1,759,911 research outputs found

    Performance Analysis of Component-Based Systems

    Get PDF
    Dependability assessment of component-based systems must include verification of temporal and performance requirements as they can be of primary importance for many real-time and embedded systems. This paper uses labeled timed Petri nets as models of the behavior of components at their interfaces. These component models are systematically composed into an integrated model of the system which is used for verification of temporal characteristics and performance analysis

    Design-time performance analysis of component-based real-time systems

    Get PDF
    In current real-time systems, performance metrics are one of the most challenging properties to specify, predict and measure. Performance properties depend on various factors, like environmental context, load profile, middleware, operating system, hardware platform and sharing of internal resources. Performance failures and not satisfying related requirements cause delays, cost overruns, and even abandonment of projects. In order to avoid these performancerelated project failures, the performance properties should be obtained and analyzed already at the early design phase of a project. In this thesis we employ principles of component-based software engineering (CBSE), which enable building software systems from individual components. The advantage of CBSE is that individual components can be modeled, reused and traded. The main objective of this thesis is to develop a method that enables to predict the performance properties of a system, based on the performance properties of the involved individual components. The prediction method serves rapid prototyping and performance analysis of the architecture or related alternatives, without performing the usual testing and implementation stages. The involved research questions are as follows. How should the behaviour and performance properties of individual components be specified in order to enable automated composition of these properties into an analyzable model of a complete system? How to synthesize the models of individual components into a model of a complete system in an automated way, such that the resulting system model can be analyzed against the performance properties? The thesis presents a new framework called DeepCompass, which realizes the concept of predictable assembly throughout all phases of the system design. The cornerstones of the framework are the composable models of individual software components and hardware blocks. The models are specified at the component development time and shipped in a component package. At the component composition phase, the models of the constituent components are synthesized into an executable system model. Since the thesis focuses on performance properties, we introduce performance-related types of component models, such as behaviour, performance and resource models. The dynamics of the system execution are captured in scenario models. The essential advantage of the introduced models is that, through the behaviour of individual components and scenario models, the behaviour of the complete system is synthesized in the executable system model. Further simulation-based analysis of the obtained executable system model provides application-specific and system-specific performance property values. To support the performance analysis, we have developed a CARAT software toolkit that provides and automates the algorithms for model synthesis and simulation. Besides this, the toolkit provides graphical tools for designing alternative architectures and visualization of obtained performance properties. We have conducted an empirical case study on the use of scenarios in the industry to analyze the system performance at the early design phase. It was found that industrial architects make extensive use of scenarios for performance evaluation. Based on the inputs of the architects, we have provided a set of guidelines for identification and use of performance-critical scenarios. At the end of this thesis, we have validated the DeepCompass framework by performing three case studies on performance prediction of real-time systems: an MPEG-4 video decoder, a Car Radio Navigation system and a JPEG application. For each case study, we have constructed models of the individual components, defined the SW/HW architecture, and used the CARAT toolkit to synthesize and simulate the executable system model. The simulation provided the predicted performance properties, which we later compared with the actual performance properties of the realized systems. With respect to resource usage properties and average task latencies, the variation of the prediction error showed to be within 30% of the actual performance. Concerning the pick loads on the processor nodes, the actual values were sometimes three times larger than the predicted values. As a conclusion, the framework has proven to be effective in rapid architecture prototyping and performance analysis of a complete system. This is valid, as in the case studies we have spent not more than 4-5 days on the average for the complete iteration cycle, including the design of several architecture alternatives. The framework can handle different architectural styles, which makes it widely applicable. A conceptual limitation of the framework is that it assumes that the models of individual components are already available at the design phase

    Performance monitoring of MPC based on dynamic principal component analysis

    No full text
    A unified framework based on the dynamic principal component analysis (PCA) is proposed for performance monitoring of constrained multi-variable model predictive control (MPC) systems. In the proposed performance monitoring framework, the dynamic PCA based performance benchmark is adopted for performance assessment, while performance diagnosis is carried out using a unified weighted dynamic PCA similarity measure. Simulation results obtained from the case study of the Shell process demonstrate that the use of the dynamic PCA performance benchmark can detect the performance deterioration more quickly compared with the traditional PCA method, and the proposed unified weighted dynamic PCA similarity measure can correctly locate the root cause for poor performance of MPC controller

    SAVCBS 2004 Specification and Verification of Component-Based Systems: Workshop Proceedings

    Get PDF
    This is the proceedings of the 2004 SAVCBS workshop. The workshop is concerned with how formal (i.e., mathematical) techniques can be or should be used to establish a suitable foundation for the specification and verification of component-based systems. Component-based systems are a growing concern for the software engineering community. Specification and reasoning techniques are urgently needed to permit composition of systems from components. Component-based specification and verification is also vital for scaling advanced verification techniques such as extended static analysis and model checking to the size of real systems. The workshop considers formalization of both functional and non-functional behavior, such as performance or reliability

    Development of an automated aircraft subsystem architecture generation and analysis tool

    Get PDF
    Purpose – The purpose of this paper is to present a new computational framework to address future preliminary design needs for aircraft subsystems. The ability to investigate multiple candidate technologies forming subsystem architectures is enabled with the provision of automated architecture generation, analysis and optimization. Main focus lies with a demonstration of the frameworks workings, as well as the optimizers performance with a typical form of application problem. Design/methodology/approach – The core aspects involve a functional decomposition, coupled with a synergistic mission performance analysis on the aircraft, architecture and component levels. This may be followed by a complete enumeration of architectures, combined with a user defined technology filtering and concept ranking procedure. In addition, a hybrid heuristic optimizer, based on ant systems optimization and a genetic algorithm, is employed to produce optimal architectures in both component composition and design parameters. The optimizer is tested on a generic architecture design problem combined with modified Griewank and parabolic functions for the continuous space. Findings – Insights from the generalized application problem show consistent rediscovery of the optimal architectures with the optimizer, as compared to a full problem enumeration. In addition multi-objective optimization reveals a Pareto front with differences in component composition as well as continuous parameters. Research limitations/implications – This paper demonstrates the frameworks application on a generalized test problem only. Further publication will consider real engineering design problems. Originality/value – The paper addresses the need for future conceptual design methods of complex systems to consider a mixed concept space of both discrete and continuous nature via automated methods
    corecore