110 research outputs found

    User-oriented mobility management in cellular wireless networks

    Get PDF
    2020 Spring.Includes bibliographical references.Mobility Management (MM) in wireless mobile networks is a vital process to keep an individual User Equipment (UE) connected while moving within the network coverage area—this is required to keep the network informed about the UE's mobility (i.e., location changes). The network must identify the exact serving cell of a specific UE for the purpose of data-packet delivery. The two MM procedures that are necessary to localize a specific UE and deliver data packets to that UE are known as Tracking Area Update (TAU) and Paging, which are burdensome not only to the network resources but also UE's battery—the UE and network always initiate the TAU and Paging, respectively. These two procedures are used in current Long Term Evolution (LTE) and its next generation (5G) networks despite the drawback that it consumes bandwidth and energy. Because of potentially very high-volume traffic and increasing density of high-mobility UEs, the TAU/Paging procedure incurs significant costs in terms of the signaling overhead and the power consumption in the battery-limited UE. This problem will become even worse in 5G, which is expected to accommodate exceptional services, such as supporting mission-critical systems (close-to-zero latency) and extending battery lifetime (10 times longer). This dissertation examines and discusses a variety of solution schemes for both the TAU and Paging, emphasizing a new key design to accommodate 5G use cases. However, ongoing efforts are still developing new schemes to provide seamless connections to the ever-increasing density of high-mobility UEs. In this context and toward achieving 5G use cases, we propose a novel solution to solve the MM issues, named gNB-based UE Mobility Tracking (gNB-based UeMT). This solution has four features aligned with achieving 5G goals. First, the mobile UE will no longer trigger the TAU to report their location changes, giving much more power savings with no signaling overhead. Instead, second, the network elements, gNBs, take over the responsibility of Tracking and Locating these UE, giving always-known UE locations. Third, our Paging procedure is markedly improved over the conventional one, providing very fast UE reachability with no Paging messages being sent simultaneously. Fourth, our solution guarantees lightweight signaling overhead with very low Paging delay; our simulation studies show that it achieves about 92% reduction in the corresponding signaling overhead. To realize these four features, this solution adds no implementation complexity. Instead, it exploits the already existing LTE/5G communication protocols, functions, and measurement reports. Our gNB-based UeMT solution by design has the potential to deal with mission-critical applications. In this context, we introduce a new approach for mission-critical and public-safety communications. Our approach aims at emergency situations (e.g., natural disasters) in which the mobile wireless network becomes dysfunctional, partially or completely. Specifically, this approach is intended to provide swift network recovery for Search-and-Rescue Operations (SAROs) to search for survivors after large-scale disasters, which we call UE-based SAROs. These SAROs are based on the fact that increasingly almost everyone carries wireless mobile devices (UEs), which serve as human-based wireless sensors on the ground. Our UE-based SAROs are aimed at accounting for limited UE battery power while providing critical information to first responders, as follows: 1) generate immediate crisis maps for the disaster-impacted areas, 2) provide vital information about where the majority of survivors are clustered/crowded, and 3) prioritize the impacted areas to identify regions that urgently need communication coverage. UE-based SAROs offer first responders a vital tool to prioritize and manage SAROs efficiently and effectively in a timely manner

    Towards efficient support for massive Internet of Things over cellular networks

    Get PDF
    The usage of Internet of Things (IoT) devices over cellular networks is seeing tremendous growth in recent years, and that growth in only expected to increase in the near future. While existing 4G and 5G cellular networks offer several desirable features for this type of applications, their design has historically focused on accommodating traditional mobile devices (e.g. smartphones). As IoT devices have very different characteristics and use cases, they create a range of problems to current networks which often struggle to accommodate them at scale. Although newer cellular network technologies, such as Narrowband-IoT (NB-IoT), were designed to focus on the IoT characteristics, they were extensively based on 4G and 5G networks to preserve interoperability, and decrease their deployment cost. As such, several inefficiencies of 4G/5G were also carried over to the newer technologies. This thesis focuses on identifying the core issues that hinder the large scale deployment of IoT over cellular networks, and proposes novel protocols to largely alleviate them. We find that the most significant challenges arise mainly in three distinct areas: connection establishment, network resource utilisation and device energy efficiency. Specifically, we make the following contributions. First, we focus on the connection establishment process and argue that the current procedures, when used by IoT devices, result in increased numbers of collisions, network outages and a signalling overhead that is disproportionate to the size of the data transmitted, and the connection duration of IoT devices. Therefore, we propose two mechanisms to alleviate these inefficiencies. Our first mechanism, named ASPIS, focuses on both the number of collisions and the signalling overhead simultaneously, and provides enhancements to increase the number of successful IoT connections, without disrupting existing background traffic. Our second mechanism focuses specifically on the collisions at the connection establishment process, and used a novel approach with Reinforcement Learning, to decrease their number and allow a larger number of IoT devices to access the network with fewer attempts. Second, we propose a new multicasting mechanism to reduce network resource utilisation in NB-IoT networks, by delivering common content (e.g. firmware updates) to multiple similar devices simultaneously. Notably, our mechanism is both more efficient during multicast data transmission, but also frees up resources that would otherwise be perpetually reserved for multicast signalling under the existing scheme. Finally, we focus on energy efficiency and propose novel protocols that are designed for the unique usage characteristics of NB-IoT devices, in order to reduce the device power consumption. Towards this end, we perform a detailed energy consumption analysis, which we use as a basis to develop an energy consumption model for realistic energy consumption assessment. We then take the insights from our analysis, and propose optimisations to significantly reduce the energy consumption of IoT devices, and assess their performance

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Role of satellite communications in 5G ecosystem: perspectives and challenges

    Get PDF
    The next generation of mobile radio communication systems – so-called 5G – will provide some major changes to those generations to date. The ability to cope with huge increases in data traffic at reduced latencies and improved quality of user experience together with a major reduction in energy usage are big challenges. In addition, future systems will need to embody connections to billions of objects – the so-called Internet of Things (IoT) which raises new challenges.Visions of 5G are now available from regions across the world and research is ongoing towards new standards. The consensus is a flatter architecture that adds a dense network of small cells operating in the millimetre wave bands and which are adaptable and software controlled. But what is the place for satellites in such a vision? The chapter examines several potential roles for satellites in 5G including coverage extension, IoT, providing resilience, content caching and multi-cast, and the integrated architecture. Furthermore, the recent advances in satellite communications together with the challenges associated with the use of satellite in the integrated satellite-terrestrial architecture are also discussed
    • …
    corecore