scheduling scheme for IEEE 802.16 BWA systems that satisfies both throughput and delay guarantee to various real and non-real time applications. The proposed QoS scheduling scheme is compared with an existing QoS scheduling scheme proposed in literature in recent past. Simulation results show that the proposed scheduling scheme can provide a tight QoS guarantee in terms of delay, delay violation rate and throughput for all types of traffic as defined in the WiMAX standard, thereby maintaining the fairness and helps to eliminate starvation of lower priority class services. Bandwidth utilization of the system and fairness index of the resources are also encountered to validate the QoS provided by our proposed scheduling scheme

    Performance study of FMIPv6-based cross-layer WiMAX handover scheme for supporting VoIP service

    Get PDF
    This report presents performance study of the FMIPv6-based cross-layer handover scheme for VoIP supports over mobile WiMAX network. For this performance validation and evaluation, the handover delays for four different handover mechanisms are formulated and ns2 based simulation module has been developed. The handover delay, the total delay, and the R factor representing VoIP quality are measured to evaluate the VoIP support characteristics of the FMIPv6-based cross-layer scheme. Simulation results verified that the proposed FMIPv6-based cross-layer handover scheme, compared to the non-cross-layer scheme, successfully reduces total handover delay by almost 50% for the case of layer-3 handover. Further, simulation was also evaluated in terms of R factor indicating voice quality level, of which 70 is a minimum value of a traditional PSTN call to be considered as the lower limit of a VoIP call quality [6]. Through the simulation in this study, the result revealed that the proposed scheme effectively improves VoIP call quality from unacceptable quality to acceptable quality (R factor of 75). Based on these simulation results, it was found that the proposed FMIPv6-based cross-layer handover scheme is an adequate protocol for supporting VoIP services in mobile WiMAX environment

    Quality of service and resource management in IP and wireless networks

    Get PDF
    A common theme in the publications included in this thesis is the quality of service and resource management in IP and wireless networks. This thesis presents novel algorithms and implementations for admission control in IP and IEEE 802.16e networks, active queue management in EGPRS, WCDMA, and IEEE 802.16e networks, and scheduling in IEEE 802.16e networks. The performance of different algorithms and mechanisms is compared with the prior art through extensive ns-2 simulations. We show that similar active queue management mechanisms, such as TTLRED, can be successfully used to reduce the downlink delay (and in some cases even improve the TCP goodput) in different bottlenecks of IP, EGPRS, WCDMA, and IEEE 802.16e access networks. Moreover, almost identical connection admission control algorithms can be applied both in IP access networks and at IEEE 802.16e base stations. In the former case, one just has to first gather the link load information from the IP routers. We also note that DiffServ can be used to avoid costly overprovisioning of the backhaul in IEEE 802.16e networks. We present a simple mapping between IEEE 802.16e data delivery services and DiffServ traffic classes, and we propose that IEEE 802.16e base stations should take the backhaul traffic load into account in their admission control decisions. Moreover, different IEEE 802.16e base station scheduling algorithms and uplink channel access mechanisms are studied. In the former study, we show that proportional fair scheduling offers superior spectral efficiency when compared to deficit round-robin, though in some cases at the cost of increased delay. Additionally, we introduce a variant of deficit round-robin (WDRR), where the quantum value depends on the modulation and coding scheme. We also show that there are several ways to implement ertPS in an efficient manner, so that during the silence periods of a VoIP call no uplink slots are granted. The problem here, however, is how to implement the resumption after the silence period while introducing as little delay as possible

    Performance Evaluation of VoIP in Mobile WiMAX; Simulation and Emulation studies

    Get PDF
    Worldwide Interoperability for Microwave Access (WiMAX) is an acronym for IEEE 802.16 family which is a leading contemporary broadband wireless Access (BWA) technology. IEEE 802.16e is intended for mobile WiMAX, which supports vehicular mobility with the stringent quality of service (QoS) parameters for various data traffics. Voice over IP (VoIP) provides low cost, modern telephony which can become a better alternative for classical telephony; however there are some issues need to be addressed prior to the deployment of any new technology. Significance of simulation study results can be verified and assessed by emulation testbed results. It is expected that both the results should match closely with each other. This paper makes an effort to study the performance evaluation of VoIP for a mobile user and how the QoS parameters vary for different speeds. The simulation and emulation of a mobile WiMAX system using EXata 2.0.1 are performed. The effectiveness of the comparison of results is discussed

    Channel Aware Uplink Scheduler for a Mobile Subscriber Station of IEEE 802.16e

    Get PDF
    The scheduling part of the IEEE 802.16 (WiMAX) standards is kept as an open issue to provide differentiation among equipment manufacturers and operators. The uplink scheduling is very significant and more complex compared to downlink scheduling. Uplink scheduling is divided into two parts; one is scheduling the resources among many users from a base station (BS) and the other is sharing the resources among its services in a single user. BS uplink scheduling has been given more attention compared to subscriber station (SS) uplink scheduling. SS scheduler plays a significant role in providing the quality of service (QoS) among its services. The channel status awareness is vital in designing the SS scheduler as the channel conditions vary for a mobile user. This work proposes a scheduling algorithm for SS, which utilizes the channel information and queue length variation for the reallocation of received aggregated bandwidth grant to optimize the QoS parameters. The performance of the proposed algorithm is studied by conducting simulations using QualNet 5.0.2 simulation tool. Simulation results demonstrate the effectiveness of the proposed algorithm to improve the QoS
    corecore