2,454 research outputs found

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    E2MaC: an energy efficient MAC protocol for multimedia traffic

    Get PDF
    Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We present a novel MAC protocol that achieves a good energy efficiency of wireless interface of the mobile and provides support for diverse traffic types and QoS. The scheduler of the base station is responsible to provide the required QoS to connections on the wireless link and to minimise the amount of energy spend by the mobile. The main principles of the E2MaC protocol are to avoid unsuccessful actions, minimise the number of transitions, and synchronise the mobile and the base-station. We will show that considerable amounts of energy can be saved using these principles. In the protocol the actions of the mobile are minimised. The base-station with plenty of energy performs actions in courtesy of the mobile. We have paid much attention in reducing the cost of a mobile for just being connected. The protocol is able to provide near-optimal energy efficiency (i.e. energy is only spent for the actual transfer) for a mobile within the constraints of the QoS of all connections in a cell, and only requires a small overhead

    Modelling & Improving Flow Establishment in RSVP

    Get PDF
    RSVP has developed as a key component for the evolving Internet, and in particular for the Integrated Services Architecture. Therefore, RSVP performance is crucially important; yet this has been little studied up till now. In this paper, we target one of the most important aspects of RSVP: its ability to establish flows. We first identify the factors influencing the performance of the protocol by modelling the establishment mechanism. Then, we propose a Fast Establishment Mechanism (FEM) aimed at speeding up the set-up procedure in RSVP. We analyse FEM by means of simulation, and show that it offers improvements to the performance of RSVP over a range of likely circumstances

    Performance of voice and video conferencing over ATM and gigabit ethernet backbone networks

    Get PDF
    Gigabit Ethernet and ATM network technologies have been modeled as campus network backbones for the simulation-based comparison of their performance. Real-time voice and video conferencing traffic is used to compare the performance of both backbone technologies in terms of response times and packet end-to-end delays. Simulation results show that Gigabit Ethernet has been able to perform the same and in some cases better than ATM as a backbone network for video and voice conferencing providing network designers with a cheaper solution to meet the growing needs of bandwidth-hungry applications in a campus environment

    Quality of service assurance for the next generation Internet

    Get PDF
    The provisioning for multimedia applications has been of increasing interest among researchers and Internet Service Providers. Through the migration from resource-based to service-driven networks, it has become evident that the Internet model should be enhanced to provide support for a variety of differentiated services that match applications and customer requirements, and not stay limited under the flat best-effort service that is currently provided. In this paper, we describe and critically appraise the major achievements of the efforts to introduce Quality of Service (QoS) assurance and provisioning within the Internet model. We then propose a research path for the creation of a network services management architecture, through which we can move towards a QoS-enabled network environment, offering support for a variety of different services, based on traffic characteristics and user expectations

    Throughput Optimal On-Line Algorithms for Advanced Resource Reservation in Ultra High-Speed Networks

    Full text link
    Advanced channel reservation is emerging as an important feature of ultra high-speed networks requiring the transfer of large files. Applications include scientific data transfers and database backup. In this paper, we present two new, on-line algorithms for advanced reservation, called BatchAll and BatchLim, that are guaranteed to achieve optimal throughput performance, based on multi-commodity flow arguments. Both algorithms are shown to have polynomial-time complexity and provable bounds on the maximum delay for 1+epsilon bandwidth augmented networks. The BatchLim algorithm returns the completion time of a connection immediately as a request is placed, but at the expense of a slightly looser competitive ratio than that of BatchAll. We also present a simple approach that limits the number of parallel paths used by the algorithms while provably bounding the maximum reduction factor in the transmission throughput. We show that, although the number of different paths can be exponentially large, the actual number of paths needed to approximate the flow is quite small and proportional to the number of edges in the network. Simulations for a number of topologies show that, in practice, 3 to 5 parallel paths are sufficient to achieve close to optimal performance. The performance of the competitive algorithms are also compared to a greedy benchmark, both through analysis and simulation.Comment: 9 pages, 8 figure

    IP and ATM - a position paper

    Get PDF
    This paper gives a technical overview of different networking technologies, such as the Internet, ATM. It describes different approaches of how to run IP on top of an ATM network, and assesses their potential to be used as an integrated services network

    IP and ATM - current evolution for integrated services

    Get PDF
    Current and future applications make use of different technologies as voice, data, and video. Consequently network technologies need to support them. For many years, the ATM based Broadband-ISDN has generally been regarded as the ultimate networking technology, which can integrate voice, data, and video services. With the recent tremendous growth of the Internet and the reluctant deployment of public ATM networks, the future development of ATM seems to be less clear than it used to be. In the past IP provided (and was though to provide) only best effort services, thus, despite its world wide diffution, was not considered as a network solution for multimedia application. Currently many of the IETF working groups work on areas related to integrated services, and IP is also proposing itself as networking technology for supporting voice, data, and video services. This paper give a technical overview on the competing integrated services network solutions, such as IP, ATM and the different available and emerging technologies on how to run IP over ATM, and tries to identify their potential and shortcomings

    Time Driven Priority Router Implementation and First Experiments

    Get PDF
    This paper reports on the implementation of Time-Driven Priority (TDP) scheduling on a FreeBSD platform. This work is part of a TDP prototyping and demonstration project aimed at showing the implications of TDP deployment in packet-switched networks, especially benefits for real-time applications. This paper focuses on practical aspects related to the implementation of the technology on a Personal Computer (PC)-based router and presents the experimental results obtained on a testbed network. The basic building blocks of a TDP router are described and implementation choices are discussed. The relevant results achieved and here presented can be categorized into two types: qualitative results, including the successful integration of all needed blocks and the insight obtained on the complexity related to the implementation of a TDP router, and quantitative ones, including measures of achievable network utilization and of jitter experienced on a fully-loaded TDP network. The outcome demonstrates the effectiveness of the presented implementation while confirming TDP points of strengt
    • 

    corecore