10 research outputs found

    Orbital Angular Momentum Waves: Generation, Detection and Emerging Applications

    Full text link
    Orbital angular momentum (OAM) has aroused a widespread interest in many fields, especially in telecommunications due to its potential for unleashing new capacity in the severely congested spectrum of commercial communication systems. Beams carrying OAM have a helical phase front and a field strength with a singularity along the axial center, which can be used for information transmission, imaging and particle manipulation. The number of orthogonal OAM modes in a single beam is theoretically infinite and each mode is an element of a complete orthogonal basis that can be employed for multiplexing different signals, thus greatly improving the spectrum efficiency. In this paper, we comprehensively summarize and compare the methods for generation and detection of optical OAM, radio OAM and acoustic OAM. Then, we represent the applications and technical challenges of OAM in communications, including free-space optical communications, optical fiber communications, radio communications and acoustic communications. To complete our survey, we also discuss the state of art of particle manipulation and target imaging with OAM beams

    Energy Efficient Resource Allocation for UCA-Based OAM-MIMO System

    Get PDF
    The combination of orbital angular momentum (OAM) and multi-input multi-output (MIMO) is identified as an effective solution to improve energy efficiency (EE) in the next-generation wireless communication. According to the orthogonality of OAM, we adopt uniform circular array (UCA) to establish the transmitter and receiver of the OAM-MIMO system in this paper. Our goal is to maximize the EE of the system whilst satisfying the maximum total transmit power and the minimum capacity requirement of each mode. Due to the inter-interference of different UCA at the same mode, the optimization problem involving the power allocation of modes is non-convex, thus is difficult to solve directly. To tackle this problem, the optimization problem is transformed into two sub-problems by using the fractional programming. Then we develop a dual-layer iteration algorithm where the nonconvex power allocation problem is transformed into a convex problem by exploiting the the first-order Taylor approximation in the inner layer, and the dichotomy is used to update EE in the outer layer. Simulation results confirm the effectiveness of the proposed solution, and demonstrate the superiority of the OAM-MIMO system over the conventional MIMO system from the perspective of EE

    Design and Analysis of LoS MIMO Systems with Uniform Circular Arrays

    Full text link
    We consider the design of a uniform circular array (UCA) based multiple-input multiple-output (MIMO) system over line-of-sight (LoS) environments in which array misalignment exists. In particular, optimal antenna placement in UCAs and transceiver architectures to achieve the maximum channel capacity without the knowledge of misalignment components are presented. To this end, we first derive a generic channel model of UCA-based LoS MIMO systems in which three misalignment factors including relative array rotation, tilting and center-shift are reflected concurrently. By factorizing the channel matrix into the singular value decomposition (SVD) form, we demonstrate that the singular values of UCA-based LoS MIMO systems are \textit{independent} of tilting and center-shift. Rather, they can be expressed as a function of the \textit{radii product-to-distance ratio} (RPDR) and the angle of relative array rotation. Numerical analyses of singular values show that the RPDR is a key design parameter of UCA systems. Based on this result, we propose an optimal design method for UCA systems which performs a one-dimensional search of RPDR to maximize channel capacity. It is observed that the channel matrix of the optimally designed UCA system is close to an orthogonal matrix; this fact allows channel capacity to be achieved by a simple zero-forcing (ZF) receiver. Additionally, we propose a low-complexity precoding scheme for UCA systems in which the optimal design criteria cannot be fulfilled because of limits on array size. The simulation results demonstrate the validity of the proposed design method and transceiver architectures.Comment: 13 pages, 10 figures, This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC

    A Study on Transmission Efficiency Improvement through Theoretical Analysis in Multi-user MIMO

    Get PDF
    早大学位記番号:新8553早稲田大

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies

    Full text link
    This document provides the most recent updates on the technical contributions and research challenges focused in WP3. Each Technology Component (TeC) has been evaluated under possible uniform assessment framework of WP3 which is based on the simulation guidelines of WP6. The performance assessment is supported by the simulation results which are in their mature and stable state. An update on the Most Promising Technology Approaches (MPTAs) and their associated TeCs is the main focus of this document. Based on the input of all the TeCs in WP3, a consolidated view of WP3 on the role of multinode/multi-antenna transmission technologies in 5G systems has also been provided. This consolidated view is further supported in this document by the presentation of the impact of MPTAs on METIS scenarios and the addressed METIS goals.Aziz, D.; Baracca, P.; De Carvalho, E.; Fantini, R.; Rajatheva, N.; Popovski, P.; Sørensen, JH.... (2015). D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675

    D3.2 First performance results for multi -node/multi -antenna transmission technologies

    Full text link
    This deliverable describes the current results of the multi-node/multi-antenna technologies investigated within METIS and analyses the interactions within and outside Work Package 3. Furthermore, it identifies the most promising technologies based on the current state of obtained results. This document provides a brief overview of the results in its first part. The second part, namely the Appendix, further details the results, describes the simulation alignment efforts conducted in the Work Package and the interaction of the Test Cases. The results described here show that the investigations conducted in Work Package 3 are maturing resulting in valuable innovative solutions for future 5G systems.Fantini. R.; Santos, A.; De Carvalho, E.; Rajatheva, N.; Popovski, P.; Baracca, P.; Aziz, D.... (2014). D3.2 First performance results for multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675
    corecore