236 research outputs found

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Dense Small Cell Networks for Next Generation Wireless Systems

    Get PDF

    On robustness of physical layer network coding to pollution attack

    Get PDF

    Detection of OFDM Signals Using Pilot Tones and Applications to Spectrum Sensing for Cognitive Radio Systems

    Get PDF
    Nowadays there are an increasing number of wireless devices which support wireless networking and the need for higher data rate communication is increasing rabidly. As more and more systems go wireless, approaching technologies will face spectral crowding and existence of wireless devices will be an important issue. Because of the limited bandwidth availability, accepting the request for higher capacity and data rates is a challenging task, demanding advanced technologies that can offers new methods of using the available radio spectrum. Cognitive radio introduces a key solution to the spectral increasing issue by presenting the opportunistic usage of spectrum that is not heavily occupied by licensed users. It is a latest idea in wireless communications systems which objective to have more adaptive and aware communication devices which can make better use of available natural resources. Cognitive radio appears to be an attractive solution to the spectral congestion problem by introducing the notion of opportunistic spectrum use. Cognitive radios can operate as a secondary systems on top of existence system which are called primary (or licensed) systems. In this case, secondary (cognitive) users need to detect the unused spectrum in order to be able to access it. Because of its many advantages, orthogonal frequency division multiplexing (OFDM) has been successfully used in numerous wireless standards and technologies. It\u27s shown that OFDM will play an important role in realizing the cognitive radio concept as well by providing a proven, scalable, and adaptive technology for air interface. Researches show that OFDM technique is considered as a candidate for cognitive radio systems. The objective of this dissertation is to explore detecting of OFDM modulated signals using pilot tones information. Specifically we applying Time-Domain Symbol Cross-Correlation (TDSC) method in the confect of actual 4G wireless standards such as WIMAX and LTE. This detection is only based upon the knowledge of pilot structures without knowledge of received signal so that, it can be performed on every portion of the received signal. The approach induces Cross-Correlation between pilots subcarriers and exploits the deterministic and periodic characteristics of pilot mapping in the time frequency domain

    Outage Probability of Multi-hop Networks with Amplify-and-Forward Full-duplex Relaying

    Get PDF
    abstract: Full-duplex communication has attracted significant attention as it promises to increase the spectral efficiency compared to half-duplex. Multi-hop full-duplex networks add new dimensions and capabilities to cooperative networks by facilitating simultaneous transmission and reception and improving data rates. When a relay in a multi-hop full-duplex system amplifies and forwards its received signals, due to the presence of self-interference, the input-output relationship is determined by recursive equations. This thesis introduces a signal flow graph approach to solve the problem of finding the input-output relationship of a multi-hop amplify-and-forward full-duplex relaying system using Mason's gain formula. Even when all links have flat fading channels, the residual self-interference component due to imperfect self-interference cancellation at the relays results in an end-to-end effective channel that is an all-pole frequency-selective channel. Also, by assuming the relay channels undergo frequency-selective fading, the outage probability analysis is performed and the performance is compared with the case when the relay channels undergo frequency-flat fading. The outage performance of this system is performed assuming that the destination employs an equalizer or a matched filter. For the case of a two-hop (single relay) full-duplex amplify-and-forward relaying system, the bounds on the outage probability are derived by assuming that the destination employs a matched filter or a minimum mean squared error decision feedback equalizer. For the case of a three-hop (two-relay) system with frequency-flat relay channels, the outage probability analysis is performed by considering the output SNR of different types of equalizers and matched filter at the destination. Also, the closed-form upper bounds on the output SNR are derived when the destination employs a minimum mean squared error decision feedback equalizer which is used in outage probability analysis. It is seen that for sufficiently high target rates, full-duplex relaying with equalizers is always better than half-duplex relaying in terms of achieving lower outage probability, despite the higher RSI. In contrast, since full-duplex relaying with MF is sensitive to RSI, it is outperformed by half-duplex relaying under strong RSI.Dissertation/ThesisMasters Thesis Electrical Engineering 201
    • …
    corecore