3,555 research outputs found

    ARCHANGEL: Tamper-proofing Video Archives using Temporal Content Hashes on the Blockchain

    Get PDF
    We present ARCHANGEL; a novel distributed ledger based system for assuring the long-term integrity of digital video archives. First, we describe a novel deep network architecture for computing compact temporal content hashes (TCHs) from audio-visual streams with durations of minutes or hours. Our TCHs are sensitive to accidental or malicious content modification (tampering) but invariant to the codec used to encode the video. This is necessary due to the curatorial requirement for archives to format shift video over time to ensure future accessibility. Second, we describe how the TCHs (and the models used to derive them) are secured via a proof-of-authority blockchain distributed across multiple independent archives. We report on the efficacy of ARCHANGEL within the context of a trial deployment in which the national government archives of the United Kingdom, Estonia and Norway participated.Comment: Accepted to CVPR Blockchain Workshop 201

    Twofold Video Hashing with Automatic Synchronization

    Full text link
    Video hashing finds a wide array of applications in content authentication, robust retrieval and anti-piracy search. While much of the existing research has focused on extracting robust and secure content descriptors, a significant open challenge still remains: Most existing video hashing methods are fallible to temporal desynchronization. That is, when the query video results by deleting or inserting some frames from the reference video, most existing methods assume the positions of the deleted (or inserted) frames are either perfectly known or reliably estimated. This assumption may be okay under typical transcoding and frame-rate changes but is highly inappropriate in adversarial scenarios such as anti-piracy video search. For example, an illegal uploader will try to bypass the 'piracy check' mechanism of YouTube/Dailymotion etc by performing a cleverly designed non-uniform resampling of the video. We present a new solution based on dynamic time warping (DTW), which can implement automatic synchronization and can be used together with existing video hashing methods. The second contribution of this paper is to propose a new robust feature extraction method called flow hashing (FH), based on frame averaging and optical flow descriptors. Finally, a fusion mechanism called distance boosting is proposed to combine the information extracted by DTW and FH. Experiments on real video collections show that such a hash extraction and comparison enables unprecedented robustness under both spatial and temporal attacks.Comment: submitted to Image Processing (ICIP), 2014 21st IEEE International Conference o

    Bitwise Source Separation on Hashed Spectra: An Efficient Posterior Estimation Scheme Using Partial Rank Order Metrics

    Full text link
    This paper proposes an efficient bitwise solution to the single-channel source separation task. Most dictionary-based source separation algorithms rely on iterative update rules during the run time, which becomes computationally costly especially when we employ an overcomplete dictionary and sparse encoding that tend to give better separation results. To avoid such cost we propose a bitwise scheme on hashed spectra that leads to an efficient posterior probability calculation. For each source, the algorithm uses a partial rank order metric to extract robust features that form a binarized dictionary of hashed spectra. Then, for a mixture spectrum, its hash code is compared with each source's hashed dictionary in one pass. This simple voting-based dictionary search allows a fast and iteration-free estimation of ratio masking at each bin of a signal spectrogram. We verify that the proposed BitWise Source Separation (BWSS) algorithm produces sensible source separation results for the single-channel speech denoising task, with 6-8 dB mean SDR. To our knowledge, this is the first dictionary based algorithm for this task that is completely iteration-free in both training and testing

    Panako: a scalable acoustic fingerprinting system handling time-scale and pitch modification

    Get PDF
    In this paper a scalable granular acoustic fingerprinting system robust against time and pitch scale modification is presented. The aim of acoustic fingerprinting is to identify identical, or recognize similar, audio fragments in a large set using condensed representations of audio signals, i.e. fingerprints. A robust fingerprinting system generates similar fingerprints for perceptually similar audio signals. The new system, presented here, handles a variety of distortions well. It is designed to be robust against pitch shifting, time stretching and tempo changes, while remaining scalable. After a query, the system returns the start time in the reference audio, and the amount of pitch shift and tempo change that has been applied. The design of the system that offers this unique combination of features is the main contribution of this research. The fingerprint itself consists of a combination of key points in a Constant-Q spectrogram. The system is evaluated on commodity hardware using a freely available reference database with fingerprints of over 30.000 songs. The results show that the system responds quickly and reliably on queries, while handling time and pitch scale modifications of up to ten percent

    CMIR-NET : A Deep Learning Based Model For Cross-Modal Retrieval In Remote Sensing

    Get PDF
    We address the problem of cross-modal information retrieval in the domain of remote sensing. In particular, we are interested in two application scenarios: i) cross-modal retrieval between panchromatic (PAN) and multi-spectral imagery, and ii) multi-label image retrieval between very high resolution (VHR) images and speech based label annotations. Notice that these multi-modal retrieval scenarios are more challenging than the traditional uni-modal retrieval approaches given the inherent differences in distributions between the modalities. However, with the growing availability of multi-source remote sensing data and the scarcity of enough semantic annotations, the task of multi-modal retrieval has recently become extremely important. In this regard, we propose a novel deep neural network based architecture which is considered to learn a discriminative shared feature space for all the input modalities, suitable for semantically coherent information retrieval. Extensive experiments are carried out on the benchmark large-scale PAN - multi-spectral DSRSID dataset and the multi-label UC-Merced dataset. Together with the Merced dataset, we generate a corpus of speech signals corresponding to the labels. Superior performance with respect to the current state-of-the-art is observed in all the cases

    Optimization of star research algorithm for esmo star tracker

    Get PDF
    This paper explains in detail the design and the development of a software research star algorithm, embedded on a star tracker, by the ISAE/SUPAERO team. This research algorithm is inspired by musical techniques. This work will be carried out as part of the ESMO (European Student Moon Orbiter) project by different teams of students and professors from ISAE/SUPAERO (Institut Supe ́rieur de l’Ae ́ronautique et de l’Espace). Till today, the system engineering studies have been completed and the work that will be presented will concern the algorithmic and the embedded software development. The physical architecture of the sensor relies on APS 750 developed by the CIMI laboratory of ISAE/SUPAERO. First, a star research algorithm based on the image acquired in lost-in-space mode (one of the star tracker opera- tional modes) will be presented; it is inspired by techniques of musical recognition with the help of the correlation of digital signature (hash) with those stored in databases. The musical recognition principle is based on finger- printing, i.e. the extraction of points of interest in the studied signal. In the musical context, the signal spectrogram is used to identify these points. Applying this technique in image processing domain requires an equivalent tool to spectrogram. Those points of interest create a hash and are used to efficiently search within the database pre- viously sorted in order to be compared. The main goals of this research algorithm are to minimise the number of steps in the computations in order to deliver information at a higher frequency and to increase the computation robustness against the different possible disturbances
    corecore