95,539 research outputs found

    An optofluidic router in a low-cost (PDMS) platform for rapid parallel sample analysis

    Get PDF
    En col·laboració amb la Universitat de Barcelona (UB), la Universitat Autònoma de Barcelona (UAB) i l'Institut de Ciències Fotòniques (ICFO)Optofluidic system for (bio)chemical applications are becoming more demanding in terms of num- ber of control points, number of light sources and readout equipment. So far, most of these sys- tems require several light sources/detectors for suitable performance, increasing their complexity and cost. In this work, we present an easily integrated, fluidically controlled optical router that fa- cilitates coupling of several light sources or detectors. By using PDMS mirrors and phaseguides, the switching liquid is guided and pinned in desired angles, so that the incident light undergoes total internal reflection and can be reflected towards the output channels without any movable parts. The developed router presents ideal performance for lab on a chip applications, achieving switching frequencies between 0.07 ± 0.025 and 4 ± 2 Hz, depending on the flow rate of the switching liquid. The cross-talk levels are at 20 dB from channel output power to static noise level. With the use of parabolic mirrors, channel coupling efficiencies decrease just 2.38 dBm over four channels. The dynamic switching noise reduces the cross-talk levels by 2-5 dB, depending on the incorporation of ink-apertures. The insertion loss of these devices ranges from 17.34 to 25.42 dB. These results prove the viability of the fluidically controlled router in the low-cost PDMS platform. The intended goal of this work has been to simplify and speed up parallel sample analysis with the router integrated into a multiple path photonic component on a single chip. Development on this front is ongoing to rapidly measure methadone concentrations on chip

    Equivalent random analysis of a buffered optical switch with general interarrival times

    Get PDF
    We propose an approximate analytic model of an optical switch with fibre delay lines and wavelength converters by employing Equivalent Random Theory. General arrival traffic is modelled by means of Gamma-distributed interarrival times. The analysis is formulated in terms of virtual traffic flows within the optical switch from which we derive expressions for burst blocking probability, fibre delay line occupancy and mean delay. Emphasis is on approximations that give good numerical efficiency so that the method can be useful for formulating dimensioning problems for large-scale networks. Numerical solution values from the proposed analysis method compare well with results from a discrete-event simulation of an optical burst switch

    Optical IP switching a solution to dynamic lightpath establishment in disaggregated network architectures

    Get PDF
    The landscape of the telecommunications environment is constantly evolving; in terms of architecture and increasing data-rate. Ensuring that routing decisions are taken at the lowest possible layer offers the possibility of greatest data throughput. We propose using wavelengths in a DWDM scheme as dedicated channels that bypass the routing lookup in a router. The future trend of telecommunications industry is, however, toward larger numbers of interlinked competing operator networks. This in turn means there is a lack of a unified control plane to allow current networks to dynamically provision optical paths. This paper will report on the concept of optical IP switching. This concept seeks to address optical control plane issues in disaggregated networks while providing a means to dynamically provision optical paths to cater for large data flows
    corecore