

Design-time performance analysis of component-based real-
time systems
Citation for published version (APA):
Bondarev, E. (2009). Design-time performance analysis of component-based real-time systems. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR656898

DOI:
10.6100/IR656898

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR656898
https://doi.org/10.6100/IR656898
https://research.tue.nl/en/publications/fc3acb95-1792-4a9d-a3d7-600ffa64e2ea

Design-Time Performance Analysis
of Component-Based Real-Time

Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen op
dinsdag 22 december 2009 om 16.00 uur

door

Yahor Bondarau

geboren te Zhodino, Wit-Rusland (Belarus)

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. P.H.N. de With
en
prof.dr. J.J. Lukkien

Copromotor:
dr. M.R.V. Chaudron

A catalogue record is available from the Eindhoven University of Technology
Library

Bondarau, Yahor.

Design-Time Performance Analysis of Component-Based Real-Time Systems
by Yahor Bondarau. - Eindhoven : Technische Universiteit Eindhoven, 2009.
Proefschrift. - ISBN 978-90-386-2126-5
NUR 918

Keywords: performance prediction / real-time systems /
component-based software engineering.

Subject headings: real-time systems / software design /
software quality.

c© Copyright 2009 Yahor Bondarau
All rights are reserved. No part of this book may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission from the copyright owner.

Design-Time Performance Analysis
of Component-Based Real-Time

Systems

Yahor Bondarau

Committee members:

prof.dr.ir. P.H.N. de With (TU Eindhoven, promoter)
prof.dr. J.J. Lukkien (TU Eindhoven, promoter)
dr. M.R.V. Chaudron (LIACS Leiden, copromoter)
prof.dr.ir. A.P.C.M. Backx (TU Eindhoven, chairman)
prof.dr. M.G.J. van den Brand (TU Eindhoven)
prof.dr. V. Cortellessa (Universita dell’Aquila Italy)
prof.dr. I. Crnkovic (Malardalen University Sweden)
ir. J.H.A. Gelissen (Philips Research Labs Eindhoven, advisor)
prof.dr. P. Pettersson (Malardalen University Sweden)

The research work reported in this thesis was supported by two international
projects in the framework of the ITEA programme: Space4U and Trust4All.

Acknowledgements
You are holding a book that results from four years of research work. How-

ever, as a wise proverb says: The process, not the final result, is what brings the
biggest pleasure for a creative person, the most difficult and interesting was the
path to this result. Whether there were seconds of despair and enlightening,
periods of self-reflection and hard implementation of ideas, as well as the junc-
tion points, where a smart decision should be taken to proceed successfully, in
all these moments I felt the support and understanding from the people that
I worked and lived with during this path. I am very grateful to all of them.

First and foremost, I would like to thank my promotor and the leading star
in my research career prof.dr. Peter H.N. de With, who accepted me as a young
PhD student and opened up the gates to the scientific world. After six years
of working together, I am still impressed by his creativity, performance and
enthusiasm, that positively influenced me at the beginning of my PhD. His
technical expertise, world-true examples and our endless discussions helped
me to understand how things can be done in the most efficient way. Besides
this, his openness and a great sense of humor make me feeling at home, while
working in the VCA Lab at the TU/e.

I also would like to express my sincere gratitude to my second promotor
prof.dr. Johan J. Lukkien and copromotor dr. Michel R.V. Chaudron. Their
knowledge, experience and willingness to help allowed me to obtain a deep
insight into the world of system architectures, real-time systems and CBSE
technologies. My architectural and analysis skills were formed by an objective
feedback loop from their side. Johan and Michel, thank you for that!

I would like to thank all the members of the Doctorate Committee, Pro-
fessors Vittorio Cortellessa, Ivica Crnkovic, Mark van den Brand and Paul
Pettersson for their valuable and detailed feedback on this thesis. This feed-
back helped a lot to improve the thesis quality.

Special words of gratitude go to Jean Gelissen and Hugh Maaskant (Philips
Research), who heavily supported me in my ‘strange’ performance prediction
method for the ROBOCOP architecture during the Space4U and Trust4All
international projects. Their invitation to co-author them in the two CBSE
tutorials was a great credit, which set my motivation one level higher.

This work would never be completed without Harold Weffers, Director of
the Software Technology (OOTI) programme, who invited me for the post-
master study and provided the access to the European IT world. His vision
on the software engineering discipline and life in The Netherlands in general,
that he expressed in a metaphoric and intriguing way, left a great impact on
my working and living principles.

I am grateful to my colleagues and friends in the SAN and VCA groups
at the TU/e for giving a permanent and warm inspiration during this PhD
period. Especially, I am thankful to Goran (The Bastardo) Petrovic and Milan

Pastrnak, with whom we performed a lot of beer-to-beer reviews of the achieved
results and ideas.

I also want to express my gratitude to my friends Pashka, Luda, Oleksii,
Andrew, as well as to Kostya and Serge for making this tough concept of life
more cosy, relaxed and joyful.

Moi dorogie Mama i Papa, nesmotr� na obilie inostrannyh
bukv, �ta kniga - dl� vas. Vy mo�ete gordit~s� mno$i tak �e kak �
vsegda gordils� vami. Blagodar� vaxe$i zabote, podder�ke i l�bvi,
a tak�e privitomu ‘teoretiqeskomu’ trudol�bi�, � smog uspexno
pro$iti vse stupen~ki na puti k �to$i knige. Hoqu tak�e poblago-
darit~ sestru Irinku, Nade�du Ivanovnu i Viktora Pavloviqa za
podder�ku i ponimanie moih noqnyh ‘bdeni$i’ u komp~�tera.

Most importantly, I would like to thank my dear wife Yevgenia for her
endless support and understanding. Without her love, I would not be able to
fight with the difficulties experienced during this period. Being surrounded by
the wisdom and patience, that is what one can only dream about.

Samenvatting
Prestatie- of performancemetrieken van actuele real-time systemen behoren

tot de meest uitdagende eigenschappen om te specificeren, voorspellen en
meten. Performanceëigenschappen zijn afhankelijk van diverse factoren, zoals
omgevingscontext, belastingsprofiel, middleware, besturingssysteem, hardware
platform en het verdelen van de interne rekenkracht. Het niet voldoen aan
performanceëisen veroorzaakt vertraging, kostenoverschrijdingen en zelfs het
vroegtijdig afbreken van projecten. Om deze performance gerelateerde pro-
jectproblemen te vermijden moeten de performanceëigenschappen reeds wor-
den bepaald en geanalyseerd in de vroege ontwerpfases van een project.

In dit proefschrift worden de principes gebruikt van het componentenge-
baseerd ontwerpen van software (CBSE), waardoor het mogelijk is om soft-
waresystemen te construeren met behulp van de individuele componenten. Het
voordeel van CBSE is dat de individuele componenten afzonderlijk kunnen
worden gemodelleerd, (her-)gebruikt en verhandeld. Het hoofddoel van dit
proefschrift is een methode te ontwikkelen die het mogelijk maakt om de per-
formanceëigenschappen van een systeem te voorspellen, gebaseerd op de perfor-
manceëigenschappen van de individuele componenten. De voorspellingsmeth-
ode is geschikt voor snelle prototyping en performanceanalyse van de sys-
teemarchitectuur of gerelateerde alternatieven, zonder het daadwerkelijk imple-
menteren en testen van deze alternatieven. De onderliggende onderzoeksvragen
hiervoor zijn als volgt. Hoe moeten de gedrags- en performanceëigenschappen
van individuele componenten worden gespecificeerd, teneinde een automatische
compositie van deze eigenschappen mogelijk te maken voor een analyseerbaar
model van het complete systeem? Hoe moeten de modellen van de individuele
componenten worden gesynthetiseerd voor een model van het complete sys-
teem op een automatische wijze, zodanig dat het resulterende systeemmodel
kan worden geanalyseerd met betrekking tot de performanceëigenschappen?

Het proefschrift presenteert een nieuw raamwerk genaamd DeepCompass,
dat het concept realiseert van een voorspelbaar samenstel van componenten
voor alle fasen van het systeemontwerp. De componentmodellen van de afzon-
derlijke softwarecomponenten en hardwareblokken vormen de hoekstenen van
het raamwerk. De modellen zijn gespecificeerd tijdens het ontwikkelen van de
componenten en komen beschikbaar als een zogenaamd componentenpakket.
In de compositiefase van de componenten worden de modellen van de con-
stituerende componenten gesynthetiseerd in een executeerbaar systeemmodel.
Omdat de inhoud van het proefschrift zich concentreert op performanceëigen-
schappen, introduceert de auteur diverse performancegerelateerde typeringen
voor componentmodellen, zoals gedrags-, performance- en hulpbronmodellen.
De dynamica van de systeemexecutie wordt beschreven in scenariomodellen.
Het kernvoordeel van deze modellen is dat, met behulp van het gedrag van
de individuele componenten en de scenariomodellen, het gedrag van het com-

plete systeem wordt gesynthetiseerd in het eerdergenoemde executeerbare sys-
teemmodel. De daaropvolgende simulatiegebaseerde analyse van het verkregen
executeerbare systeemmodel levert waarden voor de applicatiespecifieke en sys-
teemspecifieke performanceëigenschappen.

Ter ondersteuning van de performanceanalyse heeft de auteur een set van
CARAT software hulpprogramma’s ontwikkeld die voorziet in algoritmen voor
automatische modelsynthese en simulatie. Daarnaast bevat de CARAT set ook
grafische hulpprogramma’s voor het ontwerpen van alternatieve architecturen
en het visualiseren van de verkregen performanceëigenschappen.

Het onderzoek beschrijft ook een empirische casestudie naar het gebruik
van scenario’s in de industrie voor het analyseren van systeemperformance in
een vroegtijdige ontwerpfase. Deze studie heeft aangetoond dat architecten in
de industrie intensief gebruik maken van scenario’s voor performanceëvaluatie.
De auteur heeft, gebruik makend van de gegevens van de architecten, een
verzameling van richtlijnen opgesteld voor de identificatie en het gebruik van
performance-kritische scenario’s.

In het laatste deel van dit proefschrift wordt het DeepCompass raamw-
erk gevalideerd met het uitvoeren van drie casestudies voor de voorspelling
van de performance van real-time systemen: een MPEG-4 video decoder,
een navigatiesysteem voor auto’s en een JPEG toepassing. Voor elke cas-
estudie zijn modellen voor de individuele componenten geconstrueerd, de soft-
ware/hardware architectuur is gedefinieerd, en de CARAT hulpprogramma’s
zijn gebruikt voor het synthetiseren en simuleren van het executeerbare sys-
teemmodel. De simulatie heeft de voorspelde performanceëigenschappen opge-
leverd, die later zijn vergeleken met de werkelijke performanceëigenschappen
van het daadwerkelijk gerealiseerde systeem. Met betrekking tot het gebruik
van de hulpbronnen en de gemiddelde tijdsvertraging per taak is aangetoond
dat de fout in de voorspelling varieert binnen 30% van de werkelijke perfor-
mance. Wat betreft de piekbelasting per processorknooppunt werd gemeten
dat de actuele waarden soms drie keer groter waren dan de voorspelde waarden.

Op grond van het voorgaande kan worden geconcludeerd dat het raamwerk
effectief is in het snel realiseren van een prototype voor een architectuur en de
performanceanalyse van een compleet systeem. In de casestudies is gemiddeld
niet meer dan 4-5 dagen besteed aan een complete ontwikkelcyclus, inclusief het
ontwerpen van verschillende alternatieve architecturen. Het raamwerk is breed
toepasbaar omdat het om kan gaan met verschillende architectuurstijlen. Een
conceptuele beperking van het raamwerk is dat het impliciet aanneemt dat de
modellen van individuele componenten al beschikbaar zijn bij de ontwerpfase.

Summary
In current real-time systems, performance metrics are one of the most chal-

lenging properties to specify, predict and measure. Performance properties de-
pend on various factors, like environmental context, load profile, middleware,
operating system, hardware platform and sharing of internal resources. Perfor-
mance failures and not satisfying related requirements cause delays, cost over-
runs, and even abandonment of projects. In order to avoid these performance-
related project failures, the performance properties should be obtained and
analyzed already at the early design phase of a project.

In this thesis we employ principles of component-based software engineer-
ing (CBSE), which enable building software systems from individual compo-
nents. The advantage of CBSE is that individual components can be modeled,
reused and traded. The main objective of this thesis is to develop a method
that enables to predict the performance properties of a system, based on the
performance properties of the involved individual components. The prediction
method serves rapid prototyping and performance analysis of the architecture
or related alternatives, without performing the usual testing and implementa-
tion stages. The involved research questions are as follows. How should the
behaviour and performance properties of individual components be specified in
order to enable automated composition of these properties into an analyzable
model of a complete system? How to synthesize the models of individual com-
ponents into a model of a complete system in an automated way, such that the
resulting system model can be analyzed against the performance properties?

The thesis presents a new framework called DeepCompass, which real-
izes the concept of predictable assembly throughout all phases of the system
design. The cornerstones of the framework are the composable models of in-
dividual software components and hardware blocks. The models are specified
at the component development time and shipped in a component package. At
the component composition phase, the models of the constituent components
are synthesized into an executable system model. Since the thesis focuses on
performance properties, we introduce performance-related types of component
models, such as behaviour, performance and resource models. The dynam-
ics of the system execution are captured in scenario models. The essential
advantage of the introduced models is that, through the behaviour of individ-
ual components and scenario models, the behaviour of the complete system is
synthesized in the executable system model. Further simulation-based analy-
sis of the obtained executable system model provides application-specific and
system-specific performance property values.

To support the performance analysis, we have developed a CARAT soft-
ware toolkit that provides and automates the algorithms for model synthesis
and simulation. Besides this, the toolkit provides graphical tools for designing
alternative architectures and visualization of obtained performance properties.

We have conducted an empirical case study on the use of scenarios in the
industry to analyze the system performance at the early design phase. It was
found that industrial architects make extensive use of scenarios for performance
evaluation. Based on the inputs of the architects, we have provided a set of
guidelines for identification and use of performance-critical scenarios.

At the end of this thesis, we have validated the DeepCompass framework
by performing three case studies on performance prediction of real-time sys-
tems: an MPEG-4 video decoder, a Car Radio Navigation system and a JPEG
application. For each case study, we have constructed models of the individual
components, defined the SW/HW architecture, and used the CARAT toolkit
to synthesize and simulate the executable system model. The simulation pro-
vided the predicted performance properties, which we later compared with the
actual performance properties of the realized systems. With respect to resource
usage properties and average task latencies, the variation of the prediction er-
ror showed to be within 30% of the actual performance. Concerning the pick
loads on the processor nodes, the actual values were sometimes three times
larger than the predicted values.

As a conclusion, the framework has proven to be effective in rapid architec-
ture prototyping and performance analysis of a complete system. This is valid,
as in the case studies we have spent not more than 4-5 days on the average
for the complete iteration cycle, including the design of several architecture
alternatives. The framework can handle different architectural styles, which
makes it widely applicable. A conceptual limitation of the framework is that
it assumes that the models of individual components are already available at
the design phase.

Contents

1 Introduction 1
1.1 Preliminaries and Background 1
1.2 Problem Statement and Research Questions 5
1.3 Research Method . 6
1.4 Major Contributions . 7
1.5 Thesis Outline . 8

2 Background on CBSE and RT Systems 13
2.1 Introduction . 13
2.2 Component-Based Software Engineering 13

2.2.1 Component-Based Architecture Definitions 14
2.2.2 Passive and Active Components 16
2.2.3 ROBOCOP Component-Based Architecture 17

2.3 Real-Time Systems and Performance Properties 19
2.3.1 Real-Time Systems . 19
2.3.2 Performance Properties 20

2.4 Summary of the Background 24

3 State of the Art on Predictable Assembly of Components 27
3.1 Introduction . 27
3.2 Composability of Quality Attributes 28
3.3 Predictable Assembly Methods 30

3.3.1 PECT . 30
3.3.2 KLAPER . 31
3.3.3 Palladio Component Model 32
3.3.4 EJB-Liu-Gorton Methodology 33
3.3.5 MPA/RTC . 34
3.3.6 Alternative Methods for Compositional Perf. Analysis . 36

3.4 Comparison of Predictable Assembly Methods 37
3.5 Conclusions . 39

i

ii Contents

4 DeepCompass Analysis Framework 41
4.1 Requirements and Design Considerations 41
4.2 Overview of DeepCompass framework 44
4.3 Modeling Phase and Repository 45
4.4 Architecture and Design Phase 48

4.4.1 Scenario Models and Software Architecture 48
4.4.2 Hardware Architecture and Deployment 50
4.4.3 Executable System Model 51

4.5 Analysis and Validation Phase 52
4.6 Trade-Off Analysis for Alternatives 53
4.7 Conclusions . 54

5 Scenario-Based Performance Analysis Method 57
5.1 Introduction . 57
5.2 Component and Architecture Modeling 59
5.3 Models of Components . 61

5.3.1 Model of ROBOCOP Component 62
5.3.2 Component Behaviour Model 63
5.3.3 Component Process Model 68
5.3.4 Component Resource Model 70
5.3.5 Hardware Performance Model 71

5.4 Architectural Models . 72
5.4.1 Discussion on Scenario and Deployment Models Forming

Architecture Alternatives 73
5.4.2 Scenario Model . 74
5.4.3 Deployment Model . 76
5.4.4 Executable System Model 78

5.5 Synthesis of the Executable System Model 80
5.5.1 Step 1. Initialization of executable tasks 81
5.5.2 Step 2. Synthesis of task call-graphs 84
5.5.3 Step 3. Synthesis of task-execution sequences 88
5.5.4 Step 4. Computation of resource consumption within

execution sequences . 90
5.6 Performance Analysis of Exec. System Model 94

5.6.1 Algorithm of the Simulation Scheduler 94
5.6.2 Performance results presentation 97

5.7 Review of Assumptions and Limitations 97
5.8 Conclusions . 99

6 Architecture Optimization 101
6.1 Introduction . 101

6.1.1 Background on Optimization Methods 101
6.1.2 Scope of the Chapter . 103

Contents iii

6.2 Architecture Optimization Approaches 104
6.3 Abstract Architecture Optimization Method 108
6.4 Mapping the Abstract Method on the DeepCompass Framework 112
6.5 General Challenges in Architecture Optimization 114
6.6 Conclusions and Future Work 115

7 CARAT Software Toolkit 117
7.1 Introduction . 117
7.2 Architecture of the CARAT Toolkit 119

7.2.1 Repository . 121
7.2.2 Graphical Designer . 121
7.2.3 Preprocessor and Performance Analyzer 123
7.2.4 Visualizer and Statistics Reporter 123
7.2.5 Code Generator . 125

7.3 CARAT Toolkit Properties . 127
7.4 Conclusion . 128

8 Survey on Scenario-Based Performance Analysis 129
8.1 Introduction . 129
8.2 Design of the Case Study . 133

8.2.1 Data Collection Procedures 133
8.2.2 Issues Investigated . 133

8.3 Main Findings of the Case Study 134
8.3.1 Background of Interviewees 135
8.3.2 Performance Requirements Realization and Architecture

Evaluation . 136
8.3.3 Scenario Identification and Analysis 142

8.4 Justification of Scenario-Based Approaches 152
8.5 Conclusions on the Survey . 157

9 Case Studies 159
9.1 Introduction . 159
9.2 MPEG-4 Decoder Application 160

9.2.1 MPEG-4 Decoder Functionality 160
9.2.2 Component specification 161
9.2.3 Component Assembly and Scenario Identification 163
9.2.4 Model Synthesis and Task Generation 163
9.2.5 Scenario Simulation . 165
9.2.6 Experiments and Results on the MPEG-4 Case 166
9.2.7 Conclusion on the MPEG-4 Case 167

9.3 Car Radio Navigation (CRN) System 168
9.3.1 Quest for an Optimal CRN Architecture 170
9.3.2 Defining Architecture Alternatives 170

iv Contents

9.3.3 Scenarios and Task Generation 171
9.3.4 Simulation and QA predictions 174
9.3.5 Analysis of Architecture Alternatives 176

9.4 JPEG Decoder Application . 177
9.4.1 Services Identification 177
9.4.2 Specification of Component Models 179
9.4.3 JPEG Software Architecture 181
9.4.4 JPEG Hardware Architecture Alternatives 182
9.4.5 SW/HW Mapping Alternatives of JPEG Application . . 183
9.4.6 Synthesis of the Executable System Model 184
9.4.7 Performance Analysis 184
9.4.8 Exploiting the Trade-Offs 187

9.5 Conclusions on Case Studies . 188

10 Conclusions 191
10.1 Conclusions of the Thesis . 191
10.2 Discussion on Research Questions 194
10.3 Framework Limitations . 197
10.4 Open Issues and Future Work 198

References 201

Chapter1
Introduction

The more unpredictable the world is the more we rely on predictions.
Steve Rivkin

1.1 Preliminaries and Background

Real-time systems are spreading to increasingly more fields and their scope
and complexity have grown dramatically in the past two decades. Real-time
systems are heavily used in application domains such as avionics, automotive,
medicare, multimedia, consumer electronics and surveillance. The main reason
for this popularity is that these systems are able to carry out its functionality
under guaranteed timing constraints. Furthermore, they are often built to
ensure robustness and safety requirements.

Regarding the timing constraints, real-time systems are classified into hard
or soft real-time systems. In hard real-time systems, e.g. an anti-lock breaking
system, a missed deadline leads to disastrous consequences such as loss of life or
property. A soft real-time system, such as a multimedia streaming application,
tolerates deadline misses because they lead only to deterioration of a provided
service quality.

Real-time systems are generally executing within a nondeterministic and
highly concurrent environment, such as the above-mentioned anti-lock breaking
system within a car. This environment generates streams of asynchronous and
concurrent events having different characteristics, i.e., periodic, sporadic and
aperiodic. The system should react to these events in a predefined timely man-
ner. Moreover, real-time systems are built to execute concurrently in order to
maximize their responsiveness, as well as to use their computing resources effi-
ciently. This requires careful decisions made on the principles of the computing
resource sharing with consequent mechanisms for monitoring and enforcement

1

2 Chapter 1. Introduction

of these principles. Last but not least, performance itself is a pervasive qual-
ity of the system. Every system aspect can affect the performance, from the
software itself to all underlying layers, such as operating system, middleware,
hardware, communication networks. The performance properties depend on
multiple aspects, such as availability of hardware resources, input load, task
blocking and interleaving. As a result, the latency of a real-time task may
vary over time: the same execution trace of a system can be faster or slower,
depending on the availability of a processor cache, or the congestion rate of a
communication line.

These characteristics make the design of real-time systems complicated and
they impose challenging problems to be solved during system development.
These problems often result in project schedule delays, cost overruns, failures
on deployment, and even abandoning of projects. To avoid or mitigate these
risks, performance requirements should be carefully considered and addressed
already at the early architectural phases of a project.

At these early architectural phases, the software implementations and hard-
ware platforms for a system are often not yet available for an architect. In such
cases, assessing performance properties of a future system becomes an even
harder task. The way-out solution is to apply the principles of model-driven
architecture (MDA) [31] for design and analysis of a real-time system. Apart
from the source-code generation possibility, MDA enables specification of each
software and hardware module of a system as a set of models. These models
serve as an input to an analysis engine that processes this input using cer-
tain analysis algorithms, and provide an architect with predictions on system
quality attributes, including performance.

Apart from the problem of assessing and handling the strict performance
requirements for real-time systems, another challenge arises from the busi-
ness deployment side. Namely, companies should satisfy requirements for low
production costs, short time-to-market and high maintainability of their prod-
ucts. The Component-Based Software Engineering (CBSE) discipline aims at
addressing these requirements. It enables development of software components
and building systems out of pre-existing individual components. The under-
lying paradigm is that individual components are designed and developed in
order to provide functionality that is potentially reusable for future systems.
Therefore, component-based software systems are built as an assembly of com-
ponents already prepared for integration. The rapid assembly reduces imple-
mentation costs and potentially ensures high system-wide quality. Besides this,
it enables easy system reconfigurations by substitution of individual compo-
nents, which leads to high maintainability, scalability and evolvability. Finally,
CBSE ensures sustainability and consistency of a global system architecture,
where components can be considered as interchangeable blocks operating and
communicating according to well-defined architectural rules.

However, it should be emphasized that the aforementioned benefits of

1.1. Preliminaries and Background 3

CBSE are achievable only under the assumption that the system development
process fully complies with the CBSE standards. This compliance imposes cer-
tain technological overhead. Despite of the ongoing debates on industrial ap-
plicability of the CBSE technologies, evidence from various successful projects
gradually becomes available [70, 62, 41, 90].

Moreover, in a nutshell, CBSE extends the discussed MDA principles with
the concept of Predictable Assembly (PA) [50]. Predictable assembly allows an
architect assembling a system (out of individual components) with predictable
functional and extra-functional properties, e.g. performance. PA enhances the
MDA approach with techniques for design-time model-based analysis of the
quality attributes of systems composed from independently-developed arbi-
trary components. To enable the predictable assembly, a component provider
should supply specifications of different attributes of components as a set of
models. At the component assembly time, once the attributes of individual
components are available, it should be possible to reason about the quality
attributes of the complete assembly.

In general, the actual behaviour and resource consumption of a component-
based assembly can be determined from the following data: (a) structure of the
component assembly, (b) deployment of the components on hardware nodes,
and (c) properties of the individual components related to behaviour and re-
source consumption. Taking a process view, design-time predictions on system
performance require the following four steps. First, find and express the perfor-
mance properties of individual components. Second, identify the component-
assembly structure and mapping scheme on the hardware platform. Third,
synthesize the properties of individual components based on the defined seman-
tics, assembly structure and mapping scheme. Finaly, analyze the synthesized
data and reason about the performance properties of the architecture.

A number of component-based technologies exists in the domain of resource-
constrained systems that support some of the previously indicated process
steps. These technologies include: ROBOCOP [56], PECOS [34], PECT [50],
Koala [100], Rubus [92] and SaveCCM [46]. A detailed analysis of these tech-
nologies is presented in Chapter 3 of this thesis. Most of them address extra-
functional requirements, which is crucial for safety- and time-critical systems.
These technologies have the following common features that enable develop-
ment and assessment of performance-critical systems: (a) lightweight deploy-
ment infrastructure that reduces technology processing and memory use over-
head, (b) well-defined models for specification of components and their quality
attributes, and (c) tools or methods for testing the quality attributes of the
resulting component-based systems.

However, these CBSE technologies do not provide full-fledged support for
design-time modeling and assessment of performance properties. The needed
support should provide the following aspects:

4 Chapter 1. Introduction

• modeling syntax for specification of various performance properties of
individual components;

• well-defined semantics and rules for synthesis of these models at the
component-composition design phase;

• reasoning framework allowing to extract and analyze the processed mod-
els with respect to performance;

• supporting software tools enabling automation in the design and analysis
phase.

There are also specific challenges in enabling the performance predictions.
Firstly, due to the time-to-market pressure, an architect should be able to
spend relatively low effort for designing an architectural alternative and predict
its performance properties. Therefore, an ideal design method should provide
facilities for rapid prototyping, design and analysis of architectures. At this
point, the high accuracy of predictions is not the main target. Instead, an
architect obtains course-grained measures and some clue on the consequences
of the design decisions made.

Secondly, an architect needs the back-tracing means to map the prediction
results onto the architecture and to understand how the design decisions influ-
ence the performance values obtained. Therefore, a sufficient level of analysis
support is needed that may include visualization and guideline-enabling instru-
mentation. The result of this analysis can be specific improvements introduced
to the architecture. Here, an architect should be able to easily change the archi-
tectural elements and re-evaluate the new alternatives. Such iterative design
and comparison is called an architecture optimization and is of vital impor-
tance for development of complex real-time systems, where it is not possible
to take all performance nuances of a system in one iteration.

Thirdly, the challenge is how to provide an architect the possibility to
evaluate real-time systems built on arbitrary hardware platforms. For realizing
this, a method should provide modeling facilities for various hardware con-
figurations, as well as support for exploring different scheduling algorithms,
caching strategies, memory- and disc-access algorithms.

Last but not least, from the software point of view, a method should be
flexible and scalable enough to allow modeling and analysis of real-time sys-
tems built in an arbitrary architectural style. Depending on the requirements,
a software architecture may deploy one of the following styles: blackboard,
pipes-and-filters, publish-subscribe. The styles differ in threading, data syn-
chronization, data storage and communication principles. As a consequence,
an ideal method should provide the facilities for modeling and analysis of these
variations in system aspects and, thereby support different architectural styles.

1.2. Problem Statement and Research Questions 5

1.2 Problem Statement and Research Questions

In the previous section, we have shown that real-time systems address many
societal needs and become increasingly important in our daily life. However,
the development of real-time systems is a challenging task, due to the perva-
sive nature of their most critical property: performance. Performance quality
attributes must satisfy the requirements in all foreseen situations. Moreover,
the performance values should be predicted and assessed already at the early
design phases, since performance faults in a realized system lead to costly
re-design cycles or product failures.

Based on the above discussion, we formulate the general problem statement
that is central to this thesis as:

How can performance properties of system architectures be eval-
uated and improved during early stages of system development?

In order to refine the general problem statement, we narrow our focus
from different prospectives. Firstly, we have the opinion that the CBSE prin-
ciples reduce development time and cost, so that we concentrate on obtaining
performance values of systems built according to the CBSE standards. In
other words, we aim at providing support for systems composed out of a set of
third-party components. We assume that a source code and executables of the
individual components are not available to an architect, thus, he should be able
to evaluate an architectural alternative without even buying the components
but only based on the provided component models.

Secondly, from the whole spectrum of performance properties, we aim at
the most critical ones: (a) task latencies, (b) usage of processing power, mem-
ory and network bandwidth, and (c) performance bottlenecks in a system be-
haviour. The bottlenecks are derivatives from the above-mentioned properties,
however, they are important in the understanding of problem points in the ar-
chitecture, e.g. insufficient capacity of hardware resources, task blocking issues
or high-load picks on specific hardware blocks.

Thirdly, with respect to the amount of efforts, we focus on the problem
of rapid performance predictions requiring relatively low efforts in modeling,
reasoning and analysis. This is due to the fact that we would like to support
modeling and analysis of multiple architectural alternatives, consecutively fol-
lowed by a comparison of those alternatives. For an architect considering
multiple alternatives, it is important to analyze their properties in a rapid and
cost-effective way.

Taking into account these objectives, we specify our refined problem state-
ment as:

6 Chapter 1. Introduction

How can the detailed task behaviour, and hardware resource-
usage properties of a component-based system be rapidly pre-
dicted, based on the properties of individual components?

Research Questions

Decomposing the refined problem statement, we formulate a number of
research questions to be addressed in this thesis as follows.

RQ1: How should behaviour- and performance properties of individual
components be specified in order to enable automated composition of these
properties into an analyzable model of a complete system?

RQ2: How to combine the models of individual components into the model
of a complete system in an automated way, such that the resulting system
model can be analyzed against the performance properties?

RQ3: How can architectural alternatives be compared and optimized with
respect to multiple quality attributes?

RQ4: How can the assessment process of performance attributes be accel-
erated without a substantial reduction of the prediction accuracy?

1.3 Research Method

The research method types can be classified in deductive and inductive ones.
The deductive type, also referred to as top-down approach, begins with estab-
lishing a theory about the topic of interest, proceeds through hypothesis and
completes with validation of that theory. The inductive method, also called
bottom-up approach, starts with observations of an existing situation/problem
and ends up with a theory based on the observations and experiments made.

In our research, we have mostly applied the inductive approach, while en-
hancing it with the elements of deductive thinking. The reason for applying
the inductive approach as a basis was that we aimed at finding a methodology
that can be applicable in industrial environment. The drawback of this is that
we sacrificed the “mathematical beauty” in favor of industrial applicability.
Fig. 1.1 visualizes our research strategy. We have started with observation of
current industrial problems in the domain of real-time systems. These obser-
vations have helped us to understand the down-to-earth needs and the con-
straints that the architects experience when developing time-critical systems.
The analysis of the observations have led us to the ideas on how to address
these needs and constraints. The exploration and enhancement of these ideas
have resulted in creating a methodology, that we present in this thesis as the
so-called DeepCompass framework. In order to validate the methodology, we

1.4. Major Contributions 7

Figure 1.1: Structure of our research method.

have performed a number of case studies from the industrial environment. We
have used the results of these case studies for further iterations on the method-
ology.

It is important to mention that we have also employed the observations of
the state-of-the-art methodologies for performance analysis, while identifying
the needs, generating ideas and establishing the methodology.

1.4 Major Contributions

The major contributions of this thesis can be classified into three categories:
(a) DeepCompass framework, (b) scenario-based performance analysis method
and (c) empirical survey on scenario-based performance analysis. The following
paragraphs summarize these contributions.

The DeepCompass framework defines a design-for-performance develop-
ment process that guides an architect through iterative design cycles. Besides
the modeling and design steps, each cycle iteration incorporates such important
steps as early performance analysis and architecture optimization. For each
step, the framework defines the activities to be performed by an architect, the
deliverables, as well as the interdependencies between the steps. The frame-
work is supported by a CARAT software toolkit that provides an architect
the graphical design tools, computationally complex algorithms, and verifica-
tion/visualization means. From the business point of view, the major benefit
of the framework is that it enables rapid design and performance analysis
of component-based systems, purely based on models of independently devel-
oped individual components. The use of models allows to design and analyze

8 Chapter 1. Introduction

a component-based system without even buying the constituent components.
A scenario-based performance analysis method is the core of the Deep-

Compass framework. The method enables predictions of detailed performance
properties (task interleaving and blocking, latencies, and hardware-resource
utilization) already at the early design phases. These benefits are achieved by
the following innovations: (a) composable models of individual components,
(b) model-synthesis algorithms able to generate a system model out of com-
ponent models, (c) simulation algorithms applied to the system model, and
(d) scenario-based modeling of interactions of the system with its environ-
ment. Assessment of performance properties only for a set of critical scenarios
substantially reduces the assessment time and efforts. Another important con-
tribution of the method is that it enables automated synthesis of individual
component models into a system-wide model for any proper composition of an
arbitrary set of components. The broad applicability of the method for stream-
based and control-based systems is supported by different modeling primitives
and algorithms addressing various types of communication/architectural styles
and different hardware platforms with heterogeneous processors. We have val-
idated the method by performing three case studies on an MPEG-4 decoder,
a Car Radio Navigation system and a JPEG application.

A survey on usage of scenario-based analysis methods is carried out among
experienced architects from different application domains. The survey results
in empirical data and practical knowledge on performance analysis and ar-
chitecture evaluation using scenarios. The survey reveals that scenarios are
widely used in industry for analysis of real-time systems. All interviewed ar-
chitects mention that they use scenarios in practice. However, the interviews
also show that scenarios are not a “silver bullet” solution in architecture assess-
ment, because they have clear advantages and drawbacks in comparison to the
opposite paradigm: formal methods. The survey delivers guidelines and rec-
ommendations for identification and deployment of scenarios in performance
analysis.

1.5 Thesis Outline

This section gives an outline of the chapters in this thesis and summarizes
the contributions of individual chapters. The logical structure of the thesis is
depicted in Fig. 1.2 and is described as follows. Chapters 1-3 aim at preparing
the reader to the core of the thesis. Here we define our problem statement and
accompany it with the domain analysis and with the detailed problem analy-
sis. Chapters 4-6 describe our design and analysis methodology, including the
overview of the DeepCompass framework, followed by the detailed specification
of the comprising scenario-based performance-prediction approach and the ar-
chitecture optimization method. An experienced reader may skip Chapters 2-3

1.5. Thesis Outline 9

and proceed from Chapter 1 straight to the main Chapters 4-6. Chapters 7-9
deal with validation of the presented framework.

Figure 1.2: Logical structure of the thesis and labeling of research questions.

The remainder of this section summarizes the content of individual chap-
ters and indicates the relation between the thesis chapters and our publications.

Chapter 2. In this chapter, we provide the reader with the definitions
and technologies used in this thesis. We present the CBSE concepts, and
outline the ROBOCOP software-based technology while discussing the types
of components used in the industry. Furthermore, we introduce definitions for
real-time systems and related performance properties.

Chapter 3. This chapter presents the state-of-the-art methods addressing
performance analysis. We classify the performance analysis methods and pro-
vide a number of examples for each class. Besides, we give an overview on how
the performance predictions are handled within the component-based system
community. We explore the most mature component-based approaches that
enable the design-time model-based performance predictions and highlight the

10 Chapter 1. Introduction

advantages and limitations of each approach. This chapter is somewhat exten-
sive due to co-authored tutorials at the IEEE ICCE 2006 Conference and IEEE
Euromicro 2006 Conference, which presented the ROBOCOP architecture and
the newly developed framework from the author of this thesis.

Chapter 4. This chapter opens up the core part of the thesis. It de-
scribes the proposed performance analysis framework from the development
process point-of-view. The chapter outlines how the framework supports an
architect in the phases of selection of individual components, design of architec-
tural alternatives, performance analysis and optimization of the alternatives.
The framework achievements were initially published at the IEEE Euromi-
cro SEAA 2006 Conference [13] of the IEEE Computer Society, and at the
CBSE 2006 Conference [18] of the ACM and published by Springer. Moreover,
the framework description was also accepted as a journal publication in IEEE
Transactions on Software Engineering [15], but the publication is still under
revision.

Chapter 5. We present the analysis method which serves as a framework
core from the technical point of view. The method is based on defining crit-
ical execution scenarios of a system and analyzing the performance for these
specific scenarios. The method features (a) modeling of individual software
and hardware components at a high abstraction level, (b) specification of ar-
chitectural models containing scenarios, which define stimuli that trigger task
executions within a system, (c) automated synthesis of individual component
models and architectural models into an executable system model, represent-
ing a specification of running tasks in a system, and (d) simulation of the tasks
resulting in predicted performance properties. In this chapter, we provide all
the low-level details of the method in order to make the results repeatable for
other explorations. The method was published earlier at the IEEE Euromicro
SEAA 2004 Conference [17], as well as at the IEEE Euromicro SEAA 2005
Conference [16] and a related Euromicro workshop on Dependable Software
Intensive Embedded Systems [19].

Chapter 6. We extend the DeepCompass framework with architecture
optimization functionality. This chapter outlines existing methods for opti-
mization of architectures and describes an abstract method, which we derived
from the existing methods and our own experience. Later in the chapter, we
tailor the abstract method to the DeepCompass framework. The optimization
method was published as a book chapter in a book from Grunske et al. entitled
“Architecting Dependable Systems IV ” from Springer [45].

Chapter 7. This chapter describes a set of software tools integrated in the
so-called CARAT toolkit. CARAT was developed by the author in order to
support and automate all the iterative phases of the DeepCompass Framework.
The toolkit includes the following modules: Repository, Graphical Designer,
Preprocessor, Simulator and Visualizer. In this chapter, we describe the toolkit
architecture and show how each module supports different phases in the frame-

1.5. Thesis Outline 11

work. The CARAT toolkit was initially published at the IEEE ICSEA 2006
Conference [11] and at the IEEE/ACM DATE 2007 Conference [14].

Chapter 8. This chapter provides the results of our empirical study on
the usage of scenarios for design-time performance analysis. This chapter re-
flects the hands-on knowledge of experienced industrial architects dealing with
scenario-based performance analysis. The survey addresses the pros and cons
of using scenarios and justifies the feasibility of applying scenarios for per-
formance analysis at the early phases of the architect’s projects. Also, this
chapter provides indications that usage of only critical scenarios accelerates
performance analysis without substantial reduction in prediction accuracy.

Chapter 9. In order to validate the feasibility and accuracy of our frame-
work, we carry out three case studies on an MPEG-4 decoder, a Car Radio
Navigation system and a JPEG application. The case studies include the fol-
lowing steps: modeling of the software and hardware components; design of
software and hardware architectural alternatives; and performance analysis of
these alternatives followed by identification of an optimal architecture. Besides
this, we implement and profile the applications in order to obtain actual per-
formance values and compare them with the predicted ones. The studies help
to reveal the limitations of the framework and prediction accuracy problems.
The findings from each case study serve as an input for iterative improvement
of the framework. Parts of this chapter were published earlier at the ACM
WOSP 2007 Workshop [12], at the ACM CBSE 2006 Conference [18], and at
the SPIE VCIP 2005 Conference [20].

Chapter 10. This chapter concludes the thesis, discusses the limitations
and benefits of the presented framework and ends with opportunities for future
work.

12 Chapter 1. Introduction

Chapter2
Background on CBSE and RT

Systems

2.1 Introduction

Nowadays component-based software technology is applied increasingly for
time-critical system development. As a result, the problem of early assess-
ment of performance properties becomes important and vital for the success
of such systems. In this chapter, we explain the main concepts used in the
domain of component-based software systems. The concepts are grouped in
the following topics: (a) component-based software engineering, and (b) real-
time systems and performance properties. We introduce basic definitions and
concepts used throughout the thesis.

Section 2.2.1 describes main advances and challenges in the CBSE disci-
pline, in particular with relation to performance-critical system development.
Besides this, Section 2.2.2 differentiates between passive and active components
used in different application domains. Section 2.2.3 specifies the ROBOCOP
component model as an example of a component-based technology. Section 2.3
describes the types of performance properties and related system issues such as
events, logical execution tasks, and hardware resources. Section 2.4 concludes
the chapter.

2.2 Component-Based Software Engineering

This section discusses the concepts of the domain of component-based soft-
ware engineering. We give the definition of a software component, explain the

13

14 Chapter 2. Background on CBSE and RT Systems

component modeling, composition and infrastructure issues. Then we differen-
tiate between passive and active component types and provide the ROBOCOP
example of a component-based framework.

2.2.1 Component-Based Architecture Definitions

The CBSE discipline sometimes exposes contradictory or confusing definitions
of basic terms. For instance, a component model can apply to an individual
component as well as a complete component-based architecture. Let us now
further clarify these terms.

Software Component: Szyperski [93] has defined a software component
as a unit of composition with contractually specified interfaces and explicit con-
text dependencies only. A software component can be deployed independently
and is subject to composition by third parties. According to Szyperski extended
definition, a software component is:

• A subject for multiple use. A software component should be designed and
implemented such that its functionality can be reused in many different
systems.

• An externally stateless entity. A component does not expose his execu-
tion state to a system and can be bound, started and stopped at any
moment of a system lifecycle.

• Composable with other components. A component provides well-specified
interfaces, by which it can be bound to its neighboring components.

• An encapsulated entity, i.e. a component internal implementation cannot
be explored through its interfaces.

• A unit of independent deployment. All component dependencies on ex-
ternal resources are clearly specified and it can be substituted by some
other component.

Since the component’s internal implementation is encapsulated from the
outside world, a component exposes its functionality and connectivity specifi-
cation via its interfaces. A component interface is a set of named operations
with specified signatures, that can be invoked by other components. In other
words, a component offers access to its functionality via its interfaces.

A component may have two interface types: provided and required inter-
faces (see Fig. 2.1). Whereas a provided interface specifies the functionality
that a component offers to the environment, a required interface specifies a
component’s requirements to the environment that have to be satisfied for
proper operation. More specifically, required interfaces are ports through which

2.2. Component-Based Software Engineering 15

Figure 2.1: Software component with provided and required interfaces.

a component can invoke operations provided by other component interfaces.
At component deployment, a required interface can be bound to a provided
interface of another component.

Component Model. This describes various constraints for component
development. These constraints include requirements for: (a) the compo-
nent development and deployment process, (b) component implementation
issues (programming languages, interfaces implementation), (c) specification
of models of component properties including behaviour, resource use, context-
dependencies, etc. Besides this, a component model serves as a set of guidelines
for an architect, specifying the rules for composing individual components into
an assembly.

Component Composition. A composition of components, sometimes
called component assembly, is a set of instantiated components and bindings
(connections) between their respective provided and required interfaces. An
architect selects and composes components in order to satisfy system require-
ments. The rules for creating a component composition are defined by the
component model and specifies how components should be bound, while the
rules of the component framework describe how a component should be inte-
grated with an operating system and run-time framework.

Figure 2.2: Composition of two component instances.

The deployment issues include component creation and deletion, as well as
facilities for control and communication from an operating system. In terms of
programming, a component composition is glue code that instantiates, binds

16 Chapter 2. Background on CBSE and RT Systems

components and assigns them to specific hardware processing nodes. Fig. 2.2
represents a simple example of a component composition. An instance of Com-
ponent A is bound to an instance of Component B via their interface of the
same type X. This composition allows Component A to invoke operations of
Component B via Interface X.

Component Framework. This is a middleware layer built on top of an
operating system. The goal of a component framework is to enable proper
component creation, binding, deployment and operation. Components may
provide interfaces to a framework to enable access to lower architectural layers.
For example, components may have a required interface to be bound to a
framework in order access to some system functionality, like a system clock. A
component framework typically supports one single component architecture.

Figure 2.3: General system architecture with component-based software
framework.

Fig. 2.3 shows an architecture of a general component-based software sys-
tem. The lower system layers contain the hardware platform and operating
system. The component framework provides an infrastructure for component
registration, creation, binding and execution. Besides this, the framework en-
ables component deployment on the hardware platform. The application layer
contains various end-user applications that use the underlying components for
their operation.

2.2.2 Passive and Active Components

Different domains use specific types of architectural styles. For example, con-
trol systems often employ synchronous communication between passive com-
ponents, while multimedia systems are based on pipes-and-filters architectures

2.2. Component-Based Software Engineering 17

with active components and buffers in between them. In the remainder of
this subsection, we explain the differences between passive and active software
components.

There are a number of interaction (communication) styles that components
may employ: synchronous method call, remote procedure invocation, message
passing and buffer-based pipelining. Depending on the interaction style re-
quired, either active or passive components are used.

We call a component active when it has at least one process (thread of
control) that is started and executed within the component’s boundaries. This
process normally executes a while-do loop. Within this loop, the process
reads data from input ports, executes operations and writes data to output
ports. The ports of communicating components are connected via a buffer
or a channel, passing the data from an output port to an input port. Active
components may communicate both in synchronous and asynchronous ways.
Active components are extensively used in dataflow-oriented multimedia ap-
plications.

A passive component does not activate and run any processes inside its
boundary. A passive component provides access to its implemented operations
for processes (thread of controls), which are created outside the component
boundary. Hence, this represents static code waiting to be invoked for execu-
tion. Passive components communicate in a synchronous way: an operation
of one component invokes an operation of another component via a specified
interface and waits for the return of the thread of control. Passive components
are widely used in control systems. Note that mixed components integrating
both concepts are also possible.

In most of the current architectures both active and passive types of soft-
ware entities are utilized in mixed form. Passive entities implement control
operations and active entities realize dataflow streaming. For this reason, an
important requirement for our performance-prediction method is to support
modeling and analysis of all passive, active and mixed component types.

2.2.3 ROBOCOP Component-Based Architecture

We have adopted the ROBOCOP component-based architecture [56] for con-
ducting our research on performance analysis. ROBOCOP stands for Robust
Open Component Based Software Architecture. This architecture was devel-
oped for middleware in consumer devices, with an emphasis on robustness
and reliability. ROBOCOP is inspired by CORBA [75] and Koala [100], but
provides more efficient support for realization of real-time and performance
constraints via modeling techniques.

A ROBOCOP component is a set of possibly related models, as depicted
in Fig. 2.4(a). Each individual model provides specific information about the
component. Models can be represented in readable form (e.g. documentation

18 Chapter 2. Background on CBSE and RT Systems

or XML-files), or in binary code. One of the model types is the executable
model that contains an executable component. Other examples are security
model and reliability model. The set of models is open and a third-party
component provider may add its own model type. The model set should be
specified and packaged at the component development phase. These models are
an indispensable part of the component description and facilitate component
trading and analysis.

Figure 2.4: (a) ROBOCOP component model, (b) ROBOCOP executable
model.

A ROBOCOP executable model specifies a set of executable entities called
services. Services are instantiated at run-time. The resulting entity is called
service instance, which is a ROBOCOP equivalent of an object in Object-
Oriented Programming (OOP). An executable component offers functionality
through a set of services (see Fig. 2.4(b)). Services are static entities, which
are the ROBOCOP equivalents of conventional CBSE components described
in Subsection 2.2.1, or of public classes in OOP. A ROBOCOP service defines a
set of interfaces. The ROBOCOP model distinguishes provided interfaces and
required interfaces. An interface is a set of operation signatures. The bind-
ing between service instances in the application is implemented via a pair of
provided-required interfaces. Comparing conventional CBSE and ROBOCOP
definitions, a ROBOCOP component is a CBSE package or unit of trading,
while a ROBOCOP service is what CBSE defines as a component.

In ROBOCOP, as well as in other component models, service interfaces
and service implementations are separated to support plug-in compatibility.
This allows different services, implementing the same interfaces to replace each
other. As a consequence, the actual implementations to which a service is
bound do not need to be known at the time of designing a service. This implies
that resource consumption of a service cannot be completely determined for

2.3. Real-Time Systems and Performance Properties 19

an operation, until an application defines a specific binding of the required
interfaces of service instances to provided interfaces.

2.3 Real-Time Systems and Performance Properties

This section gives an introduction to the domain of time-critical systems. It de-
fines different types of time-critical systems and shows the kind of requirements
that such systems should satisfy. Moreover, this section explains a number of
important performance definitions, like latency, throughput and logical tasks.

2.3.1 Real-Time Systems

Due to the increasing popularity of time-critical embedded systems, a number
of definitions and aspect of a real-time system have been defined. The most
commonly used definition has been given by Timmerman in [97], where a Real-
Time (RT) system is defined as a system that responds in a (timely) predictable
way to unpredictable external stimuli arrivals. An RT system should fulfil the
following types of requirements under extreme load conditions.

• Timeliness. A system should meet its deadlines, i.e. it has to complete
certain tasks within the time boundaries specified by real-time require-
ments.

• Predictability. A real-time system has to react to all possible events
in a predictable timely way.

• Allowing simultaneous processing. If multiple events/stimuli occur
simultaneously, then all deadlines should be still met.

A system is said to be real-time, if the functional value of an operation
depends not only upon its logical correctness, but also upon the time in which
it is performed. The classical conception is that in a hard or immediate real-
time system, the completion of an operation after its deadline is considered
useless - ultimately, this may lead to a critical failure of the complete system.

However, in current systems not all deadlines are so critical. Depending
on the deadline failure criticality, the following types of RT systems exist.

• Hard real-time. Missing a deadline results in catastrophic failure of a
system. In hard RT systems, the cost of missing a deadline is infinitely
high and no lateness is accepted under any circumstances. Examples are
aircraft, defense or automotive control systems.

• Firm real-time. Missing a deadline leads to unacceptable quality re-
duction. The value of the function completed after a deadline is null,
however, it does not entail any catastrophic consequences. For example,

20 Chapter 2. Background on CBSE and RT Systems

a video application that completes a frame decoding after its deadline
cannot render the frame on a monitor and needs to skip it. The skipping
of a frame is not catastrophic, but reduces the perceived video quality.

• Soft real-time. Missing a deadline leads to acceptable quality reduc-
tion. Deadlines may be missed and the system can be recovered, leading
only to degradation in functionality value. In soft RT systems, while
a certain amount of system latency is acceptable, the event must still
be reacted to within a deterministic period of time. One example is an
online transaction system, where substantial response delay reduces the
customer perceived quality of a system and may lead to reduction of the
number of clients and transactions.

This categorization of RT systems appears due to the cost vs. performance
trade-off. It is always hard and costly to build a system that meets deadlines
under all circumstances. Therefore, in order to reduce production costs and de-
velopment efforts, engineers relax the system requirements wherever possible.
Soft real-time systems are a good example of such relaxation.

As can be noticed, the most important performance quality attribute of
an RT system is latency. However, there exist a number of other performance
properties that may be specified in RT system requirements, like throughput,
task execution time and processor usage. The following subsection explains
these concepts from performance engineering in detail.

2.3.2 Performance Properties

Throughout this thesis, we use the notion of performance properties and per-
formance quality attributes equivalently. In general, performance is a global
term involving various system aspects, like responsiveness, throughput and re-
source occupation. A performance property can be defined as a metric of a
system that shows how fast a system executes certain functionality. We group
performance properties into application-specific and system-specific types. The
following paragraphs explains both types in detail.

A. Application-Specific Performance Properties
Application-specific properties include throughput, task execution time,

latency and delay. Generally speaking, throughput is the amount of work that
an application can perform in a given time period. In this context, the word
“work” may imply: (a) the amount of user or environmental requests fulfilled
by an application, (b) the amount of internal jobs (task instances) executed,
or (c) the amount of data transferred from one place to another.

Originally, throughput has been used for measuring performance of dis-
tributed applications. In this context, throughput measures the number of
bits that an application is able to transfer per unit of time, e.g. in a second.

2.3. Real-Time Systems and Performance Properties 21

An individual node throughput is the amount of data that the node is able to
receive, process and send in a second. At present, throughput is an important
property in many application domains, like multimedia and control systems.
For instance, in video streaming applications, throughput is measured by the
amount of video frames per second that an application can receive, decode and
render on a monitor. In control applications, throughput is measured by the
number of environmental and platform events that an application is able to
fully process in a second.

Latency is another important performance property. Throughout the the-
sis, we consider that latency and response time are equivalent parameters. In
a software application context, a latency is the time period between arrival
of a stimulus triggering some application activity and the completion of this
activity, or the corresponding output stimulus triggering the result delivery.

Latencies and deadlines are two sides of the same coin. In most cases,
performance requirements of real-time systems are given in terms of deadlines
specifying maximum latency allowed for a certain activity to complete. There-
fore, latency prediction is an inevitable challenge for architects of time-critical
systems.

Computing latency for complex systems is a non-trivial task. There are
many factors influencing the latency value: availability of processing and net-
working hardware resources, memory access, task interleaving and scheduling
peculiarities. We address these challenges in Chapter 3. Here, we briefly ex-
plain the constituent parts of the latency computation.

Figure 2.5: Latency of a task executed by a simple application.

Fig. 2.5 depicts a real-time application receiving an event from the environ-
ment. An event is addressed by a real-time requirement, specifying a deadline
for the event response. An environment can represent an end-user, sensors, or
other systems. The event triggers a logical-task instance, which consists of a
number of operations executed by certain software modules. Once the opera-
tions complete execution, a response is delivered to the environment. The time
difference between the event and response is the task latency, which should be

22 Chapter 2. Background on CBSE and RT Systems

checked against the deadline.
However, an application may receive and process a number of such events

in parallel. Here, an application should execute a number of corresponding
tasks simultaneously. Moreover, an application may be deployed and executed
in a distributed manner on a number of hardware processing nodes. In this
case, latency computation of each individual task is not so straightforward and
depends on the deployment of software modules on processing nodes and task-
scheduling policies of the processors. An abstract example of this situation is
shown on Fig. 2.6.

Figure 2.6: Tasks executed in parallel by a distributed application.

An application is deployed on two Processors A and B, connected to the
same network. Software Modules X and Y are deployed on Processor A, while a
Software Module Z is deployed on Processor B. Task 1 and Task 2 are executed
in parallel. Task 1 is passing through Modules X and Y, while Task 2 is passing
through all three software modules. Both tasks are executing on Processor A
in parallel, which means that the Processor A schedules their execution. This
implies that the low-priority Task 2 needs to wait until the other high-priority
Task 1 is completed. This time of waiting is called blocking time. The latency
computation of Task 2 needs to incorporate this blocking time. Moreover,
Task 2 experiences some additional latency when the task-related data is passed
from Processor A to Processor B via the Network. This latency is called
communication time. If the network is heavily loaded, it may also introduce
blocking time for Task 2. In general, a task latency may be computed by the
following equation:

T =
n1∑

i=1

Dpi +
n1∑

i=1

Bpi +
n2∑

j=1

Dcj +
n2∑

j=1

Bcj , (2.1)

where Dpi is the processing time delay introduced by a processor i during the
task execution, Bpi is the blocking time introduced by a processor i, Dcj is

2.3. Real-Time Systems and Performance Properties 23

the communication time delay introduced by a network j for the task data
transfer, and Bcj is the blocking time introduced by a network j, respectively.

In case a task accesses an external memory or storage device, the Equa-
tion (2.1) needs to be extended with respective access and blocking time delays.

The processing and communication time delays can be assessed analyt-
ically, without running or simulating a system. The processing time delay
Dp(t) of a task t executed on a processor p can be computed by:

Dp(t) = Ct/Fp, (2.2)

where Ct denotes the number of processing cycles required to execute the
task t, and Fp is the processing frequency of the processor p measured in terms
of cycles per second.

The communication time delay Dcq(t) of task t introduced by a network q
can be calculated by:

Dcq(t) = St/Bq, (2.3)

where St is the amount of bits that the task t sends through the network
q, and Bq is the bandwidth of the network q, measured in terms of bits per
second.

This coarse-grained latency definition does not include other influencing
hardware factors. For example, disc I/O, memory access, processor cache-
misses, and architectural mismatches may increase the task latency.

The communication and processing blocking-times may vary during a sys-
tem run, because they depend on a run-time system-specific performance prop-
erties, such as processor and network loads. Therefore, simulation is a suitable
method for obtaining these metrics. Analytical approaches allow obtaining
only worst-, average- and best-case values for these metrics. In the remainder
of this section, we address system-specific performance properties.

B. System-Specific Performance Properties
System-specific properties are measures taken for the underlying system

platform. These properties are an essential constituent for the computation
of application-specific properties, which need to be investigated during perfor-
mance analysis of an application.

System-specific performance properties can be divided into two types: manu-
facturer-defined and run-time properties. The manufacture-defined properties
are given in the hardware specification and are constant over the system execu-
tion, e.g. network bandwidth, while the run-time properties show the current
load of the hardware resources and vary over the system execution. Major
system-specific properties can be categorized by the following types of hard-
ware resources.

24 Chapter 2. Background on CBSE and RT Systems

• Processor. A manufacturer-defined performance property is a proces-
sor frequency specifying the number of cycles per second executed by the
processor. An important run-time property is processor usage showing
the utilization of the processing power by one application task or by the
whole system. In this thesis, we use the notion of usage and load equiv-
alently. A processor load of 100% means that applications are utilizing
the processor to its maximum capacity. The processor usage can be mo-
mentary (measured at that precise moment of execution), average-case
and worst-case. The worst-case processor usage is a maximum value of
processor load measured during a system execution.

• Network. A manufacturer-defined property is a bandwidth describing
the number of bits per second that the network can transfer. A network
run-time property is the network load representing the network band-
width utilization in percentage by one application task or by the whole
system. Similarly, the network load can be classified as momentary,
average-case and worst-case load.

• Memory. A manufacturer-defined property is a memory capacity spec-
ifying the number of bytes that can be stored into a memory. Memory
usage is the memory capacity utilization in percentage by system appli-
cations.

The manufacturer-defined properties serve as an input for performance
analysis, while the run-time properties represent the output of the analysis.

Computation of the run-time performance properties can be performed
both at the design-time and execution-time. The design-time methods for
computing include static analysis and simulation. The execution-time analysis
can be performed by system profiling and monitoring.

2.4 Summary of the Background

In this chapter, we have provided background knowledge on component-based
software engineering and performance properties. A software component is a
unit of composition with contractually specified interfaces and explicit context
dependencies only. A component interface is a set of named operations with
specified signatures, that can be invoked by other bound components. We
have also learned that a software component can be deployed independently
and component-based system is composed of individual components developed
by a third party. The principal requirement for each individual component
is to be compliant with the model and framework of the component-based
architecture used for development.

2.4. Summary of the Background 25

With respect to the domain of time-critical systems, we have distinguished
a classification into the hard-, firm- and soft real-time systems, and also dis-
cussed main performance properties of such systems. These properties include
latency, throughput and hardware resource usage. We have defined latency
as a time period between the arrival of a stimulus triggering some application
activity and the logical completion of this activity. In general, throughput is
computed as the amount of work that an application can perform in a given
time period. We have also outlined how these properties are computed for a
system, where software components are mapped on a multi-processor platform.

In the next chapter, we discuss the state-of-the-art methods addressing
the problem of design-time analysis of these performance properties. Besides
this, we give insights on how the component-based development can help to
properly handle the previously mentioned problem. We show that the concept
of component’s composability, as a main feature of CBSE, can also be used
to realize composability of performance properties. In other words, we discuss
how the system properties can be obtained by composing the properties of
individual components.

26 Chapter 2. Background on CBSE and RT Systems

Chapter3
State of the Art on Predictable

Assembly of Components

3.1 Introduction

The previous chapter outlines the main concepts of component-based software
engineering and performance analysis. Performance is a challenging system
quality to predict, measure and enforce. Performance properties depend on
various factors, like environmental context, load profile, middleware, operating
system, hardware platform and sharing of internal resources. Conquering this
complexity of performance is a vital issue for development of systems with
performance requirements. It causes project delays, budget increases and even
project cancelations. A scalable and, at the same time, rigorous methodology
is needed for allowing system developers to successfully handle the performance
properties throughout the project phases.

In this chapter, we show that performance prediction can be facilitated by
the concept of predictable assembly, introduced by the CBSE community. The
idea of predictable assembly is to use the properties of individual components
to reason about the quality attributes of a system composition. One of the
main challenges in constructing and maintaining software is to express and
verify quality attributes of applications. The concept of predictable assembly
of components enables expressing and predicting quality attributes derived
from the properties of the individual components. We present and compare

27

28 Chapter 3. State of the Art on Predictable Assembly of Components

the state-of-the-art methods, enabling the predictable composition of compo-
nents and their quality attributes. Our special focus is on performance-related
compositional methods.

The chapter is structured as follows. Section 3.2 presents a classification
of quality attributes with respect to their composability. Section 3.3 describes
and compares the performance methods deploying the concept of predictable
assembly. In Section 3.4, we provide a comparative analysis of these methods
against multiple architectural criteria. Section 3.5 concludes the chapter.

3.2 Composability of Quality Attributes

Most component models define some form of component interface standard
that enables the composition of individual component implementations. How-
ever, most of these models do not provide methods for the composition of the
quality attributes of individual components. This reduces the value of the con-
ventional component models for systems with extra-functional requirements on
the quality attributes. However, the CBSE concept of composing systems from
the individual components is also applicable to quality attributes. Namely, the
task is to identify a system-wide quality attribute by composing the quality
attributes of the individual components.

This composition task is not trivial because the diverse types of quality
attributes do not have the same underlying conceptual features. Crnkovic [27]
classified the types of extra-functional quality attributes with respect to their
composability. Some system quality attributes can be derived directly from the
component attributes, while others might require a complex calculation model,
related to the component model and the system architecture. The following
types of attributes/properties are distinguished related to composability:

• directly composable properties,
• architecture-related properties,
• derived properties,
• usage-dependent properties,
• environment-dependent properties.

This classification is non-orthogonal, hence the same property can belong
to several types. The following paragraphs explain the classification in detail.

Directly composable property - a property of an assembly which is a
function of, and only of, the same type of property of the components involved.
An example of a property of this type is the static memory size of a component
or an assembly, which is also known as the memory footprint. The simplest
composition model is the calculation of the static memory of an assembly as
the sum of the memories used by each component.

3.2. Composability of Quality Attributes 29

Architecture-related property - a property of an assembly which is a
function of the same type of property of the components and of the software
architecture. In this case, the assembly properties depend not only on the
component properties but also on the architectural structure. Examples of
such properties are robustness, scalability and availability. For example, the
availability of a system can be improved by duplicating a server, executing the
same software component.

Derived property - a property of an assembly which depends on several
different properties of the components. The computation of these properties is
a result of the composition of different component properties. An example of
such a property in a real-time system is the response time that is a function of
different component properties, such as Worst Case Execution Time (WCET),
period of execution and blocking time. In order to identify this function, one
needs to combine the above-mentioned real-time properties of the components
together with particular system characteristics.

Usage-dependent property - a property of an assembly which is deter-
mined by its usage or workload profile. Such properties of an assembly depend
not only on the internal properties of the components and their composition,
but also on the particular use of the system. An example of this property
type is processor load. The processor load depends both on (a) the processor
usage during an execution of operations of individual components and (b) the
frequency of invocations of these operations.

A particular problem with this type of property is the limited possibility of
reusing measured and derived properties. If the usage profile is changed, the
properties must be re-calculated or re-measured. An example of such prop-
erty is reliability which is calculated or measured for particular usage profiles.
Most of the performance-related quality attributes can be put in the category
of usage-dependent properties. The latency, throughput, processor- and net-
work load quality attributes depend on how the system is used, namely on the
rates of events entering the system.

Environment-dependent property - a property which is determined
by other properties and by the state of the system environment. The property
depends not only on the usage profile, but also on the environment in which
the system is executed. A value of such property can vary in different contexts
(i.e. surrounding environment) in which the system is operating. An example
of such a property is safety. It is obvious that in different circumstances, the
same property may have different degrees of safety even for the same usage
profile.

30 Chapter 3. State of the Art on Predictable Assembly of Components

3.3 Predictable Assembly Methods

This subsection presents the state-of-the-art methods that enable design-time
predictions of system-wide quality attributes, based on attributes of individual
components. The description of each method is divided in two parts represent-
ing the following aspects: model specification (syntax), model transformation
and interpretation (semantics). The syntax of a method defines a specification
language, i.e. how the certain characteristics of an individual component or
a complete system are described in a model. An example of modeling syntax
is the UML-based logical, dynamic, development, use-case and deployment
views. The semantics define how the models are composed or converted into
some form, providing a meaning for system-wide performance analysis. Ex-
amples of semantics are simulation engines or model-solving algorithms. Such
examples result in a system-wide model of real-time tasks, propagating through
software components and even processing nodes.

In the following subsections, the state-of-the-art methods are discussed
with the syntax and semantics as key views. Besides this, we outline benefits
and drawbacks of each method. The majority of the presented methods have
the following benefits: (1) low modeling effort, (2) automated synthesis of an
assembly model, unless stated otherwise.

3.3.1 PECT

Prediction-Enabled Component Technology (PECT) is one of the first ap-
proaches to achieve predictable assembly from certifiable components. It is
the approach taken by SEI and it is executed in the PACC research initiative
in collaboration with ABB and Malardalen University [50].

Syntax
PECT uses a Construction and Composition Language (CCL) to produce

specifications that contain structural, behavioural, and analysis-specific infor-
mation about individual components and assemblies. The structural specifi-
cation defines sink and source pins of a component, via which a component
communicates with other components. CCL enables to specify component
behaviour and performance properties of the operations provided by the com-
ponent. The behaviour is specified by a reaction to the input signal arriving
at the sink or source pins.

Semantics
The CCL specifications of individual components are translated to one or

more reasoning frameworks that analyze and predict the runtime properties
of assemblies. The translation is enabled by the CCL processors that auto-

3.3. Predictable Assembly Methods 31

mate the synthesis of the assembly models. PECT supports three reasoning
frameworks. First, LambdaSS [49] predicts average latency of stochastic tasks
managed by a sporadic server. Second, LambdaABA [49] predicts average la-
tency in assemblies with periodic tasks. Third, ComFoRT [57] formally verifies
temporal safety and liveness of the assembly.

PECT features the following advantages:

1. extensive tooling support by a set of graphical, modeling and computa-
tional software tools;

2. well-defined component model with reference implementations, which
includes definition of all development phases, and run-time execution
framework;

3. combination of both analytic and simulation analysis techniques;
4. support for both synchronous and asynchronous communication styles.

The technology has the following limitations:

1. absence of modeling support for heterogeneous multi-processor platforms;
2. low granularity of component behaviour modeling preventing the speci-

fication of conditional statements, loops, and parameter-dependent exe-
cutions;

3. no explicit means for modeling of a system context/environment.

3.3.2 KLAPER

MOF/KLAPER [39] defines a model-driven transformation framework, cen-
tered around a kernel language KLAPER (Kernel LAnguage for Performance
and Reliability Analysis) whose aim is to capture the relevant information for
the analysis of non-functional attributes of component-based systems, with a
focus on performance and reliability.

Syntax and Semantics
The KLAPER language enables transformations from a variety of design

specification types into models for different types of performance/reliability
analysis. As an input, KLAPER accepts software component models and hard-
ware node models specified in UML or OWL-S [28] notations. From the input,
KLAPER builds an intermediate model according to its transformation rules.
The intermediate model represents an assembly model synthesized from mod-
els of individual components and the system design model. Various outputs
are possible, each suited for a specific analysis type, e.g. Discrete Time Markov
Processes (DTMP), EQN and Petri Nets.

KLAPER provides primitives to describe services (component operations)
and their behaviour. The workload primitive allows to define the input events

32 Chapter 3. State of the Art on Predictable Assembly of Components

or frequency of service executions, which completes the behaviour characteriza-
tion of a system. The hardware nodes are modeled via the resource primitive,
where the node’s capacity, scheduling policy and the executed services can be
specified.

KLAPER provides the following benefits:

1. modeling support for heterogeneous multi-processor platforms;
2. tools for transformation of the UML-based component and assembly

specifications into the models for various types of analysis;
3. support for multiple types of performance analysis techniques;
4. support of both synchronous and asynchronous communication styles;
5. detailed parameter-dependent behaviour modeling of a component;
6. facilities for modeling of a workload on a system;
7. support for modeling and analysis of communication latencies and net-

work load.

The limitations of KLAPER include the following:

1. software tools for modeling and computations are still not available;
2. different variations in the usage of an assembly are not explicitly modeled;
3. to our knowledge, validating case-studies for industrial systems are not

reported.

3.3.3 Palladio Component Model

The Palladio component model [6] supports predictions of extra-functional
properties of CBSE systems. Its meta-model enables characterizing paramet-
ric context dependencies on system resources. The performance analysis is
simulation-based, where parametric dependencies are taken into account.

Syntax
Palladio enables specification of a component behaviour and performance

properties via a set of the following constructs. A ServiceEffectSpecification
(SEFF) describes how the provided service calls the required services of the
component. Internal behaviour of the Palladio services is modeled via the
ResourceDemandingSEFF construct that contains data on the hardware re-
source usage, transition probabilities, loop iteration numbers, and parameter
dependencies. The hardware resource usage of a service is modeled via the Re-
sourceDemandingActions construct that specifies loads on the resources. The
variations in behaviour of services and resource usage are modeled via random
variables and Probability Mass Functions.

In order to specify the system-wide behaviour, Palladio introduces a Us-
ageModel construct. The UsageModel consists of a number of UsageScenarios,

3.3. Predictable Assembly Methods 33

which in turn consist of one ScenarioBehaviour and one Workload meaning
that the ScenarioBehaviour is executed with the respective Workload. Work-
loads describe the usage intensity of the system (e.g. the event arrival rate or
fixed number of users that execute their scenario). A ScenarioBehaviour con-
sists of a sequence of AbstractUserActions. Technically, the latter represents
the calls to component interfaces directly accessible by users.

Semantics
At the assembly phase, when the structure of the component instances is

defined, the SEFF calls are synthesized into an MSC diagram for each task.
The tasks are identified from the UsageScenarios, where each AbstractUser-
Action creates a task. The usage of hardware resources for each task is re-
constructed from the ResourceDemandingSEFF constructs of the components
involved in the task execution.

The synthesized model is simulated by a scheduler. The results of the
simulation are the detailed timelines of task executions on a processor. Perfor-
mance properties (latencies, missed deadlines, throughput and resource usage)
are extracted from these timelines.

The Palladio method provides the following advantages:

1. well-defined framework of the Palladio component-based architecture;
2. comprehensive set of constructs for parameter-dependent modeling of a

component behaviour;
3. explicit modeling of a workload on a system by means of scenario models;
4. detailed behaviour modeling allowing common programming construc-

tions, like conditional statements and loops;
5. usage of distribution functions for accurate performance predictions.

The Palladio method has the following limitations:

1. no modeling support for heterogeneous multi-processor platforms;
2. no support for modeling and analysis of communication latencies and

network load;
3. modeling of asynchronous communication style is not supported.

3.3.4 EJB-Liu-Gorton Methodology

The methodology proposed by Liu-Gorton in [72] enables design-time perfor-
mance prediction of Enterprise Java Beans (EJB) systems built in the client-
server architectural style. In this methodology, the EJB components are spec-
ified by composable parameterized queueing network models. At assembly
time, the component models are synthesized and extended with the platform
performance model and application usage profile. The obtained system-wide

34 Chapter 3. State of the Art on Predictable Assembly of Components

model serves as an input to a queueing network evaluation algorithm, which
results in predicted load and throughput values.

Syntax
The component behaviour and resource usage is specified in the traditional

queueing network terms. Both Request queue and DataSource queue charac-
terize the communication capacity of a component, while the Container queue
models the computational capacity of a component. For each queue the follow-
ing data is specified: the average request population, the size of the available
thread pool, and the amount of time required for a request to be served at a
queue.

Semantics
The three above-mentioned types of models are combined into the Quan-

titative Performance Model, which can be solved by traditional QN analysis
techniques. The outcome of the analysis includes the predictions on the follow-
ing properties: the maximum load of the system; average response time with
throughput and resource utilization; performance bottlenecks in the system.

The beneficial points of the methodology are:

1. the methodology complies with the COTS standard;
2. explicit modeling of a workload on a system by means of the application

profile model;
3. modeling support for distributed systems;
4. modeling and analysis support for communication latencies and network

load.

There are a number of limitations imposed by the methodology:

1. supports only client-server architectural style;
2. modeling of synchronous communication style is not supported;
3. component specification is on a very high level of abstraction, therefore

the conditional statements and loops cannot be modeled;
4. the QN-based analysis does not provide predictions on detailed behaviour

and worst-case latencies.

3.3.5 MPA/RTC

The Modular Performance Analysis/Real-Time Calculus (MPA/RTC) [102]
method has been initially developed for component-based streaming applica-
tions deployed on distributed systems. The method uses analytic performance
evaluation functions and focuses primarily on finding guaranteed worst-case

3.3. Predictable Assembly Methods 35

latencies.

Syntax
The main assumption of the method is that a component executes only one

task, receives one input stream of events and sends out one output stream. A
component may represent both processing and communication functionality.
The function of a component task is characterized by the number of instruc-
tions/bytes needed by the function from a processor/network. The method
models the hardware resources (processing nodes and communication lines)
in terms of their capacity and scheduling policies. At the assembly modeling
time, an input stream is specified by an arrival curve defining a number of
events arriving on an event stream within a specific time interval.

Semantics
The synthesis of the component models of a specific assembly leads to an

abstract system performance model. The model is synthesized from the models
of individual component models, assembly/deployment model and models of
hardware resources. The RTC equations are applied to the performance model,
resulting in the predicted values for guaranteed worst- and best-case compu-
tation and communication latencies; worst- and best-case usage of processing
nodes and communication lines. The RTC concept is to compute sequentially
the arrival curves and service curves for each of the components in line that
execute the input stream. If multiple components are assigned to one hardware
resource, scheduling techniques (TDMA, RMA, DMA) are used to solve the
concurrency issues.

The MPA/RTC method provide the following benefits:

1. prediction of guaranteed worst-case latencies and hardware resource load;
2. very low computation complexity;
3. explicit and flexible modeling of a workload on a system by means of

event arrival curves;
4. support for modeling and analysis of distributed systems;
5. modeling and analysis for communication latencies and network load;
6. powerful software tools for automation of design and analysis.

The limitations of MPA/RTC are the following:

1. restricted view on a component, as a conventional COTS component
may have multiple input/output ports and executes a number of tasks
in parallel;

2. modeling of the synchronous communication style is not supported;
3. the RTC equation set does not provide predictions on detailed behaviour,

performance bottlenecks and distribution of latencies;

36 Chapter 3. State of the Art on Predictable Assembly of Components

4. very high level of abstraction of component specification does not allow
modeling of programming structures.

3.3.6 Alternative Methods for Compositional Perf. Analysis

A number of compositional performance analysis methods has been proposed
for particular component-based architectures. The SaveCCM component
model [46] for real-time embedded systems provides simple modeling and simu-
lation-based analysis facilities. The KOALA component-based architecture
[100] includes compositional facilities to predict memory usage by a simple
analytical technique. The PECOS (PErvasive COmponent Systems) com-
ponent model [34] focuses on extra-functional properties such as memory us-
age and latencies. The extra-functional properties like memory consumption
and worst-case execution times are specified per component basis. The as-
sembly composition and performance analysis are done by different PECOS
tools, such as the composition rule checker, the schedule generator and verifi-
cation tool. The schedule generator simulates the assembly model, providing
the predictions on the above-mentioned performance properties. The Rubus
Component Model [92] also targets resource-constrained systems with real-time
requirements. The timing properties of assemblies are analyzed by analytical
(schedulability analysis) and simulation-based techniques.

The SaveCCM, PECOS, Rubus and KOALA target systems that employ
the pipes-and-filters architectural style. The advantage of these methods is
that they use well-specified component frameworks, which can be easily ap-
plied to industrial systems. However, they also feature common limitations.
The methods provide facilities for modeling of a component behaviour and re-
source usage at a high abstraction level. Moreover, their performance analysis
techniques are relatively simple and restricted to specific application domains.

A number of compositional performance analysis approaches is left out from
this survey, but are mentioned here as their contribute to the problem domain.
The SOFA [87], HIT-based [104] and REO [3] approaches provide compo-
sitional performance analysis based on formal methods, while the NFMDA-
based [25], SymTA [48], and CBML-based [103] approaches use semi-formal
modeling.

The predictable assembly concept is also widely used for analysis of other
system quality attributes. The problem of reliability predictions is addressed
in the work by Cortellessa [25], Reussner [88] and Triverdi [37, 89]. The com-
positional analysis methods for security properties are proposed by Khan [63],
Nicol [78] and Hussein [52]. Grunske [44] proposed a method for specification
and evaluation of safety properties by using the compositional modeling and
analysis.

3.4. Comparison of Predictable Assembly Methods 37

3.4 Comparison of Predictable Assembly Methods

This subsection presents our comparison of the performance methods described
in the subsection above. Besides this, it summarizes the main characteristics
of the DeepCompass framework presented in this thesis. Table 3.1 provides
the summary of our analysis, where each column refers to a method type and
each row specifies an evaluation criterion.

With respect to Addressed Quality Attributes, the PECT, KLAPER and
SaveCCM provide evaluation of multiple properties, while the rest of the meth-
ods focuses on performance. It is important to note that the detailed predic-
tions on the distribution of latencies and resource usage are provided only by
the simulation-based methods. At the same time, the worst-case latencies are
only provided by the methods based on analytical tools.

The column Addressed Architectural Styles specifies the constraints that the
methods impose on the architectural style of a system. The PECT, KLAPER,
Palladio and DeepCompass methods are generic in the sense that they can be
applied to the systems designed in all common architectural styles, e.g. client-
server, blackboard and pipes-and-filters. A large group of methods supports
only the pipes-and-filters style, which reflects that this style is most commonly
used for real-time embedded systems.

None of the methods features a high level of Modeling Granularity and
Effort. In our vision, component properties, specified at a low level of abstrac-
tion1, duplicate the source code to a certain extend, require a lot of model-
ing/computation efforts and hinder the securing of IP (Intellectual Property)
of a component. Nevertheless, modeling at a low level of abstraction would
provide high accuracy in predictions, because then the model would mirror
the source code. The methods presented in this section were developed to be
applied for complex industrial systems, when the development time and pro-
duction cost are important factors. Therefore, all the methods given in Table
3.1 solve the efforts-vs.-accuracy trade-off in favor of the low modeling effort.

Regarding the QA Analysis Type, the methods use the whole spectrum of
available performance analysis techniques. The PECT, KLAPER and Rubus
methods combine several techniques to obtain trustworthy predictions.

All the reviewed methods, except for KLAPER and MPA/RTC, are CBSE-
compliant, which means that their component models adhere to the standards
of the CBSE discipline.

In the last decade,multi-processor heterogeneous hardware platforms gained
high popularity in the embedded systems industry. Such platforms provide de-

1The levels of modeling abstraction can be classified into three types: high, medium and
low. The high-abstraction models usually specify software entities at the atomic level of
components, services or interfaces. The medium-abstraction models specify software entities
at the level of operations or method invocations. The low-abstraction models may describe
all the detailed programming constructions, like variables, conditional statements and loops.

38 Chapter 3. State of the Art on Predictable Assembly of Components
T
ab

le
3.1:

C
om

parison
of

m
ethods

for
com

positional
analysis

of
system

quality
attributes

based
on

the
attributes

of
individualcom

ponents.

M
eth

od
/

C
h
aracter-

istics

A
d
d
ressed

Q
A
s

A
d
d
ressed

A
rch

itec-
tu
ral

S
tyles

M
od

elin
g

E
ff
ort

M
od

el
G
ranu

-
larity

Q
A

A
n
alysis

T
yp

e
C
B
S
E

com
p
li-

an
ce

S
u
p
p
ort

for
M
u
lti-

p
rocessors

T
oolin

g
S
u
p
p
ort

P
E
C
T

P
erform

ance
(w

orst-case
latencies,

resource
load),

T
em

poral
safety,

L
iveness

B
lackboard,

C
lient-Server,

P
ipes-and-

F
ilters

M
edium

M
edium

Q
N
,

Sim
ula-

tion,
M
odel

checking

H
igh

L
ow

E
xtensive

K
L
A
P
E
R

P
erform

ance
(w

orst-case
latencies,

resource
load),

R
eliability

B
lackboard,

C
lient-Server,

P
ipes-and-

F
ilters

M
edium

M
edium

E
Q
N
,

P
etri

N
et,

D
T
M
P

M
edium

M
edium

L
ow

P
alladio

P
erform

ance
(distribution

of
latencies,

throughput,
bus

and
processor

loads)

B
lackboard,

C
lient-Server,

P
ipes-and-

F
ilters

L
ow

M
edium

Sim
ulation

H
igh

M
edium

L
ow

E
JB

-L
iu-

G
orton

P
erform

ance
(w

orst-case
resource

load,
latencies)

C
lient-Server

M
edium

L
ow

T
raditional

Q
N

H
igh

H
igh

L
ow

M
P
A
/R

T
C

P
erform

ance
(w

orst-case
latencies

and
resource

load)

P
ipes-and-

F
ilters

V
ery

L
ow

L
ow

A
nalytic

L
ow

H
igh

E
xtensive

SaveC
C
M

P
erform

ance
(latencies,

static
m
em

ory
usage,

processor
load),

Safety,
R
eliability

P
ipes-and-

F
ilters

L
ow

L
ow

Sim
ulation-

based
H
igh

M
edium

M
edium

K
O
A
L
A

P
erform

ance
(m

em
ory

us-
age)

P
ipes-and-

F
ilters

L
ow

L
ow

Spreadsheet
com

putation
H
igh

M
edium

M
edium

P
E
C
O
S

P
erform

ance
(m

em
ory

us-
age

and
latencies)

P
ipes-and-

F
ilters

L
ow

L
ow

Sim
ulation-

based
H
igh

M
edium

H
igh

R
ubus

P
erform

ance
(task

laten-
cies)

P
ipes-and-

F
ilters

L
ow

L
ow

Sim
ulation-

based
and

Schedulability
A
nalysis

H
igh

M
edium

M
edium

D
eepC

om
pass

P
erform

ance
(distribution

of
latencies,

throughput,
bus

and
processor

loads)

B
lackboard,

C
lient-Server,

P
ipes-and-

F
ilters

L
ow

M
edium

Sim
ulation-

based
H
igh

H
igh

E
xtensive

3.5. Conclusions 39

sign flexibility and optimal distribution of the computation and communication
loads among the hardware resource, thereby allowing designers to build efficient
systems. The facilities for modeling and analysis of systems built on hetero-
geneous platforms are only provided by the MPA/RTC and EJB-Liu-Gorton
methods.

With respect to the Tooling Support, the PECT and MPA/RTC methods
provide extensive design toolkits. The toolkits include functionality for storage
and retrieval of component models, graphical design of system architectures,
model specifications and performance computations.

3.5 Conclusions

In this chapter we presented the concept of predictable assembly, which enables
design-time property prediction for systems designed from of a set of arbitrary
set of compliant components. Here, we have presented the most stable pre-
dictable assembly approaches focusing on their working principles, benefits and
limitations. The methods discussed in detail are PECT, KLAPER, Palladio,
EJB-Liu-Gorton and MPA/RTC.

The motivation for designing a new framework for compositional perfor-
mance analysis commences with analyzing the limitations of the existing pre-
dictable assembly methods.

• There is only one method addressing the use of critical scenarios. Critical
scenarios allow focusing only on relevant behavioural aspects of a system,
which significantly reduces modeling and computational effort. This ap-
proach is indispensable for analyzing complex systems, which normally
have very high number of possible scenarios.

• Only two methods support heterogeneous multi-processor platforms. This
kind of platform is now widely accepted for embedded system design.

The combination of these two aspects is not covered in the presented methods,
although both aspects are essential to design of modern systems. Apart from
the above, a further motivation is the framework should be suitable for indus-
trial applications, where various architectural/communication styles are used.
Besides this, in an industrial environment, a rapid prototyping and architec-
ture analysis with low modeling effort is crucial for shortening time-to-market.
Summarizing, this has led to the design of a new framework called DeepCom-
pass, featuring the following key properties:

• The usage of critical scenarios and component modeling at a medium
level of abstraction results in a low modeling effort and a rapid analysis
of architectures.

40 Chapter 3. State of the Art on Predictable Assembly of Components

• Modeling and analysis can be performed for systems built in pipes-and-
filters, blackboard and client-server architectural styles.

• The new framework supports modeling and analysis of multi-processor
architectures, deployed on an arbitrary hardware topology with homo-
or heterogeneous processing and memory blocks.

• The framework is able to predict a broad spectrum of performance prop-
erties, like computation and communication latencies, task interleaving
and blocking, memory, processor and bus usage.

The next chapter explains our proposal: the DeepCompass framework from
the development process point of view, while Chapter 5 specifies all the tech-
nical details of the framework. After the presentation of the framework, we
will elaborate further on benefits and limitations of our method in relation to
the material presented in this chapter.

Chapter4
DeepCompass Analysis

Framework

4.1 Requirements and Design Considerations

In this chapter, we present our DeepCompass (Design Exploration and Evalu-
ation of Performance for Component Assemblies) framework. This framework
represents a major contribution of the thesis and proposes a process for predict-
ing system-wide performance quality attributes, based on the quality attributes
of individual components.

As a starting point, we specify the objectives of the framework as a set of
requirements given below.

• The framework shall enable rapid and, at the same time, accurate perfor-
mance predictions. By mentioning rapid performance analysis, we mean
the possibility for an architect to design an architectural alternative and
to check it against performance requirements within a few days. The
accuracy of performance predictions is computed as deviation between
predicted and actual values of performance properties. These deviations
should be within the order of several tenths of percents. We are prepared
to accept this level of deviations, because the demand for rapid analysis
is more important at the early architecting stages in industry.

• The framework shall require reasonably low modeling and computational
efforts.

41

42 Chapter 4. DeepCompass Analysis Framework

• The framework shall target a broad selection of performance properties.
The selection should include computation and communication latencies,
task interleaving and blocking, as well as memory, processor and bus
usage.

• The framework shall support modeling and analysis of systems built in
all common architectural styles, e.g. pipes-and-filters, blackboard and
client-server styles.

• The framework shall support analysis of systems deployed on an arbitrary
hardware topology with homo- or heterogeneous processing nodes.

• The method shall be compliant with the CBSE principles and shall be
applicable to any component-based software technology, i.e. CORBA,
Koala, RUBUS, ROBOCOP or Java Beans.

• The framework shall provide an architect with guidelines for further ar-
chitecture optimization with respect to its multiple quality attributes.

• The framework shall automate complex computational operations and
provide graphical means for designing the alternatives and for visualiza-
tion of the analysis results.

The following two paragraphs outline the DeepCompass framework. From
the point of view of an architectural process, the framework addresses all phases
of system design and analysis. It helps an architect to pass through the phases
of the architecting process with a focus on performance quality attributes.
The DeepCompass framework proposes the following iterative development
paradigm. First, rapid building of a number of alternative architectures from
available software and hardware components. Second, synthesizing the models
of these individual components into a system-wide performance-related model
for each alternative. Thirdly, analyzing the performance models of the ob-
tained architectures and encountering the bottlenecks and the points where
an architecture does not comply with the requirements. These three high-
level architectural phases save effort, help selecting promising architectural
alternatives and elicit the correct directions for their fine tuning. Finally, the
iteration cycle concludes with refinement of promising architectures to obtain
better performance, while keeping other properties (e.g. reliability, cost of
materials) within defined boundaries.

From the technical point of view, the cornerstones of the framework are
composable models of individual software components and hardware blocks.
The models are specified at component-development time and shipped in a
component package. At system design, i.e. component-composition phase, the
models of the constituent components are synthesized into a system model.
Depending on the types of models used at the synthesis, the system model
can represent various system-wide properties, e.g. security, reliability or sys-
tem cost. Since the thesis focuses on performance properties, we introduce
performance-related types of component models, such as behaviour, perfor-

4.1. Requirements and Design Considerations 43

mance and resource models. These models, when synthesized together, form
an executable system model. The executable model represents the dynamic
system architecture and contains detailed data about tasks running in that
system. Further simulation-based analysis of the obtained executable system
model allows acquiring application-specific and system-specific performance
property values. The analysis helps to reason about the quality attributes of a
particular architectural alternative. A Pareto-based comparison between the
designed alternatives allows selecting the optimal architectures, and serves as
a basis for the subsequent design iteration.

In this chapter, we present the framework from the point of view of an ar-
chitecting process. Fig. 4.1 positions Chapter 4 within the thesis. Besides pre-
senting the framework, this chapter prepares the reader also for the subsequent
two chapters that address the technical aspects of the framework, namely the
scenario-based simulation method and the architecture optimization approach.

Figure 4.1: Position of Chapter 4 in the thesis and its relation to Chapter 5
and 6.

The chapter is structured as follows. Section 4.2 gives an overview of the
DeepCompass framework from the development-process point of view. Sec-
tion 4.3 describes the modeling phase of the process. Section 4.4 presents the
architecture and design phase. Section 4.5 provides insights into the analysis
and validation phases, while Section 4.6 discusses the comparison of the ar-
chitectural alternatives and trade-off analysis solutions. Section 4.7 concludes
the chapter.

44 Chapter 4. DeepCompass Analysis Framework

4.2 Overview of DeepCompass framework

Current software development processes include a number of stages, such as
requirement analysis, architecture and design, implementation, testing and
validation. Fig. 4.2(a) presents the iterative development process [58] that
includes these stages conducted iteratively until system requirements are sat-
isfied. In this iterative process, system validation against requirements is per-
formed once the implementation and testing stages are complete. This may
increase development efforts in case the validation fails. In order to save on
these efforts, we advocate an iterative architecting sub-process, that allows
obtaining the correct architecture prior to proceeding to the implementation
stage. Fig. 4.2(b) presents this iterative architecting sub-process in the context
of the whole development process.

Figure 4.2: (a) Common iterative process of software development; (b) Iter-
ative architecture process for time-critical systems.

The architecting sub-process includes three stages of requirements analysis,
architecture, as well as analysis and validation. The sub-process iterations may
include changes in requirements and architecture, based on the results from
the analysis and validation stage. These iterations help an architect to tune
the architecture until its predicted properties satisfy the requirements. The
implementation and testing stages have to be performed only once after the

4.3. Modeling Phase and Repository 45

architecture satisfies the requirements. This eliminates costly repetitions of
implementation and testing.

Fig. 4.3 portrays the detailed diagram of the DeepCompass architecting
process. The Modeling phase targets the specification of models for software
component and hardware blocks. The models can be specified at component
development time, i.e. prior to the architectural phases. The Architecture and
Design phase aims at the development of a number of architecture alternatives
that would potentially satisfy the System Requirements. Besides this, for each
alternative, this phase synthesizes the models of individual components into an
executable system model. The Analysis and Validation phase features predic-
tion of the system behaviour and performance by simulation of the obtained
executable system model. The Trade-Off Analysis for Alternatives phase aims
at comparison of the defined alternatives accounting for the trade-offs between
the following multi-dimensional criteria: latency, throughput, robustness and
hardware resource load. In the sequel, we explain the above-mentioned phases
in more detail.

To support an architect to smoothly pass through these framework phases
we have developed a CARAT software toolkit. The toolkit is an integrated set
of the following applications:

• repository of components and their models;
• graphical tools for creating software and hardware architectures;
• synthesizer of an executable system model;
• model-simulation engine;
• performance results visualizer.

The description of the CARAT toolkit is given in Chapter 7.

4.3 Modeling Phase and Repository

A. Modeling Phase
The main objective of component modeling is to create a specification that
addresses a specific aspect of a component, abstracting from irrelevant details.
During our research on defining the model structures, an important require-
ment was that models of the same type should be composable. We use the
ROBOCOP component-based technology as a starting point for the model
specification, as well as for the validation of the performance analysis frame-
work. The framework is not limited to only ROBOCOP components but can
be applied to any component-based technology that has a notion of provided
and required interfaces. A formal specification of the introduced models is
given in Chapter 5.3.

All the model types we define here, enable parameter-dependent specifica-
tion [16]. For software components, the framework introduces three types of

46 Chapter 4. DeepCompass Analysis Framework

Figure 4.3: Detailed view on the DeepCompass architecting process.

4.3. Modeling Phase and Repository 47

models: resource, behaviour and process models. Typical models for hardware
IP blocks (hardware parts) are performance models for memory, networks and
processors. Our experience showed that these models can be made with com-
paratively little effort (discussed in Chapter 9) to achieve reasonable prediction
accuracy.

The resource model specifies parameter-dependent resource requirements
(e.g. number of claimed processing cycles) of each individual operation of a
component. The resource requirements can either be obtained by estimations
or by profiling of each individual component on a reference processor. The
characteristics of the reference processor should be specified in this model, in
order to scale the operation resource requirements to any other processors.

The behaviour model is used to describe the behaviour of passive compo-
nents (see the discussion on passive and active components in Section 2.2.2).
The main objective of the behaviour model is to specify parameter-dependent
behaviour of operations provided by an individual component. The model de-
scribes the implementation of a component operation at a high abstraction
level. For each operation of an individual component, the behaviour model
defines the invocation sequence of operations of other components, that the
individual component calls via his required interfaces.

The process model is used to describe the behaviour of active components.
The process model specifies the processes activated and running within an ac-
tive component. These processes may activate task instances (like the triggers
discussed later in the scenario model), that propagate outside the component
boundaries. For every process, this model describes the process creation and
release conditions, periodicity, and a sequence of underlying operation calls to
other interfaces made by the process. The data for the behaviour and process
models can be obtained from design specifications or by a source-code analysis.

The DeepCompass framework introduces performance models for hard-
ware resources (processor core, memory and bus). A performance model for a
processor core defines its instruction type (RISC, CISC or VLIW) and clock
frequency. A performance model for a memory IP block describes the memory
type (SRAM, SDRAM, etc.), and the memory capacity in MBytes. A bus-
performance model specifies the scheduling protocol (TDMA, CDMA, fare use,
etc.) and the bandwidth size. The data for the performance models can be
obtained by measurements or from the supplier data sheets.

The cost model is a one-line specification of the price for a software com-
ponent or a hardware node. The price can refer to the purchasing cost, the
development/material costs or a mixture of those.

The ROBOCOP architecture is open with respect to the model types for
analysis of extra-functional properties. Therefore, in the DeepCompass frame-
work we assume that other extra-functional models (reliability, security, safety,
etc.) can be added later to further extend the analysis (see Fig. 4.3).

The requirements for defining a new model type are as follows: (a) the

48 Chapter 4. DeepCompass Analysis Framework

new component model should enable compositionality such that the synthesis
algorithm (specified in Chapter 5) should be able to compose the models of
individual components into a system-wide model, (b) the modeling level of
abstraction should be high enough to keep the modeling effort at a reasonable
level, e.g. a model should not repeat a source code, but only describe its
important/relevant characteristics.

The following important constraints are applied to a new model type. First,
the model structure should be specified in the EBNF notation provided in Sec-
tion 5.3. Second, new modeling primitives should be associated with operations
provided by a component. These associations will be used for the synthesis
algorithm to construct a system-wide model. Finally, a new model should use
the same atomic datatypes (string, boolean, integer, etc.), or should provide
explicit definitions for a new datatypes.

B. Repository
The component models need to be specified at component development time,
committed to a component package and stored into a common repository. The
repository stores component packages from third-party developers and provides
access to multiple system-development parties. The repository is not a phase
of its own, as it only provides the infrastructure for the components and their
models.

4.4 Architecture and Design Phase

The goal of the architecture and design phase is to define a set of software and
hardware (SW/HW) architectures that would satisfy the system’s functional
and performance requirements. An architect may define a number of such ar-
chitectural alternatives for future comparison and trade-off analysis. For each
alternative, the architecture and design phase should be carried out individu-
ally. As input to the phase, an architect has system requirements and various
third-party hardware and software components stored with their correspond-
ing models in a repository. The following subsections describe the actions of
the design phase, starting from the specification of scenario models and ending
with the synthesis of an executable executable model.

4.4.1 Scenario Models and Software Architecture

An architect selects from a repository software components that, when com-
posed together, should satisfy functional requirements and may satisfy extra-
functional, e.g. performance requirements. The component selection is done
by checking the functional models of available components with respect to the

4.4. Architecture and Design Phase 49

functional requirements. We assume that the selected components are supplied
together with their corresponding set of models.

By means of the CARAT graphical tool, an architect graphically defines a
component composition by instantiating and connecting the selected software
components. This component composition, together with data on external
task-triggering events, is stored as a scenario model. Hence, the scenario com-
bines the specification of a component composition and its input events (task
triggers or stimuli). These input events enter a system and cause some activity
within a system. The input events can be of the following types: user-based
(push-button action), environmental (signal to a sensor), platform interrupts
and messages from other systems. For an event, an architect may define the
period, deadline, offset, jitter, corresponding task priority, and so on. The
specification of such input events allows an architect to characterize a set of
scenarios describing the ways a system should be used.

Figure 4.4: Simple example of scenario model.

Fig. 4.4 depicts an example of a scenario model. The component composi-
tion in this model consists of three individual components (ServiceA, ServiceB
and ServiceC) bound via interfaces Intf1, Intf2, Intf3 and Intf4. The
model also contains one trigger VolumeStimulus, which triggers the opera-
tion foo provided by the interface Intf1. An architect may also specify the
deadline and periodicity parameters for this trigger.

Often, the scenarios are also called ‘usage profiles’ or ‘use-cases’. The
scenarios are introduced in order to avoid modeling of the complete set of
possible system configurations and environmental events, and to concentrate
on the critical execution scenarios that may pose resource overload or missed
deadlines. A specific type of scenarios commonly found in literature and in
practice are worst-case scenarios. Guidelines for identification and selection
of the critical scenarios are presented in Chapter 8. An individual scenario is
described by a separate scenario model. Each individual scenario model is a
subject for further performance analysis. The detailed structure of a scenario
model is specified in Section 5.4.2.

50 Chapter 4. DeepCompass Analysis Framework

4.4.2 Hardware Architecture and Deployment

A hardware-architecture specification should be developed as part of the frame-
work. Often in a project, a hardware platform is pre-determined. In this case,
an architect needs to specify the hardware platform in terms of the Deep-
Compass hardware architecture model. If an architect has freedom to define
a hardware architecture, he can select hardware blocks from a repository and
define a desired topology. The topology specifies processing nodes, memory
blocks, and their communication means, i.e. bus lines. The selection criteria
are left to the designer’s intuition. The topology can be graphically designed
using the CARAT editor (see Section 7.2.2).

Once the software and hardware architecture are defined, a deployment of
the software components on the hardware nodes can be made. The SW/HW
deployment describes the assignment of each software component on individual
processing nodes. In other words, the SW/HW deployment model shows for
each processing node, which software components are executed.

Figure 4.5: Simple example of hardware architecture and deployment model.

Fig. 4.5 presents a simple example of a deployment model. Here, the
hardware topology contains three processing nodes Processor1, Processor2,
and Processor3, which are connected via communication lines Bus1 and Bus2.
The SW/HW deployment model defines that the software component ServiceA
is executed on Processor1, ServiceB is executed on Processor2, and so on.

Efficient deployment is required to distribute the load of hardware re-
sources in an optimal way. However, at the first deployment iteration, it is
not clear how to deploy the software components to achieve the optimal load
distribution. Therefore, various deployment alternatives are possible and each
alternative represents a system architecture that can be assessed against the re-
quirements at later phases. The deployment can be defined using the CARAT
graphical editor. The CARAT toolkit converts the deployment diagram into
the deployment model. The detailed structure of the deployment model is
given in Section 5.4.3.

4.4. Architecture and Design Phase 51

4.4.3 Executable System Model

At this point, an architect obtains a number of various models, such as the
deployment and scenario models, as well as the models of individual software
components and hardware blocks. So the task-related data, required for perfor-
mance analysis, is spread over different types of models. For instance, the task
periodicity is specified in the scenario model, whereas the information about
the operation call sequence comprising the task is spread over corresponding
component behaviour models. Therefore, the models need to be synthesized
in order to obtain an analyzable task-execution architecture of a system.

The DeepCompass framework defines a set of model composition rules,
that enable obtaining a system-wide execution architecture. These composi-
tion rules, implemented by the CARAT toolkit, check for completeness and
consistency of all the input models and synthesize their corresponding mod-
els into an executable system model. The executable model describes a set of
tasks (running in a system) with a detailed description of: (a) a sequence of
operations and interactions executed by each task, (b) execution time and com-
munication load imposed by each operation within a task, (c) synchronization
constraints between the tasks, and (d) task period, jitter, offset and deadline.

Figure 4.6: Example of task mapping on the SW/HW architecture blocks.

The executable system model also allocates these tasks to the software
components and hardware blocks. An example of this allocation is given in
Fig. 4.6. Here, the system executes three tasks, using two processors and
five deployed service instances. Task1 executes on Processor1 and consists of
operations offered by ServiceA and ServiceB. The execution of Task2 is spread
over both processors and includes a communication via the on-chip network.
This task executes operations offered by three service instances: ServiceB,
ServiceD and ServiceE. The data transfer between the service instances B, D
and E is mapped onto the on-chip network.

Detailed description of the model composition rules and executable system
model is given in Sections 5.4.4 and 5.5.

52 Chapter 4. DeepCompass Analysis Framework

4.5 Analysis and Validation Phase

The synthesized executable system model is used for obtaining the performance
properties. A number of performance analysis approaches can be applied to
this model. The approaches can be categorized in two types: schedulability
analysis and simulation-based techniques. The schedulability analysis results
in predicted worst- and best-case response times of each task and overall CPU,
memory and bus utilization for a specified scenario. The simulation-based
techniques yield richer output, including task-execution behaviour (patterns
of execution), distribution of latencies for each task, and fine-grained (in time)
resource utilization for a specified scenario.

The DeepCompass framework enables both types of analysis. However,
in this thesis we focus on simulation-based techniques, because they output
extensive data on the task-execution behaviour and latency distribution. This
data can be used for thorough performance analysis, e.g. diagnostics of bot-
tlenecks. DeepCompass provides (by means of the CARAT toolkit) a set of
schedulers that simulate parallel execution of the tasks specified in the exe-
cutable system model [71]. The selection of scheduling algorithms is dictated
by the types of networks and operating systems used for the designed sys-
tem. The CARAT toolkit provides the following schedulers: rate-monotonic
(RM) [8], deadline-monotonic (DM), earliest deadline first (EDF) [23], time-
division multiple access (TDMA) and fair-use algorithms. The simulation tech-
niques feature scheduling of both processing and communication resources.

The simulation of the executable model results in predicted performance
properties for each of the architecture alternatives. These properties may in-
clude throughput, task latencies, number of missed deadlines, utilization of
hardware blocks, and need to be validated against the system performance
requirements. Should the properties fail to meet the requirements, then an
architect can re-iterate the architecture and analysis phases, or skip this archi-
tecture alternative. During the next iteration, an architect may: (a) evaluate
other available software components and hardware IP blocks, (b) make differ-
ent SW/HW deployment, (c) apply other scheduling policies, etc.

The throughput, latency and resource-consumption properties can be ex-
tracted in a straightforward way from the task execution-timeline obtained
by simulation. For other attributes, like robustness and reliability, additional
computations are needed. Robustness can be calculated as the performance
sensitivity to an increase of the input event frequency (caused by a trigger). To
obtain this sensitivity, an architect reduces the trigger periods in each of the
scenario models and repeats the simulations. Comparison of the new task la-
tencies or resource use with the old values shows how sensitive the architecture
is against the changes of the input event rate.

In Section 5.6, we discuss the simulation techniques and performance analy-
sis in detail.

4.6. Trade-Off Analysis for Alternatives 53

4.6 Trade-Off Analysis for Alternatives

Once a number of alternative architectures has been defined and their perfor-
mance properties are obtained, an architect looks for an optimal architecture
alternative. Finding an optimal alternative with respect to multiple properties
(objectives) is a challenging task. The objectives often conflict with each other,
e.g. in order to achieve higher performance, an architect needs to use more
expensive hardware. A trade-off analysis helps to understand and solve these
conflicts. The DeepCompass framework allows the designer to use a Pareto
analysis as a powerful means for resolving conflicting objectives [74].

Generally, Pareto-based optimization methods do not yield a unique so-
lution, but a set of solutions that are Pareto-optimal. The selection of the
preferred alternative from this set is based on the quality-attribute priorities
defined by an architect. For instance, in Fig. 4.7, we depict a Pareto diagram
for finding optimal architectures with two-dimensional criteria: system cost
and critical task latency. Each architecture solution is placed in the diagram
according to its attribute values.

Figure 4.7: Two-dimensional trade-off analysis diagram with various archi-
tecture alternatives and indicating the Pareto curve.

A Pareto curve is depicted by connecting the alternatives that are closest
to the origin. This curve defines a set of optimal alternatives. The Pareto
curve in Fig. 4.7 passes through the optimal alternatives A, C and E. The
other solutions B and D (above/to the right from the curve) are not optimal.
Obviously, Architecture B is worse than Architecture C, because it is more ex-
pensive and slower. The same holds for Architecture D. Further analysis can
be done for the optimal architectures. If, for instance, the timing requirement
for the critical task is 29 ms, then Architecture E can be rejected as a risky
solution. If the system cost is a dominant attribute, than we may consider
Architecture C and E as preferred optimal solutions. Evaluation of three- and
four-dimensional trade-offs is more challenging for visualization, but concep-
tually the same principle holds.

The selected optimal architecture alternative that satisfies system require-

54 Chapter 4. DeepCompass Analysis Framework

ments can be either sent further to the implementation stage (see Fig. 4.1(b)),
or re-iterated, in order to achieve an even better combination of quality at-
tribute values. The detailed discussion on the trade-off analysis and architec-
ture optimization is given in Chapter 6.

4.7 Conclusions

This chapter started with a discussion on the common processes for devel-
opment of software systems. We have presented an overview on a common
iterative software development process and encountered its limitation for the
development of real-time systems. The limitation is that the architecture and
validation stages are separated in time by the implementation and testing
stages. As a consequence, for each iteration, suboptimal or even incorrect
design decisions in the architecture may be identified too late, only after im-
plementation and testing. This latency may cause project delays and budget
overruns. We have proposed to extend the iteration loop with a sub-process
that comes to performance properties, while performing only a requirements
analysis, architecture design and analysis/validation stages. The sub-process
enables prediction of the architecture performance properties and their valida-
tion against the requirements without the need for implementation and testing.

The DeepCompass framework guides an architect through this sub-process.
The sub-process includes the following phases: (a) creation of the software and
hardware architectures and generation of the corresponding design-model spec-
ifications, (b) synthesis of all the design-models and models of individual com-
ponents into an executable system model, (c) analysis of the executable model
and analysis of the obtained performance properties, and (d) multi-objective
trade-off analysis and comparison of the architecture with other alternatives.

Summarizing, the DeepCompass framework has the following key features.

• The analysis of a system composed from third-party components can be
done without buying these components. The analysis is based on the
component models, which may be distributed free of charge.

• The synthesis of the system-wide model, representing tasks running in
a system, is completely automated. We constructed the structures of
different component models to be composable with each other resulting
in a system-wide model.

• The framework features rapid architecture prototyping and performance
assessment. This is achieved by provided graphical design-tools; auto-
mated model synthesizer and an efficient simulation engine.

• The framework requires low modeling and computational efforts. This
is achieved by accurate selection of modeling primitives and a relatively
high abstraction level of individual component models. The usage of
scenarios for software architecture modeling also reduces efforts, because

4.7. Conclusions 55

an architect focuses only on performance-critical scenarios and leaves the
scenarios that do not influence performance properties aside.

• The framework addresses a wide spectrum of performance properties,
such as latencies, task interleaving and blocking, as well as memory,
processor and bus usage.

• The framework supports modeling and analysis of systems built in all
common architectural styles, e.g. pipes-and-filters, blackboard and client-
server styles.

• The framework supports analysis of systems deployed on an arbitrary
hardware topology with homo- or heterogeneous processing nodes.

The following chapter describes how these benefits are achieved. In that
chapter, we present the detailed specifications of (a) structures of individual
component models, (b) algorithms for synthesis of different model types into an
executable system model, and (c) the simulation engine for processing this sys-
tem model and obtaining the performance properties of the system. When all
of these details are discussed, we also address the limitations of the framework.

56 Chapter 4. DeepCompass Analysis Framework

Chapter5
Scenario-Based Performance

Analysis Method

5.1 Introduction

In the previous chapter, we have presented the DeepCompass framework that
defines an iterative process for design and validation of performance properties
of architectural alternatives. The core of the framework is the compositional
scenario-based method for performance analysis. This chapter presents this
method in more detail, builds further on the DeepCompass framework and
concentrates on the research questions posed in Chapter 1 of this thesis.

RQ1: How should behaviour and performance properties of individual
components be specified in order to enable composition of these properties
into an analyzable model of a complete system?

RQ2: How to combine the models of individual components into the model
of a complete system in an automated way, such that the resulting system
model can be analyzed with respect to the performance properties?

Besides these general research questions related to an automated synthesis
of assembly models, this chapter concentrates also on the following detailed
questions.

• What kind of component-level models and architectural-level models
should be introduced in order to cover all performance-relevant aspects
of a system? The key constraint is that these models should be concise
and easy to read and construct.

57

58 Chapter 5. Scenario-Based Performance Analysis Method

• Which performance and behaviour properties of software components
should be specified in a model (and which can be safely omitted) in order
to obtain accurate predictions of performance properties of a system?

• How to enable modeling of systems with parameter-dependent behaviour
and resource usage?

• What modeling primitives are needed to allow a component developer to
model passive and active components? Another issue is which primitives
enable an architect to successfully model systems designed using different
architectural styles (pipes-and-filters, blackboard and client-server)?

• How to model the component usage of processors and busses in a hardware-
independent way? For example, how to specify already at the component
development phase, the time needed for a component execution on an ar-
bitrary processor?

• How to enable modeling of an arbitrary hardware platform with hetero-
geneous processing nodes? This question deals with specification, while
the next one is about analysis of this specification.

• How to simulate the execution of an arbitrary set of software components
mapped on an arbitrary (incl. heterogeneous) hardware topology?

• How to allow an architect to specify a deployment scheme, defining which
software component is executing on each processing node?

• How to enable analysis of only those system execution-configurations
that are relevant to performance requirements?

Contributions of our method are definitions of both the composable struc-
tures of performance-related component models and the algorithms for the au-
tomated model synthesis. Another important contribution of the method is the
introduction of the scenario model. The scenario model is a combination of
a component composition (i.e. static software architecture) together with a
characterization of possible input events to the system. These events, being
analyzed and modeled by an architect, define a potential workload on a system.

The outcome of the synthesis of the above-mentioned models is an exe-
cutable system model that describes system-wide behaviour. In detail, this
model specifies parallel tasks that a system is going to schedule and execute.
A task is a logical representation of a system activity, similar to an operating
system process, which can be started by a system external or internal stimulus
(trigger). From the execution point of view, a task consists of a sequence of op-
erations of different components, which can be mapped onto different hardware
nodes.

Finally, the method defines a number of algorithms to simulate the ob-
tained executable system model. Such a simulation produces task-based time-
lines, from which the following performance properties can be obtained: task
latencies, throughput, hardware resource loads and even robustness of the sys-
tem against system overload conditions.

5.2. Component and Architecture Modeling 59

Figure 5.1: Structure of Chapter 5.

Fig. 5.1 portrays the structure of this chapter. Section 5.2 introduces the
DeepCompass model types for individual components and for the architec-
ture specification. Besides this, we compare and map these model types onto
the model types from the common 4+1 Architectural View paradigm. Sec-
tion 5.3 specifies the individual component models in the EBNF grammar nota-
tion. These include the following: ROBOCOP model, component behaviour-,
process-, resource models and hardware performance model. In Section 5.4, we
present the models for architecture specification such as scenario-, deployment-
and executable system models. Section 5.5 explains the algorithms for auto-
mated model synthesis resulting in the executable system model and provides
examples for each synthesis step. Performance analysis by simulation of the
latter model is presented in Section 5.6. Section 5.7 outlines the assumptions
and limitations of the presented models and performance analysis method.
Section 5.8 concludes the chapter.

5.2 Component and Architecture Modeling

Within the DeepCompass framework, modeling activities are carried out in two
phases: (a) at component development phase and (b) at system design phase.

60 Chapter 5. Scenario-Based Performance Analysis Method

The models specified in the component development phase aim at describing
particular characteristics of individual software components and hardware IP
blocks. The objective of the models created at the system design phase is
to specify a system architecture, in terms of the relations between software
components and their deployment onto a hardware architecture.

For a software component, we introduce the following three model types:
resource-, behaviour- and process models. Each of these model types aims at
an abstract specification of corresponding component properties. These models
can be used for two purposes: (a) to specify requirements on a component to be
developed, and (b) to reflect properties of an already implemented component.

The general characteristics of individual hardware IP blocks such as process-
ing nodes, memory modules and communication means are described in a HW
performance model. This model includes hardware parameters, e.g. processing
power and instruction type, memory capacity, or bus bandwidth.

The models that describe the outcome of a system design phase include
a software scenario model and a deployment model. These models specify
both software and hardware architectures, as well as the mapping of software
components onto the hardware nodes.

The set of above-mentioned models has been defined to capture all nec-
essary data needed for performance analysis. These models aim at similar
objectives as the widely used 4+1 View Model [85]. This model describes a
software architecture using five complementary views, each of which addresses
specific concerns. The logical view describes the system structure in terms of
classes or components; the process view describes the system concurrency and
synchronization aspects; the physical view describes the mapping of the soft-
ware onto the hardware and shows the system’s distributed aspects, and the
development view describes the software-code organization in the development
environment. An architect can organize the description of the architectural
decisions around these four views and then illustrate them with a few selected
use cases, thereby constituting a fifth view.

Motivation for another set of models
The 4+1 View Model is valuable for design of general-purpose software

systems. However, it does not provide specific support for the domains of
component-based software architectures and time-critical systems. It does not
allow specification of components and system-wide performance properties.
Another limitation is that the 4+1 View Model focuses only at the specifica-
tion of a complete system, while we aim at both the individual components
and system-level specifications. Finally, the 4+1 model types do not provide
performance-oriented design facilities in an integrated way.

To support convenient reading, we have mapped the DeepCompass model
types onto the types from the 4+1 View Model. Fig. 5.2 depicts conceptual
similarities between the DeepCompass models and 4+1 View Model. Our sce-

5.3. Models of Components 61

Figure 5.2: Mapping of DeepCompass models onto the 4+1 architectural
view paradigm.

nario model addresses similar issues as the logical and use-case views. The
component assembly specification and the logical view represent a static ar-
chitecture organization. The triggers, described in the scenario model, are
conceptually similar to the use cases representing system workload configura-
tions. The deployment model is similar to the physical view due to the fact
that they both specify (a) the hardware nodes and architecture topology and
(b) the mapping of the software entities on the hardware nodes.

Our component behaviour/process model and the process view both specify
the behaviour of a software entity. The difference is that the behaviour/process
model describes the behaviour of individual components, while the process
view shows the system-wide behaviour. Similarly, the HW performance model
specifies characteristics of individual hardware IP blocks, while the physical
view may describe system-wide hardware characteristics. Another difference is
that the 4+1 Model View does not provide similar means as the DeepCompass
resource model. These differences lead to the conclusion that the set of Deep-
Compass models is more comprehensive for performance analysis, and features
an executable system model. The 4+1 View Model lacks these facilities.

5.3 Models of Components

This section presents a formal specification of the four component model types
and shows one graphical example for each type. The formal model definitions
are constructed by means of the Extended Backus Naur Form (EBNF) [33].

62 Chapter 5. Scenario-Based Performance Analysis Method

5.3.1 Model of ROBOCOP Component

In Section 2.2.3 we have outlined the definition of the ROBOCOP architecture
and its component model. In our approach, a component incorporates an open
set of models including an executable model, a source-code model and a func-
tional model. The executable model specifies the (a) services of the component
(that can be instantiated), (b) interfaces that provide access to the function-
ality of the services and (c) operations that implement this functionality and
which can be invoked by other services through the respective interfaces.

Figure 5.3: EBNF definition of the model of a ROBOCOP component with
its executable model included.

The EBNF definition of the model of a ROBOCOP component is given in
Fig. 5.3. As it is the first model described in the EBNF syntax, we give an
extensive interpretation of it below.

The robocop-component consists of the component’s component-id,
component-name properties and includes a model-set. The model-set consists
of zero or more behaviour-model, process-model, resource-model and zero
or more executable-models. The model set is not limited to these models.

5.3. Models of Components 63

The specification of the former three models is given in the next subsections.
The executable-model specifies a set of services that provide actual

functionality. A service is defined by a service-name and a service-id.
An is-buffer boolean element defines if the service is a buffer entity that
represents a memory space, or, otherwise, if it is an executable entity that
contains executable code. The buffer-type services are purely used for the
pipes-and-filters architectural style and are actually pipes in that context.

A service provides its functionality via a set of provided-interfaces, that
other services can connect to. A service also defines a set of required-
interfaces. These are the interfaces to which a service needs to be bound in
order to operate properly.

Each provided-interface contains a description of the specific interface-
type that it implements. Because a service may provide a number of provided-
interfaces of the same interface-type, these are distinguished by a pro-
vided port name (pp-name) element. This is a service-specific name for each
port. A port can be seen as an instance of an interface. The required-inter-
face specifies the interface-type of the provided interface to which it should
be bound.

The interface-type itself is defined by interface-name and interface-
id. Besides this, it defines a set of zero or more operations (i.e. methods,
functions), that this service should implement.

An operation is defined by an operation-name and operation-type pair.
Furthermore, an operation specifies a set of passed and returned operation
arguments - passed-arg and returned-arg. An argument is defined by an
arg-name and arg-type pair.

The identifiers component-id, service-id, interface-id and operation-
id are specified as a GUID, which is a Globally Unique IDentifier consisting
of 32 hexadecimal numbers. The rest of the model defines so-called model-
ing primitives. For instance, the component-name is a sequence of the CHAR
type. The arg-type can be one of the following: "boolean", "byte", "short",
"integer", "long", "double" or "float".

The component models, introduced further in this chapter, use the defin-
itions from Fig. 5.3. The concepts of the ROBOCOP component model are
compatible with common component models.

5.3.2 Component Behaviour Model

This section first introduces the EBNF-based model description and then
presents an example of what the model actually describes. The main ob-
jective of the behaviour model is to specify parameter-dependent behaviour of
operations provided by an individual passive component. The model should
describe implementation of a component operation at higher abstraction level.
For each component operation the model defines the invocation sequence of

64 Chapter 5. Scenario-Based Performance Analysis Method

operations of other components, that the component calls via his required
interface. For more detailed modeling of loops and conditions in the source
code, the model allows to specify iterations (for, while-do loops) and con-
ditional statements (if-else, switch). Besides that, the model specifies the
data transfer activities from one service to another. In source code, these data
transfers are commonly programmed as passed and returned arguments in the
invoked operation signatures.

Figure 5.4: The component behaviour model in the EBNF notation.

The EBNF-based specification of the behaviour model is given in Fig. 5.4.
The interpretation of the model is as follows. The behaviour-model contains
behaviour descriptions of each operation implemented by the component ser-
vices (operation-behaviour). Also, the model defines a set of parameters
on which the behaviour of operations depends. Each parameter is distin-
guished by parameter-name, parameter-type and parameter-id. Besides

5.3. Models of Components 65

this, the parameter element defines the instantiation-constraints for pa-
rameter values, such as the min-possible-value, max-possible-value and
optional default-value. The latter three elements pre-define the range of
values, in which an architect can instantiate each parameter in a scenario
model. The parameter-value instantiation for each scenario is discussed in
Section 5.4.2.

The operation-behaviour is described by a reference to an operation
(operation-id), behaviour-description and mutex-mode. The boolean
mutex-mode element is a synchronization primitive, which defines whether ex-
ecution of an operation can be preempted by a scheduler.

The behaviour-description is defined by a parameterized specification of
a call-graph. A call graph is a sequence of operations invoked during the exe-
cution of the specified operation. In other words, the call graph represents the
internal behaviour of an operation in terms of communication with interfaces
of other services.

It is important to emphasize that the concept of an interface allows spec-
ifying such communication dependencies of operations already at the phase
of component development. A component developer specifies for a service a
required interface that needs to be bound by a software architect to a provided
interface of the same interface-type of another service. A component de-
veloper does not need to know the exact service implementation to which his
required interface will be bound, because it can be any service with a provided
interface of that interface-type. Therefore, the description of a call graph
for each operation of a service is able to specify the called operations of other
interfaces, before it is known to which other services this service is bound.

The call graph may depend on input parameters. A component devel-
oper may specify a number of parameter-dependent call graphs for each op-
eration. This is done by the parameter-range element associated with each
call-graph. The models of individual components use value ranges to re-
duce the modeling work. Each parameter-range defines the min-value and
max-value. For instance, for each value range of a specific parameter, a com-
ponent developer can define a specific call graph. The decision on the number
and granularity of ranges to specify is left to the component developer.

Please note, that a call-graph can be specified such that it depends on
multiple parameters. In the system design phase, the exact parameter values
are instantiated (defined) by a system architect and, based on these values, a
specific call-graph is selected by a model synthesizer.

Next, we explain the structure of the call-graph in more detail. It con-
tains zero or more execution-loop elements and zero or more critical-
section elements. The critical-section specifies synchronization constraints
for a scheduler. In detail, it defines a sequence of called operations that can-
not be preempted by a scheduler. The execution-loop is a recursive defini-
tion of call-sequences. The execution-loop enables modeling of loops. A

66 Chapter 5. Scenario-Based Performance Analysis Method

parameter-dependent number of loops can be specified via the parametric-
iterations construct.

The call-sequence specifies a sequence of calls to operations of other in-
terfaces (called-operation) during the execution of the modeled operation.
If a called-operation is invoked a number of times in a loop, a parameter-
dependent number of iterations can be specified by the parametric-iterations
element.

Figure 5.5: MSC-based example of an operation behaviour description in a
component behaviour model.

The called-operation contains a reference to the operation identifier
operation-id and to the identifier of the interface that offers this operation
(interface-id). Besides this, data about the operation arguments arg-data
can be modeled for each called operation. The arg-data may contain a num-
ber of passed-arguments and returned-arguments. These two elements allow
specifying the amount of data that is transferred bi-directionally during the
operation call (data-amount). The passed-argument defines a number of bits
sent to the called operation at invocation time, while the returned-argument
defines the number of bits that are sent back to the calling operation upon
the completion of the called-operation. The data-amount element, repre-
sents the amount of the data to be sent and received. It can be specified in
a parameter-dependent way. The element-size defines the argument size in
terms of the number of bits (e.g. an argument of type integer contains 32
bits), while the nmb-elements enables to model array-type arguments.

Simple example of behaviour model
A simple graphical representation of a behaviour-description of an operation

5.3. Models of Components 67

is given in terms of a message sequence chart (MSC) in Fig. 5.5. The chart
shows the modeled behaviour of the operation opr1 implemented by the service
serviceX and offered by the interface intf_N. The serviceX is dependent
on two required interfaces intf_B and intf_C. The MSC of the operation
behaviour shows that, once opr1 is invoked, its behaviour depends on a value
of parameterA. The exact value should be defined later on at the composition
time and specified in a scenario model representing the assembly. At the
component modeling time, the operation behaviour needs to be specified for
all possible values of the parameter. In the example, the values are grouped
into two ranges, namely from 0 to 10 inclusive, and from 10 to 100.

For the first value range, the operation call-graph includes three called-
operation entities. First, the opr2 is iteratively called five times via the
interface intf_B. Second, the opr3 is called once via the same intf-B. Finally,
opr1 invokes three times the operation opr3 via the interface intf_C. Upon
the return of the control flow from the opr3, the opr1 completes its execution
and returns the control flow to the entity that invoked the opr1.

For the second value range, the opr1 invokes two operations sequentially.
First, the intf_B.opr2 is called three times, and then the intf_C.opr3 is
invoked in five iterations.

More detailed examples of a behaviour model for real applications can be
found in Sections 9.3.1 and 9.4.2.
End of example

At the component assembly phase, the call-graphs of the operations from
a sequence can be composed. Once the static software architecture, repre-
senting service instances and their bindings, is defined, the call-graphs of
individual operations can be composed into a task call-graph containing the
information about the sequence of executed operations of the constituent ser-
vices. The composition algorithms are described in Section 5.5 in more detail.

The behaviour model specification is the responsibility of a component
developer. The data for the model can be obtained either through top-down
design or by source-code analysis of the component services.

Let us briefly discuss a few limitations of the behaviour model presented
here. The granularity of modeling of service behaviour is limited to the level
of operations. This level may appear to be too coarse-grained for obtaining
very accurate behaviour predictions. However, our case studies revealed that
this level is sufficient for assessing performance with acceptable accuracy (see
Chapter 9). An extension would be to model behaviour on the level of processor
instructions and employ a cycle-true simulator. Yet, this would make models
large and difficult to specify, as well as time-consuming to simulate.

We have also limited modeling of programming constructions to parameter-
dependent loops and excluded all types of conditional statements. This allows
keeping models relatively simple and easy to construct.

68 Chapter 5. Scenario-Based Performance Analysis Method

5.3.3 Component Process Model

The component process model aims to enable modeling of components that
create and execute their own operating system processes or threads. We call
such components active. In more detail, the process model specifies parameter-
dependent behaviour of the processes created and executed within the bound-
aries of services of individual active components.

Figure 5.6: The component process model in the EBNF notation.

The EBNF definition of the component process model is depicted in Fig. 5.6.
The following paragraphs explain important aspects of the process model. The
process-model contains behaviour specifications of each process-in-service
started and executed by one of the services of the modeled component. Be-
sides this, the root defines a set of parameters, on which the behaviour of the
component’s processes depends. The explanation of the parameter element is
given in Section 5.3.2. The process-in-service specifies a number of impor-
tant process-properties, such as virtual-operation, type of the process
activation and deactivation, as well as periodicity of a process.

The virtual-operation is introduced to specify the behaviour details of a
source code of the process. For that, it includes the behaviour-description,
the structure of which is given in Section 5.3.2. The virtual-operation
should be provided with its own operation-id and modeled in the compo-
nent resource model (see Section 5.3.2), where its hardware resource claims
are to be specified.

The process activation specifies if the process is activated upon the start
of the service execution or upon invocation of an operation offered by one of
the provided-interfaces of the service. This enables modeling of different
implementations of a process activation. The same modeling applies for the
deactivation element. The periodicity element allows modeling two types

5.3. Models of Components 69

of implementation of process loop iterations. The while-do-loop element is
used when a process loop iterates upon completion of a previous loop, while
the periodic element is used when process loops are executed periodically
with a certain period.

Figure 5.7: MSC-based example of process-in-service description in a com-
ponent process model.

Simple example of process model
Fig. 5.7 depicts an MSC-based graphical example of two processes ProcessP1
and ProcessP2 run by ServiceX. The ProcessP1 is activated by default and
iterates in a while-do-loop. The process execution is emulated by virtual
operation oprVP1. The behaviour-description of the virtual operation con-
tains a call graph, in which a sequence of invocations of operations provided by
interfaces of other services is performed. The ProcessP2 is activated upon in-
vocation of operation intfN_opr1 implemented by ServiceX, and deactivated
upon invocation of operation intfN_opr2. The process is defined as periodic
where the process loop is iteratively repeated every 25 ms. A virtual operation
oprVP2 emulates the source code execution of the process. A detailed example
of a process model for real application can be found in Section 9.4.2.
End of example

A component developer is responsible for specifying the process model.
The model data can be obtained either by top-down design or by a source
code analysis of processes of the component services.

70 Chapter 5. Scenario-Based Performance Analysis Method

5.3.4 Component Resource Model

The objective of a component resource model is to specify the hardware re-
source requirements of each operation implemented by the component. The
requirements can be specified on a parameter-dependent basis.

Figure 5.8: The component resource model in the EBNF notation.

The EBNF definition of the component resource model is shown in Fig. 5.8.
The resource model contains operation-resource-use and parameter ele-
ments. The parameter element is explained in Section 5.3.2, while the former
includes specifications of operation processor usage (cpu-use) and memory
usage (memory-use).

The cpu-use element allows specifying the parameter-dependent cpu-claim
of an operation. The cpu-claim defines the number of processing cycles
(nmb-cycles) that an operation requires to complete its execution. The opera-
tion’s cpu-claim value is to be defined for one of the specific processor-type,
namely RISC, CISC or VLIW. To further empower the performance analysis,
the cpu-claim data should be profiled and specified for three types of cases:
mean-case, best-case and worst-case.

The memory-use is defined by a cumulative amount of memory allocated
(memory-allocation) and released (memory-release) at operation execution.

The resource model specification is the responsibility of a component de-
veloper. The model data can be obtained either by estimation at the design
time or by profiling the component execution at the stand-alone mode.

Simple example of resource model
Fig. 5.9 shows an example of a specification of RISC-processor operation claims
resulting from opr1-opr3. Here, the profiling of ServiceX results in the fol-

5.3. Models of Components 71

Figure 5.9: An example of operation CPU claim specification in a component
resource model.

lowing values. The mean-case execution of opr1 has been averaged to 500
processing cycles, while the worst-case and best-case execution traces took 600
and 200 cycles, respectively. The parameter-dependent processor usage data
of opr3 contains the following values. If the value of parameterA is within
the 0-10 range, then the worst-case and best-case execution traces take 1,450
and 1,000 cycles, respectively. If parameterA value is in the range between
11 and 100, then the worst-case and best-case CPU claims are equal to 1,950
and 1,300 cycles, respectively. Detailed examples of a resource model for real
applications can be found in Sections 9.3.1 and 9.4.2.
End of example

It is important to note that the resource model enables specification of
operation processor requirements independently from the actual frequency of
a processor. That is achieved by specifying claims in terms of processing cycles.
This has the advantage that at the system design phase, the resource model
is applicable to any deployment scheme, where the processor, on which the
service providing the operation is deployed, can have an arbitrary frequency
specification.

5.3.5 Hardware Performance Model

The hardware performance model targets at specification of hardware (proces-
sor, memory and bus) characteristics at a high-level of abstraction. The EBNF
definition of the model is given in Fig. 5.10. The model falls into the three

72 Chapter 5. Scenario-Based Performance Analysis Method

categories: processor-model, memory-model and bus-model.

Figure 5.10: The hardware performance model in the EBNF notation.

The processor-model specifies the processor-type and cpu-frequency
in terms of a number of processing cycles per second. The processor-type
defines the type of processor instruction-set: RISC, CISC or VLIW. The
memory-model specifies memory-type and its capacity in bytes (size-bytes).
The memory types include (but are not limited to) the following: RAM,
DRAM, SDRAM and Flash. The bus-model defines bus-type, protocol-type
and bus bandwidth (bandwidth-kbits-sec).

The data for the hardware performance models can be obtained from mea-
surements or from supplier data-sheets. The hardware type-set can be further
extended when needed.

Modeling limitations. We have deliberately kept the hardware performance
model simple, avoiding such details as processor caching strategies, bus and
memory-access arbiters. Despite that this simplicity brings a certain level of
inaccuracy in performance predictions, it enables rapid performance analysis
in return, which becomes important when an architect has to consider multiple
architectural alternatives within short period of time.

5.4 Architectural Models

In contrast to the model of software components and hardware IP blocks given
in Section 5.3, the architectural models are generated at the architecture de-
sign phase of the DeepCompass framework (see Fig. 4.3). These models are
scenario-, deployment- and executable system models. An architect can define

5.4. Architectural Models 73

the scenario and deployment models in two ways: (a) by constructing archi-
tectural compositions via the CARAT graphical editors (see Chapter 7), with
further generation of the models from these compositions and, (b) manually,
by creating the XML files of the models. The executable system model is ob-
tained by an automated synthesis of the scenario, deployment and individual
component/hardware models.

5.4.1 Discussion on Scenario and Deployment Models Forming
Architecture Alternatives

The purpose of this section is to clarify how the scenario and deployment
models are used to generate various architecture alternatives. The contents is
therefore explanatory by nature. In the next sections we provide a detailed
specification of the scenario, deployment and executable system models. The
objective of the scenario model is to specify both service composition (logical
software architecture) and usage scenarios of an architecture alternative. For
each alternative, different scenarios may differ only in input trigger specifica-
tions and should employ the same logical software architecture. An architect
may define as many usage scenarios for a system as needed. In Fig. 5.11, we
have used two scenarios for each architecture alternative, where each scenario
contains three different triggers, while specifying the same service composition.

Figure 5.11: Relations between architecture alternatives and scenarios, as well
as their service compositions and triggers.

A deployment model together with a set of scenario models forms an archi-
tectural specification of an alternative. The objective of the deployment model
is to specify the hardware architecture and the deployment of the service in-
stances (specified in a service composition of a scenario model) on the hardware
nodes. Only one deployment model can be specified for an alternative.

74 Chapter 5. Scenario-Based Performance Analysis Method

The deployment schemes and the service compositions may vary per al-
ternative. In Fig. 5.11, Alternatives 1 and 2 define the same Service Compo-
sition A, while Alternative 3 defines Service Composition B. Also, all three
alternatives use different deployments specified in Deployment Models 1-3.

The scenario-based method assigns one important constraint on the usage
of the triggers within scenario models. The identified set of triggers, forming a
number of scenarios, should be applied for all alternatives in the same manner.

The synthesis of the executable system model is performed for each pair of
scenario and deployment models. Therefore, an alternative may have a number
of executable system models. The simulation of these models provides predic-
tions on the performance properties. If several models provide predictions for a
specific performance property, the worst-case prediction result should be taken
for validation against corresponding performance requirements.

The following sections present the EBNF specifications of the scenario,
deployment and executable system models along with graphical examples for
each of the model types.

5.4.2 Scenario Model

Fig. 5.12 depicts the EBNF specification of the scenario-model. The four
main elements of the model define the assembly of services, triggers, process-
instances and instantiated-parameters.

The assembly describes the software architecture in terms of service com-
position. It includes a set of service-instances and bindings that connect
these service instances.

The trigger specifies environmental-, platform- or user-based stimuli, that
trigger an execution of a task. The trigger includes a specification of a trig-
ger periodicity and defines an operation invoked upon arrival of a triggering
event: triggered-operation. Besides this, an architect may optionally de-
fine a priority for the task created by the trigger and a deadline constraint
for completion of the task. The trigger periodicity defines if the triggering
events arrive in a periodic, aperiodic or sporadic way. A periodic trig-
ger is characterized by its period, while a sporadic trigger is characterized by
its minimal inter-arrival time (min-interarrival-time). An aperiodic trig-
ger features three timing attributes: burst-intraperiod, burst-interperiod
and burst-length.

The triggered-operation specifies which operation is invoked by the trig-
ger and includes operation-id, service-inst-id as well as the provided port
offering this operation pp-name.

In the instantiated-parameter element, an architect is supposed to as-
sign values to all the parameters defined in the behaviour-, process- and re-
source models. The element includes the reference to the parameter (parame-
ter-id) and instantiated-value fields. Based on the assigned parameter val-

5.4. Architectural Models 75

Figure 5.12: Scenario model in the EBNF notation.

ues, the corresponding call graphs and resource-usage data will be selected later
by the CARAT toolkit for automated composition and performance analysis.

The process-instance element points to the service instance starting and
executing this process instance: (service-inst-id). The process-instance
allows to optionally specify deadline and priority of the task generated by
the process instance.

Simple example of scenario model
Fig. 5.13 depicts a simple graphical example of a scenario model. In the ex-
ample, three service instances A, B and C are composed by binding their
interfaces K, L, M and N. Two triggers 1 and 2 with assigned periods, offsets
and deadlines are triggering the operations Intf_N.opr1() Intf_M.opr2(),
respectively. The parameters X,Y and Z are instantiated to values defined by
an architect specifically for this scenario. A detailed example of a scenario
model for a real application can be found in Section 9.3.3.
End of example

76 Chapter 5. Scenario-Based Performance Analysis Method

Figure 5.13: Graphical example of a scenario model.

Scenario identification is not a trivial process. An architect should (a)
carefully analyze all possible incoming events and parameter configurations of
a system, (b) extract the critical configurations that might hinder the perfor-
mance requirements and (c) model them in a number of scenario models. We
have conducted an empirical study on the issue of scenario identification and
selection. The findings from the study are combined into scenario identification
guidelines and are reported in Section 8.3.3. We present a brief outline of the
guidelines for critical scenario identification. The performance requirements,
system overload conditions, pick-load situations and high-frequency hardware
interrupts are the source for performance problems in a system, and therefore,
each of these factors should be modeled as a separate scenario.

5.4.3 Deployment Model

The deployment model aims at specifying the hardware architecture and the
mapping of software service instances (defined in the scenario model) onto
hardware nodes.

Fig. 5.14 presents the EBNF specification of the deployment-model. The
model contains specification of zero ore more processor, global-memory and
bus hardware IP blocks. The processor includes a reference to the processor
specification in the hardware performance model: (processor-id). Besides
this, it defines the processor instance processor-inst-id and availability of

5.4. Architectural Models 77

Figure 5.14: Deployment model in the EBNF notation.

local-memory blocks on the processor. Finally, the processor specifies which
service instances are deployed on the processor instance (service-inst-id),
and which bus instances (bus-inst-id) are connected to the processor in-
stance.

The global-memory contains a reference to the memory block specification
in the hardware performance model (memory-id) and defines the global mem-
ory instance memory-inst-id. Besides this, global-memory specifies which
service instances are deployed on the memory block (service-inst-id), and
which bus instances (bus-inst-id) are connected to this global memory in-
stance. As mentioned in Section 5.3.1, only the services representing buffers
can be mapped on a memory block. These services are characterized by the
element is-buffer set to true.

Figure 5.15: Graphical example of a deployment model.

78 Chapter 5. Scenario-Based Performance Analysis Method

Simple example of deployment model
Fig. 5.15 shows a simple example of a deployment model. The model contains
three processor instances MIPS_E, MIPS_D and MIPS_F, on which the Service in-
stances A, B and C are deployed. The MIPS_E processor contains local memory
block MEM_U. The global memory block MEM_V and the processors are connected
via bus instance BUS_A.
End of example

The CARAT toolkit provides an architect the necessary graphical means to
design the deployment diagrams, checks the scenario and deployment diagrams
for completeness and consistency, and generates the scenario and deployment
models.

5.4.4 Executable System Model

The executable system model is synthesized from the above-described architec-
tural models and individual component models. The synthesis is fully auto-
mated by the CARAT toolkit. The synthesized executable system model rep-
resents a task execution architecture that contains parameter-dependent data
on the tasks running in the designed system, and the allocation of these tasks
within the software and onto the hardware architectures. More specifically, a
synthesized task is a schedulable entity with a detailed description of: (1) a
triggering entity (trigger or process) that initiates the task, (2) the task’s pe-
riod, deadline, priority, offset and jitter, (3) a sequence of operations and data
transfers executed within a task and (4) processor and communication load im-
posed by each operation and data transfer within a task. The obtained tasks
are suitable for different types of performance analysis (simulation, schedula-
bility or hybrid), resulting in predictions for behaviour and timing properties
of a system.

Let us now describe the relation between the synthesized tasks, the trig-
gers (obtained from the scenario model) and the processes (obtained from
the process models of components). Both the triggers and processes serve as
an input for identification of tasks in the system. The processes are general
OS-related entities, while a task is a scheduling entity. Processes and trigger
events create (fire) task instances [21]. These task instances are scheduled by
the CARAT Simulator tool. For example, in an Anti-lock Braking System
(ABS), a triggering event, informing that the wheels are locked, initiates a
task instance that executes anti-locking functionality. Another example is a
data-streaming process which executes the following three operations within
a loop: read data from ports, process data and write data to ports. Here,
one loop iteration creates a task instance, executing the functionality of these
operations.

The parameters of a trigger are used as the parameters for the task in-

5.4. Architectural Models 79

stances initiated by this trigger. For instance, a trigger deadline specifies the
deadline for completion of each task instance. The processes specify periodicity
parameters for initiated task instances. In case a process is a part of a multi-
media streaming chain which contains a number of active components running
the processes in parallel, the process deadline may be neglected. Instead,
an architect can specify a deadline for a complete processing loop of a video
frame (such processing loop typically starts from a read-frame operation and
ends with a render-frame operation). In this case, a designer specifies a loop
deadline by means of the CARAT toolkit. In order to maintain a one-to-one
relation between the deadline of a process and the deadline of a corresponding
task instance, the process model does not support fork/join specification of a
process.

The tasks identification is a rigid and automated procedure. An architect
may influence the set of tasks running in the system by specifying the scenario
model. Once the scenario model is defined, the task set cannot be changed
and optimized as proposed in [32].

Figure 5.16: Executable system model in the EBNF notation.

Fig. 5.16 depicts the executable system model in EBNF notation. The
model consists of the execution-architecture and constituent-models el-
ements. The latter element contains references to all architectural- and com-
ponent models involved. The execution-architecture specifies a set of
executable-tasks obtained at the model synthesis. Each executable-task
is associated with its task-id and task-name. Also, executable-task defines

80 Chapter 5. Scenario-Based Performance Analysis Method

its execution-sequence and the entity that creates the task: created-by.
The created-by element references either to trigger-id if the task is created
by a trigger, or to a pair process-id-service-inst-id if the task is created
by a process.

The execution-sequence data is composed out of behavior- and process
models of individual components and defines a sequence of multiple executed-
operations and data-transfers. In other words, each element in the task
execution-sequence can be either an operation executed on a certain proces-
sor, or a data-transfer performed via a bus once an operation passes or returns
some arguments to an operation residing on a different processor.

An individual executed-operation is defined by a reference to a specific
operation and service instance in the software architecture (operation-id and
service-inst-id). Besides this, the executed-operation includes an opera-
tion execution time value (execution-time-ms) computed from the data given
in corresponding resource and hardware performance models. The value is ob-
tained for the specific processor processor-inst-id, on which the service
instance implementing the operation is mapped in the deployment model.

The data-transfer element defines the operation’s from-operation and
to-operation, exchanging the arguments data via bus bus-inst-id. The
constituent element direction specifies if the data transfer is performed for
a forward or return operation calls. Furthermore, data-transfer includes a
value for the transferred amount of bits (transfer-amount-bits) computed
from the arg-data specified in the corresponding behaviour or process model.

The following section defines the algorithms for synthesis of the executable
system model.

5.5 Synthesis of the Executable System Model

This section explains the algorithms for the synthesis of the architectural and
component models into the executable system model. The algorithms repre-
sented here are implemented and validated in the CARAT toolkit (see Chap-
ter 7). Fig. 5.17 gives an overview of the synthesis process. The process involves
all the models described in previous sections and includes the following four
steps:

• Step 1: Initialization of executable tasks. Identification of all trigger
and process-in-service elements from the scenario- and component
process models. Generation of the corresponding executable-task ob-
jects.

• Step 2: Synthesis of task call graphs. For each executable-task, a call
graph is recursively composed based on the individual call-graphs of
operations involved.

5.5. Synthesis of the Executable System Model 81

Figure 5.17: Synthesis of the executable system model out of architectural and
component models.

• Step 3: Synthesis of task execution sequences. For each executable-task,
the executed-operation and data-transfer elements are identified and
stored in the task execution-sequence.

• Step 4: Computation of resource consumption within execution sequences.
For each element in each execution-sequence either execution-time or
transfer-amount-bits is computed, based on data from corresponding
deployment, resource and hardware performance models.

The following sections specify these four steps of the synthesis algorithm
in detail. For each step, a synthesis algorithm is given in pseudocode nota-
tion. The outcome of each step is represented as an extended MSC diagram.
Moreover, each MSC diagram provides an example of a possible result.

5.5.1 Step 1. Initialization of executable tasks

The goal of the first synthesis step is to identify and initialize all possible tasks
that are executed in the specific scenario. Stream-based and control-based
systems feature different types of task initialization mechanisms. In control-
based systems, tasks are initialized by triggers, while in stream-based systems,
tasks are initialized by processes running inside active components. For this
reason, the algorithm incorporates two types of task initialization mechanisms:
trigger-based and process-based.

Fig. 5.18 shows that the data for this step is fetched from the scenario model
and the process models of the components involved with the composition. From

82 Chapter 5. Scenario-Based Performance Analysis Method

the scenario model, the algorithm fetches the tasks which are fired by triggers
(trigger-based). From the process component models, the algorithm fetches the
tasks which are fired by the processes created in active components (process-
based).

Figure 5.18: Step 1. Model view of the task initialization. The enlarged view
at the bottom is a possible example of the result of Step 1.

Fig. 5.19 depicts two algorithms of the task initialization in pseudocode:
InitializeTriggerTasks and InitializeProcessTasks. The former algo-
rithm scans through all triggers in the scenario model and identifies the
triggered-operations of each trigger. The following actions establish the
trigger-based tasks of the future executable system model.

1. Initialize an executable-task for each triggered operation and generate
a unique task-id.

2. Set up the created-by property of the task and link it to the trigger-id.
3. Initialize execution-sequence and the first execution-operation of

the task.
4. Set the triggered-operation as the first execution-operation in the

task execution-sequence.

The InitializeProcessTasks algorithm performs initialization of tasks
fired by the process-instances of those process models, which services are

5.5. Synthesis of the Executable System Model 83

Figure 5.19: Step 1. Pseudocode specification of the task initialization algo-
rithms InitializeTriggerTasks and InitializeProcessTasks.

instantiated in the scenario model. For each process-instance, the procedure
generates a process-based task by the following sequence of steps.

1. Initialize an executable-task for each process-instance and assign a
unique task-id.

2. Set up the created-by property of the task and link it to the process-id.
3. Ask an architect to define the optional deadline and priority properties

for the process-instance
4. Initialize execution-sequence and first execution-operation of the

task.
5. Set the virtual-operation of the process as the first execution-operation

in the task execution-sequence.

The described step generates an initial task structure of the future exe-
cutable system model. The structure defines a set of executable tasks (see
Fig. 5.18) and, for each of them, reveals the following three properties: (a)

84 Chapter 5. Scenario-Based Performance Analysis Method

which entity triggers the task and; (b) which operation is first to execute once
the task instance is fired; (c) the periodicity of the job (task instance) firing
and the job completion requirements (deadline). For example, in Fig. 5.18,
Trigger A invokes the triggered operation opr1 of Service instance X, and by
this, forms the initial definition of Executable task A. This definition will be
further supplemented in the following steps.

5.5.2 Step 2. Synthesis of task call-graphs

The aim of the task call-graph synthesis is to compose individual call graphs of
operations into a call graph of an executable task. The synthesis is performed
on the basis of behaviour and process models of individual services and their
binding specification fetched from the scenario model. The synthesis procedure
is similar to the method recently presented in [98].

For each task, the algorithm reconstructs a sequence of operations to be
executed upon triggering of a task instance. The call graphs of individual
operations, given in the behaviour and process models of corresponding com-
ponents, serve as building blocks for the synthesis. Note that, the synthesis is
only possible once a component assembly is defined in a scenario model, con-
taining specification of service instances and bindings between them. Fig. 5.20
depicts the models used at this step and an example of an obtained task call-
graph in terms of an MSC diagram.

The call-graph synthesis algorithm is based on the pre-order traversal prin-
ciple [9]. The synthesis algorithm is shown in Fig. 5.21. It contains root proce-
dure SynthesizeCallGraphs and traversing procedure PreorderTraversal.

The following paragraphs explain important aspects of the algorithm. For
each executable-task identified in the previous step, the SynthesizeCall-
Graphs algorithm performs the following actions.

1. Fetch behaviour-description of the first executed-operation in the
execution-sequence. For each task the first executed-operation was
created in the previous step of task initialization.

2. Identify the call-graph that applies to the instantiated-values of
the parameters specified in the behaviour-description. Here the al-
gorithm resolves the parametric dependencies of the operation behaviour,
defined in the behaviour or process models of the component providing
the operation. The parameter values are given by the scenario model.

3. Initialize curr-operation-list, which will store the traversed sequence
of the task operations. Add the first executed-operation to the curr-
operation-list.

4. Set the counter position-in-curr-list, specifying the current position
of an operation in the curr-operation-list to 0.

5. Execute the PreorderTraversal procedure that recursively traverses the
call-graphs of operations, thus, synthesizing the complete sequence

5.5. Synthesis of the Executable System Model 85

Figure 5.20: Step 2. Model view of the synthesis of the operation call graphs.

of operations to be executed by the task. The following arguments
are passed to the procedure: call-graph, curr-operation-list and
position-in-current-list. The procedure returns the traversal re-
sults in the curr-operation-list argument.

6. Initialize empty final-operation-list of the task and store the result-
ing curr-operation-list into it.

The internal PreorderTraversal recursive procedure accepts two input
arguments (IN), i.e. call-graph and position-in-curr-list, as well as one
input-output argument (INOUT), curr-operation-list. The procedure exe-
cutes another recursive algorithm FlatenCallGraph, that flattens the execu-
tion-loop elements in the current call-graph converting them into a local
operation sequence. The resulting operation sequence is returned by the pro-
cedure in the tmp-operation-list. The FlatenCallGraph is a preparatory
procedure for traversal of call graphs and shown in Fig. 5.22.

The obtained tmp-operation-list is inserted into the curr-operation-

86 Chapter 5. Scenario-Based Performance Analysis Method

Figure 5.21: Step 2. Pseudocode specification of the synthesis of the operation
call graphs.

list in the position (position-in-curr-list+1). Then, for each of the
called-operation in the temp-operation-list, the following set of actions
is performed.

1. Obtain the position of the called-operation in the updated curr-
operation-list and store the value as position-in-current-list.

2. Get operation-id of the called-operation and find its behaviour-
description in the corresponding behaviour or process model.

3. Identify which call-graph applies to the instantiated-values of the
parameters, on which the operation behaviour is depending.

5.5. Synthesis of the Executable System Model 87

Figure 5.22: Step 2. Pseudocode specification of the pre-order traversal the
operation call graphs.

4. If the call-graph contains at least one called-operation, then per-
form the recursive PreorderTraversal procedure for this call-graph.
The current curr-operation-list and position-in-curr-list values
are passed to the procedure. As a result, the procedure updates the
curr-operation-list and returns it.

Concluding, the recursive traversal algorithm walks through call-graphs
of all operations involved in the task execution and builds up the sequence of
these operations. As a result, the operations are ordered in the way they are
executed by the task.

A graphical example of the preorder traversal is shown in Fig. 5.23. The
operation OprA is the root of the tree, which, in the context of our approach,
means that it is either a triggered operation or a virtual operation of a process
instance. The call graph of OprA includes two called operations OprB and OprC.
The latter operations have their own call graphs. The OprB, in its turn, calls
OprE and OprF, while the OprC invokes the following three operations OprX,
OprY and OprZ. The last three operations are leafs, except for OprZ, which
calls two other leaf operations OprK and OprL. A leaf operation is an operation

88 Chapter 5. Scenario-Based Performance Analysis Method

Figure 5.23: Example of the preorder traversal of the operation call graphs.

that does not invoke any other operations while being executed. The preorder
traversal results in the following sequence of operations to be executed once the
task instance is fired: OprA, OprB, OprE, OprF, OprC, OprX, OprY, OprZ,
OprK, OprL.

Example of a task call-graphs synthesis.
Fig. 5.20 depicts an example of the synthesis results in terms of an MSC dia-
gram. Here, the algorithm identified a sequence of operations invoked within
the task executable-task-A, triggered by trigger-A. The traversal shows
that the service instances X, E, F, G are involved in the task execution. The
opr1 is a triggered operation, while the final-operation-list contains op-
erations intf_N.opr1, intf_M.opr2, intf_K.opr3, intf_L.opr4 (twice) and
intf_L.opr5.
End of example

The algorithm of the call-graph synthesis features the important compo-
sitionality property of our behaviour and process models. Being specified at
the component development phase, these models are applicable to an arbitrary
future composition of services at a system design phase (with a constraint on
proper binding of provided and required interfaces of these services).

5.5.3 Step 3. Synthesis of task-execution sequences

The goal of this third step is to identify and construct a sequence of compu-
tational and communication activities within a task. The need for this step
comes from the following reasoning. In the previous step, of a task call-graph

5.5. Synthesis of the Executable System Model 89

synthesis we obtained a sequence of operations performed by a task upon a
triggering event. The execution of these operations imposes a certain load on
processing nodes. These operations also exchange data by passing arguments
to each other. The transfer of these arguments imposes a certain load on com-
munication hardware resources, if the arguments are passed from one processor
to another. To make accurate modeling of these communication activities, we
need to identify and integrate them into the executable system model.

A computational activity is an execution of an operation that imposes a
load on a processing node. A communication activity is a data transfer between
two operations executing on different processors, thereby imposing a load on
a bus/network. A data transfer between two operations is performed when
a called operation accepts some input arguments or when it returns some
output arguments. As shown in Fig. 5.24, the algorithm collects data from the
deployment model, as well as from the behaviour and process models of the
involved components.

Fig. 5.25 represents the synthesis of task execution sequences in pseudocode.
The algorithm works as follows. For each of the called-operations in the
final-operation-list of a task, the algorithm identifies if the operation is in-
voked with passed or returned arguments. Should this be the case, then the al-
gorithm identifies if the service instances executing the called-operation and
calling-operation are deployed on different processing nodes (IsDataTrans-
ferViaBus procedure). If this is true, a data-transfer element is instanti-
ated representing an inter-processor communication activity in the task. The
bus-inst-id property of the data transfer is assigned to the bus-inst-id of
the communication line connecting the two processing nodes. As a result, for
each task an execution-sequence is generated, containing a mixed sequence
of operation-execution and data-transfer actions. The sequence orders
the actions as they will be performed during an execution of a task instance.

Example of the resulting task-execution sequences.
An example of such a synthesis result is depicted in Fig. 5.24 in terms of
an MSC diagram. Here, the service instances are shown deployed on specific
Processor instances A and B. Besides this, Bus C connects the two processors.
The diagram depicts the data transfer activities (data-transfer: via Bus C)
assigned to communication between Service instances E and G deployed on
Processor instances A and B. The remaining operation invocations are per-
formed within the same processing node, so that no data-transfer actions
are assigned for them. The detailed synthesis example on the real applications
is given in Sections 9.2.4 and 9.4.6.
End of example

90 Chapter 5. Scenario-Based Performance Analysis Method

Figure 5.24: Step 3. Model view of the synthesis of the tasks executable se-
quence. The enlarged view is a possible example of Step 3.

5.5.4 Step 4. Computation of resource consumption within
execution sequences

The last step of the synthesis computes the hardware resource usage of each
action within an execution sequence. Fig. 5.26 shows that this involves the
resource models of components, hardware performance models and the de-
ployment model.

The detailed algorithm of this step is given in Fig. 5.27. Here, the Compute-
ResourceUsage procedure goes through the execution-sequence of a task and
computes the resource usage for each action in the sequence. For an action
of type operation-execution, the procedure identifies the cpu-frequency of
the processor which executes the operation, and the procedure then calculates

5.5. Synthesis of the Executable System Model 91

Figure 5.25: Step 3. Pseudocode specification of the synthesis of the tasks
execution sequence.

the minimum-, average- and maximum operation execution time, based on the
cpu-claim values given in the corresponding resource model.

For an action of type data-transfer, the procedure accumulates the trans-
fer-amount-bits that are sent via the corresponding bus either upon an in-

92 Chapter 5. Scenario-Based Performance Analysis Method

Figure 5.26: Step 4. Computation of resource usage for operations and data
transfers in executable sequences of tasks. Model view.

vocation of an operation with passed-arguments, or upon a return call of an
operation with returned-arguments.

Example of the resulting resource consumption.
The MSC-based result of this last synthesis step is shown in Fig. 5.26. We ob-
tain a so-called annotated MSC diagram, where for each action an execution
time or a transfer size is specified. For instance, opr1 is executed for 52 ms on
the Processor instance A. The data transfer between Opr2 and Opr3 contains
64 kbits of data during the invocation of Opr3 and 16 kbits of data upon the
return call.
End of example

5.5. Synthesis of the Executable System Model 93

Figure 5.27: Step 4. Computation in pseudocode of resource usage for opera-
tions and data transfers in execution sequences of tasks.

The resource-usage computation step finalizes the synthesis of the exe-
cutable system model. The model specifies a set of tasks executing in a specific
scenario. For each task, the triggering, behaviour and hardware resource usage
are defined.

94 Chapter 5. Scenario-Based Performance Analysis Method

5.6 Performance Analysis of Exec. System Model

The obtained executable system model is a subject for performance analysis
(PA). A number of PA approaches can be applied to the model. These ap-
proaches can be categorized in two types: static analysis and simulation-based
techniques. Static analysis methods result in predicted worst- and best-case
response times of each task and an overal CPU-, memory- and bus utilization
for a specified scenario. Simulation-based techniques result in task-execution
behaviour (patterns of execution), distribution of latencies for each task, and
fine-grained (in time) resource utilization for a given scenario.

For the static analysis, Queuing Networks [38], Timed Petri Nets [22] or
Real-Time Calculus [95] techniques can be deployed. The CARAT toolkit
does not implement these techniques itself, but is able to convert the obtained
system model into a specific input format for each technique.

A simulation-based analysis employs virtual schedulers that simulate the
execution of the tasks specified in the system model for some period of time.
The selection of a scheduling algorithm is dictated by the types of communi-
cation busses and operating system used for the designed system. The virtual
schedulers for simulation, implemented by the CARAT toolkit, provide (but
are not limited to) the following algorithms: Rate Monotonic (RM), Dead-
line Monotonic (DM), Earliest Deadline First (EDF), Time Division Multiple
Access (TDMA), Round Robin (RR) and fair-use algorithms. Our virtual
schedulers can be used for scheduling of both processing and communication
resources.

5.6.1 Algorithm of the Simulation Scheduler

The simulation scheduler operates as follows. The tasks defined in the ex-
ecutable model serve as input for the scheduler. Besides this, an architect
specifies the duration and time-slot for the simulation run. The time-unit is
a configuration parameter, and represents the atomic unit of simulation. The
time-unit is normally set to one millisecond or microsecond.

The simulation state-chart for task instances is presented in Fig. 5.28.
At every time-unit, the scheduler examines the tasks in the executable sys-
tem model with respect to appearance of new task instances. If a Task In-
stance (TI) appears (i.e. a job is fired), then the scheduler sets the instance
to the idle state. Each task fires its instances according to their period-
icity. For every time-unit, the scheduler checks the state of each task in-
stance and, if needed, changes these states. Besides the above, the other
states include idle, ready-for-execution, blocked, operation-execution,
ready-for-data-transfer, data-transfer and completed. In the following
paragraphs, we explain the states and transitions of task instances.

For each hardware node (processor or bus), the scheduler allocates a set

5.6. Performance Analysis of Exec. System Model 95

Figure 5.28: State-chart of a task instance during a simulation.

of queues to store task instances assigned to each node (see Fig. 5.29). Each
queue is dedicated to task instances having a certain state. For each processing
node, the scheduler runs queues of idle, blocked and ready-for-execution
TIs. The ready-for-execution queue is re-ordered according to task in-
stance priorities at every time slot. The task instance currently performing
the operation-execution is stored in a separate container. For each bus, the
scheduler has a queue of ready-for-data-transfer TIs and one container for
a task instance performing data-transfer.

The conditions for changing the TI states are as follows. A task instance
can be moved in the following cases.

• From an idle state to a ready-for-execution state when the TI jitter
and offset are expired. According to the synthesis algorithm explained in
Section 5.5, the first element of a task execution-sequence is always of
the executed-operation type. Therefore, the task instance is put into
the ready-for-execution queue of the processing node, on which the
service, implementing this first operation, is deployed.

• From a ready-for-execution state to a blocked state if at least one
task instance on this processing node steps in a mutexed mode or in a
critical-section.

• From a ready-for-execution state to an operation-execution state if
the TI has highest priority among other task instances on this processing
node.

• From an operation-execution state to a completed state if the TI
completes the execution of the operation and has no further actions in

96 Chapter 5. Scenario-Based Performance Analysis Method

Figure 5.29: Allocation of different queue types for processors and busses
within a scheduler.

its execution-sequence.
• From an operation-execution state to a ready-for-data-transfer

state if the TI has completed execution of an executed-operation and
the next object in its execution-sequence is of a type data-transfer.
The task instance is put into a ready-for-data-transfer queue of the
corresponding bus.

• From a ready-for-data-transfer state to a data-transfer state if the
TI has highest priority among other task instances on this bus.

• From a data-transfer state to a ready-for-execution state if the TI
has completed execution of the data-transfer and the next object in
its execution-sequence is of a type executed-operation. The task
instance is put into a ready-for-execution queue of a corresponding
processing node.

• From a data-transfer state to a completed state if the TI completes
the data transfer and has no further actions in its execution-sequence.

As we mentioned above, the scheduler performs priority-based ordering
of the ready-for-execution and ready-for-data-transfer queues for each
processor/bus at every time slot. The algorithms for prioritization are defined
by a scheduling policy (RMA, DMA, EDF or TDMA) deployed for a hardware
node. An architect defines the scheduling policies prior to simulation.

5.7. Review of Assumptions and Limitations 97

5.6.2 Performance results presentation

These schedulers provide various algorithms for processor- and bus-sharing
arbitration. The designer inputs the executable system model to a virtual
scheduler that should adhere to the scheduling policy of an OS of the designed
system. A mixed or hierarchical scheduling can also be simulated. The simu-
lation yields the utilization of resources and in the predicted task behaviour,
latencies and number of missed deadlines. Fig. 5.30 depicts the CARAT sim-
ulation results from our validation case study for an MPEG-4 decoder.

The diagram shows the execution timelines of the three processors and
the bus-load timeline. For each processor timeline, the tasks executing the
operations of the services that are mapped on the processor, are shown. For
each task instance, its initiation and completion times are given. Besides this,
the diagram reflects the time-units when a task instance misses its deadline.
The bus-load timeline represents the timed bus utilization done by the com-
municating operations in these three tasks. The statistics, generated from the
simulation timelines, give the overall data on the predicted task properties and
load of the resources.

5.7 Review of Assumptions and Limitations

The method presented in this chapter is based on a number of assumptions.
Firstly, for every individual component and hardware IP block involved in a
system design, the set of models should be available at the architecting phase.
Creating the set of models imposes some overhead for a component developer,
despite the high level of modeling abstraction. Secondly, usage of scenarios
requires that an architect has a good understanding of the system-environment
interaction aspects, and has some analytical skills in identifying the scenarios.
The scenario identification challenge is addressed in Chapter 8, representing
our industrial survey on scenario-based analysis techniques. Finally, we assume
that the deployment of software services onto hardware nodes is static, i.e. a
service is always executed on a specific processor. This assumption is valid due
to the fact that a static deployment is used for real-time systems to achieve
predictable behaviour.

A number of limitations that need further study are the following. At
first, the behaviour model represents an abstraction of a source code, leav-
ing out implementation details. This eases the assessment of the component
and system behaviour, but limits the modeling of detailed aspects of the source
code, like complex condition statements implemented inside a component op-
eration. A second modeling limitation is that we model processor, memory
and bus characteristics at a coarse grain level, thereby omitting caching and
other peculiarities. This enables rapid simulation and performance predictions,
but, may lead to some inaccuracy in results. Finally, the simulation technique

98 Chapter 5. Scenario-Based Performance Analysis Method

Figure 5.30: Example of execution timeline for processing nodes, buffers and
network obtained from simulation.

does not guarantee finding boundary worst-case values for task latencies and
resource utilization.

5.8. Conclusions 99

5.8 Conclusions

The scenario-based performance analysis method, described in this chapter, en-
ables rapid prediction of behaviour and performance properties of component-
based software systems. The targeted performance properties are task laten-
cies, number of missed deadlines and worst-case processor/bus/memory loads.
The identified behaviour properties are task blocking and interleaving, perfor-
mance bottlenecks and distribution of processor/bus/memory loads.

The method is based on the following principles.

• Modeling of individual software and hardware components at a high ab-
straction level.

• Specification of system scenario models, which define stimuli that trigger
task executions within a system.

• Automated synthesis of individual component models and architectural
models into an executable system model, representing a specification of
running tasks in a system.

• Simulation of the tasks, resulting in predicted performance properties.

Let us now conclude on the major achievements of this scenario-based
method. The proposed assessment of performance properties only for a set of
critical scenarios substantially reduces the analysis time and efforts. Indeed,
scenarios allow avoiding analysis of the whole state space of a system and help
focusing only on the critical system configurations and execution modes.

An important achievement of the method is that it enables automated syn-
thesis of individual component models into a system-wide model for any proper
composition of an arbitrary set of components. This automation, together with
the rapid modeling and simulation facilities, makes this scenario-based ap-
proach suitable for designing multiple architectural alternatives with further
comparison and optimization in a limited period of time.

Besides the above-mentioned advantages, the method features a number
of other important benefits. Firstly, it allows modeling of both distributed
systems and Systems-on-Chip (SoCs) with heterogeneous hardware nodes. Sec-
ondly, the method features processor-independent modeling of processor usage
claims for service operations, which, in turn, allows the deployment of the
software service on an arbitrary processor. Thirdly, the hardware usage and
behaviour properties of a software component can be specified in a parameter-
dependent way. This turns the component models into powerful means for
representing complex functionality of a software component. Fourthly, the
behaviour model provides facilities for specification of task synchronization
constraints (mutexed operations and critical sections), which lead to fine pre-
dictions of task interleaving aspects. Finally, the approach allows an architect

100 Chapter 5. Scenario-Based Performance Analysis Method

to work both with passive and active components, thereby allowing to choose
for an architectural style that better addresses the system requirements.

In the following chapters, we discuss various important aspects of the
method. The performance prediction results obtained by the scenario-based
method are used in the architecture optimization phase, described in Chap-
ter 6. Chapter 7 describes the architecture of the CARAT software toolkit that
implements the above-described model synthesis and simulation algorithms. In
Chapter 8 we present our empirical case study on the industrial usage of scenar-
ios for performance assessment. In that chapter, we justify our scenario-based
method, based on the results from a number of interviews with leading indus-
trial architects. Finally, Chapter 9 describes the case studies that we carried
out in order to validate the DeepCompass framework and the scenario-based
method. In this chapter, we present the MPEG-4 decoder, Car Radio Naviga-
tion system and JPEG application. We applied the DeepCompass process to
design and predict the performance properties of the systems. The scenario-
based method has been validated by comparison between the predicted and
actually measured performance properties.

Chapter6
Architecture Optimization

6.1 Introduction

6.1.1 Background on Optimization Methods

The development of time- and safety-critical systems requires architects to ad-
dress a large number of non-functional requirements, such as performance,
safety, availability, reliability and cost. One major difficulty is that these
non-functional requirements conflict with each other. For instance, improv-
ing system performance often requires more powerful hardware nodes, which
increases the production cost and power consumption. To construct a system
that fulfills all its quality requirements is often not possible. As a consequence,
an architect has to consider several design alternatives and identify a solution
that satisfies most quality objectives, and where the optimal balance between
different quality attributes is achieved. Architecture optimization is the process
of generation of the design alternatives, then performing the trade-off analysis
between the alternatives and finally selecting the optimal alternative.

Architecture optimization is an iterative process, which starts with the con-
struction of an initial set of architectural alternatives/solutions. The following
paragraph describes the three iterative phases used for architecture optimiza-
tion.

1. Evaluation of quality attributes of each architectural alternative. This
phase aims at obtaining the values of the quality attributes of an alter-
native, based on the architecture specifications. In Chapter 3, we have
outlined the existing methods that can be used in this phase.

101

102 Chapter 6. Architecture Optimization

2. Comparison of the alternatives: trade-off analysis. In this phase, an
architect compares the alternatives based on the obtained set of quality
attributes. Due to the contradictory nature of the quality attributes, it is
often not possible to identify which alternative outperforms all other al-
ternatives. One alternative may score high in terms of performance, while
another alternative may have low power consumption. Therefore, an ar-
chitect identifies so-called optimal architectures that feature a balanced
distribution of the quality attribute values. The Pareto-frontiers [74] and
cost-function [94] techniques can be applied for identification of such op-
timal alternatives (also called non-dominated alternatives). A Pareto-
optimal set contains individual solutions which are non-dominated by
other solutions in the search space. (Solution A dominates Solution B
if A outperforms B on every quality attribute). They represent a se-
lection of trade-offs that can be presented to the designer to ultimately
choose the best for a specific application. The found non-dominated
alternatives may be used in (a) the next phase of architecture trans-
formation, or (b) for selection of the final architecture. Moreover, the
detailed trade-off analysis helps an architect to understand which design
decisions impose the particular strengths/weaknesses of an alternative.
As a result, an architect derives the guidelines or directions for further
architecture transformations.

3. Transformations of the alternatives or generation of the new alternatives.
The objective of this phase is to improve the quality attribute values,
while preserving the system behaviour. The transformation techniques
can be classified into two categories: manual and automated. The man-
ual techniques use architectural patterns as a basis. They use pattern
collections that describe a group of suitable transformations to improve
one quality attribute (e.g., safety [42] and performance [29]). An example
of such patterns is the integration of redundancy mechanisms in order
to improve reliability [30]. Another quality improving measure is the
reassignment of software components to other hardware nodes in order
to avoid bottlenecks and to reduce the workload of a specific hardware
node. At the opposite, the automated techniques use architecture specifi-
cation and reasoning frameworks, to automatically generate a set of new
alternatives based on the previous results. The methods for such auto-
mated design space exploration include the Monte Carlo Search, Simu-
lated Annealing (SA), Tabu Search, Genetic Algorithms (GA), etc. In
the following paragraphs, we discuss these exploration methods in more
detail.

6.1. Introduction 103

6.1.2 Scope of the Chapter

This chapter presents our ongoing research work in the field of architecture
optimization. We survey state-of-the-art approaches in this field and identify
their differences and commonalities (see Section 6.2). As a result of the survey,
we construct an abstract architecture optimization method (see Section 6.3).
In this method, we incorporate the beneficial points of every method and our
own ideas on using an artificial intelligence for the architecture optimization.
The abstract optimization method provides a skeleton for tailored instances
of methods, thereby contributing to a common understanding of architecture
optimization.

In order to characterize the abstract optimization method, the following
benefits emerge to the foreground.

1. The method provides an integral approach, where all possible optimiza-
tion phases (requirements and priorities definition, design and analysis
of initial alternatives, identification of promising design-space directions
and generation of new alternatives) are defined and handled in an itera-
tive process.

2. The method provides one common model to be used as a skeleton to
attach multiple analysis methods, leading to analysis integrity and re-
duction of development efforts.

3. The techniques for early identification of quality attributes and bottle-
necks in the architecture alternatives lead to guidance for the generation
of promising design alternatives, thereby avoiding brute-force search and
reducing optimization complexity.

The DeepCompass framework can be considered as an instance of this
abstract optimization method. The framework already includes most of the
facilities for automated architecture optimization. It provides the functionality
for rapid construction of a set of initial architectural alternatives. Furthermore,
the framework enables predictions of multiple performance quality attributes
of these alternatives. The predicted performance results can be used either
for finding the optimal alternative, or for optimization of these alternatives
with respect to better balancing their quality attribute values. The identifi-
cation of optimal solutions is based on the Pareto-frontiers, while the further
optimization of existing alternatives is based on the architectural patterns.

Fig. 6.1 depicts the context of this chapter. Our method for architecture
optimization is a constituent part of the DeepCompass framework. The valida-
tion of the method is presented in Chapter 9, where we present our development
case studies of the Car Radio Navigation system and JPEG application.

The chapter is structured as follows. In Section 6.2, we analyze the existing
approaches for architecture optimization and, based on this analysis, present
an abstract method for optimization in Section 6.3. In Section 6.4, the method

104 Chapter 6. Architecture Optimization

Figure 6.1: Positioning of Chapter 6 in the thesis.

is tailored for the context of the DeepCompass framework. Section 6.5 pro-
vides post-analysis of challenges in architecture optimization field. Section 6.6
concludes the chapter.

6.2 Architecture Optimization Approaches

This section outlines ten approaches from the literature over the last two
decades, addressing the trade-off analysis and/or optimization on architec-
tural design models. These approaches have focused on the optimization of
multi-objective criteria, including safety, resource usage, timing performance,
reliability and cost. The focus is on comparing the methods from five differ-
ent viewpoints: (1) the optimization objectives pursued by each method; (2)
the heuristic and meta-heuristic techniques used for searching in large design
spaces and generation of alternatives; (3) the architectural models used for
evaluation of quality attributes; (4) the techniques used for multi-objective
optimization; and (5) the intended applications.

Approach 1. Nicholson [77] describes an approach that addresses reliabil-
ity, resource usage, task latencies and cost criteria of the architecture. The
approach involves two phases. The goal of the first phase is to find an opti-
mal architecture topology which includes decisions about appropriate redun-
dancies. The second phase aims at finding optimal deployment architectures,
which specify how software components are mapped to real-time tasks and how
these real-time tasks are then mapped to hardware nodes. Nicholson argues

6.2. Architecture Optimization Approaches 105

that this distinction is necessary, since the two phases involve optimization
problems with different complexities. As a result, Genetic Algorithms are ap-
plied in the first phase and Simulated Annealing is used as a search heuristic
in the second phase. The used optimization parameters include worst-case re-
sponse times (WCRT), reliability metrics (e.g. mean time to failure), resource
usage metrics, and production costs. The overall approach is implemented in
the tools X-Alloc and X-Topmeter and is used successfully on the case study
of a computer-assisted braking system.

Approach 2. Thiele et al. [95, 105] present an approach for design space ex-
ploration and architecture optimization for Network Processor Architectures.
The approach is based on models for packet processing tasks, a description of
workload streams entering a system, and a specification of a feasible space of
architectures including computation and communication resources. For each
architectural alternative, the model data is analyzed with Real-Time Calculus
[95], in order to evaluate performance. The designed alternatives are the sub-
ject for the multi-objective optimization performed by the SPEA2 framework
[105]. This framework enables architecture optimization based on Genetic Al-
gorithms.

Approach 3. Palermo et al. [80] introduce a framework for design space ex-
ploration specifically for parameterized embedded System-on-Chip (SoC) ar-
chitectures. The framework aims at solving the power-consumption/response-
time optimization problem for embedded devices. It uses the following three
architecture generation and evaluation algorithms: Random Search Pareto
(RSP), Pareto Simulated Annealing (PSA) and Pareto Reactive Tabu Search
(PRTS). The authors claim that the combined use of these algorithms reduces
search efforts by three orders of magnitude. The assessment of the relevant
quality attributes is provided by simulation and dynamic profiling of the target
systems. The framework is illustrated by the case study of a GSM encoding
application.

Approach 4. Another technique for the design space exploration of embed-
ded SoCs has been developed by Palesi et al. [35]. This technique focuses on
the architecture optimization with respect to the power/latency trade-offs. For
architecture generation and evaluation, it reuses the genetic algorithms imple-
mented by the SPEA2 framework [105]. The instrumentation for architecture
mutations is based on parameterizations of the hardware IP blocks.

Approach 5. A generic framework for architecture optimization has been
proposed by Künzli et al. in [69]. This modular framework for design space
exploration allows using various optimization techniques depending on the
problem domain. The framework provides the following multi-objective opti-

106 Chapter 6. Architecture Optimization

T
ab

le
6.1:

C
om

parison
of

architecture
optim

ization
approaches

against
four

im
portant

aspects.

M
eth

od
&

R
eferen

ce
A
p
p
lication

A
rea/C

ase
S
tu
d
y

O
p
tim

ization
A
p
-

p
roach

/S
trategy

D
ep

en
d
ab

ility
E
valu

ation
M
od

els
D
ep

en
d
ab

ility
Im

p
rovin

g
M
easu

res
N
icholson

[77]
Safety-C

ritical,
R
eal-

tim
e

System
s/C

om
puter

A
ssisted

B
raking

System

M
ulti-O

b
jective

O
ptim

iza-
tion/G

enetic
A
lgorithm

s
and

Sim
ulated

A
nnealing

R
eliability

B
lock

D
iagram

s
(R

B
D
),

Schedulability
A
naly-

sis

N
-V
ersion

P
rogram

m
ing,

R
e-

dundancy,
T
ask

A
llocation

T
hiele

et
al.

[95]
N
etw

ork
P
rocessor

A
rchi-

tectures
M
ulti-O

b
jective

O
ptim

iza-
tion/G

enetic
A
lgorithm

s
R
eal-T

im
e

C
alculus

(R
T
C
):

A
nalytical

approach
em

ploy-
ing

w
orkload

and
resource

curves

H
ardw

are
T
opology,

SW
/H

W
M
apping

P
alerm

o
et

al.
[80]

E
m
bedded

system
s

on
SoC

platform
s/G

SM
encoding

application

R
SP

,
P
R
T
S

and
P
SA

A
lgo-

rithm
s/

pow
er-vs-delay

trade-
off

Sim
ulation

and
dynam

ic
pro-

filing
H
ardw

are
param

eters:
num

-
ber

and
size

of
cache,

A
L
U
,

m
ultiplier

and
m
em

ory
blocks

P
alesi

et
al.

[35]
E
m
bedded

system
s

on
SoC

platform
s

G
enetic

A
lgorithm

s
of

SP
E
A
2

fram
ew

ork/
pow

er-vs-delay
Sim

ulation
H
ardw

are
param

eterizations

K
ünzli

et
al.

[69]
G
eneric

M
ulti-O

b
jective

O
ptim

iza-
tion/M

ultiple
random

ized-
search

algorithm
s

P
erform

ance
run-tim

e
profil-

ing
(used

in
case-study)

T
ask

allocations,
H
ardw

are
T
opology,

SW
/H

W
M
apping,

P
aram

eters
P
apadopoulos

and
G
rante

[82]

Safety-C
ritical

System
s
/

A
utom

otive
design

M
ulti-O

b
jective

O
ptim

iza-
tion/G

enetic
A
lgorithm

s
A
utom

atically
constructed

Fault
T
rees,

Sim
ple

W
eight

and
C
ost

E
stim

ations

C
om

ponent
substitution

and
replication

Fredriksson
et

al.
[32]

R
eal-tim

e
System

s/
G
eneric

C
ase

Study
Single-O

b
jective

O
ptim

iza-
tion/G

enetic
A
lgorithm

s
Schedulability

A
nalysis,

A
nalysis

of
the

M
em

ory
C
onsum

ption

C
om

ponent
to

T
ask

A
lloca-

tion

G
runske

[43]
M
ission-C

ritical
E
m
bed-

ded
System

s/Satelite
C
ontrol

A
pplication

M
ulti-O

b
jective

O
ptim

iza-
tion/E

volutionary
A
lgorithm

s
R
eliability

B
lock

D
iagram

s
(R

B
D
),

Sim
ple

W
eight

and
C
ost

E
stim

ations

C
om

ponent
R
eplication

(T
w
o

C
hannel

R
edundancy,

T
riple

M
odular

R
edundancy)

P
im

entel
et

al.
[86]

E
m
bedded

system
s

on
heterogeneous

platform
s

M
ulti-O

b
jective

O
ptim

ization
T
race

transform
ations,

K
ahn

P
rocess

N
etw

orks,
Sim

ulation
T
ask

re-allocations,
H
ardw

are
P
aram

eters
and

T
opology,

SW
/H

W
M
apping

L
ivolsi

et
al.

[73]
C
om

ponent-B
ased

Sys-
tem

s/
F
inancial

System
C
ase

Study

M
ulti-O

b
jective

O
ptim

iza-
tion/E

volutionary
A
lgorithm

s
H
ardw

are
P
aram

eters
and

T
opology

6.2. Architecture Optimization Approaches 107

mization techniques: black-box optimization, randomized search and problem-
dependent search. The multi-objective evaluation module of the framework
deploys the concept of Pareto-dominance. The framework is based on the
PISA (Platform and programming language independent Interface for Search
Algorithms) protocol that specifies a problem-independent interface between
the search/selection strategies on one hand and the problem domain-specific
estimation and variation operators on the other hand. The framework is il-
lustrated by a simple application example where the design is optimized for
obtaining the most efficient cache architecture.

Approach 6. Papadopoulos and Grante [82] describe an approach to multi-
objective optimization of safety-critical automotive systems. The objective
is to find optimal trade-offs among safety and reliability (treated as separate
objectives) and cost in the design of such systems. A genetic algorithm that
promotes population diversity [2] is used to progressively improve a Pareto set
of non-dominated solutions that represent different trade-offs among the para-
meters of the optimization. The approach departs from earlier work in that the
safety and reliability model (i.e. a set of system fault trees) is automatically
synthesized from an engineering model that is augmented with information
about component failures.

Approach 7. Fredriksson et al. [32] describe a single-objective optimization
approach that is targeted towards hard real-time systems. The goal is to find
an optimal allocation from components to tasks. Genetic algorithms are cho-
sen as the optimization strategy, where each gene represents a component and
contains a reference to the task it is assigned to. Each allocation produced by
the GA is evaluated by a fitness function, which sums up memory consump-
tion on the stack and CPU overhead. Both parameters are determined using
a basic scheduling analysis algorithm, based on parameters such as worst-case
execution times, or required stack usage, which are attached to each compo-
nent in the system.

Approach 8. Grunske [43] describes a method that focuses on the improve-
ment of reliability within given cost and weight constraints. The method uses
a multi-objective optimization strategy that is implemented by a simple evo-
lutionary algorithm which progressively improves a set of Pareto-optimal solu-
tions. Reliability is evaluated using so-called Reliability Block Diagrams, which
are generated separately for each function delivered by the system, based on
the components that are needed to perform this function. The approach is
illustrated on a case study of a satellite control system and two of its main
functions.

Approach 9. Pimentel et al. [86] describe a SESAME framework for explo-

108 Chapter 6. Architecture Optimization

ration and optimization of embedded system architectures at multiple abstrac-
tion levels. The framework deploys both analytical and simulation methods
for evaluation of quality attributes. Analytical methods are fast and work
with high levels of abstraction, while simulation methods are more detailed
and require detailed system specifications. The framework focuses on predict-
ing performance-related quality attributes and exploration of heterogeneous
multi-processing systems with respect to these quality attributes. The per-
formance evaluation methods used are the following: Kahn Process Networks,
trace transformations and simulation. The SPEA2 framework [105] is used
for multi-objective architecture optimization. The approach is illustrated by a
Motion-JPEG encoder case study.

Approach 10. Livolsi et al. [73] propose a guided architecture-based design
optimization technique for component-based systems. The technique enables
exploring possible architectures by repeatedly applying evolutions to initial
architectures, with the quality attributes of each architecture being evaluated
throughout. The found quality attributes guide the designer to the next iter-
ation. An optimization cycle contains three modules: Corrector, Effector and
Evaluator. The Corrector module takes initial architectures and system re-
quirements as an input and creates generation guidelines for the Effector mod-
ule. The latter applies evolutionary algorithms to generate a new population
of architectural alternatives. The Evaluator module takes the new population,
assesses its quality attributes and performs multi-objective evaluation using
Pareto-optimal principles. The evaluation results are sent to the Corrector
module for the next iteration. This optimization technique is supported by
the ABACUS software toolkit.

An overview of the approaches is given in Table 6.1, where important
aspects are listed, such as the application area, optimization strategy, quality
evaluation models and quality improving measures.

The next section will present an abstract architecture optimization method,
that extends the set of common elements found in the presented approaches
here. The extension is in adding a design space analyzer defining guidelines for
an evolution engine. Our method is open in the sense that we adopt techniques
from the presented proposals wherever appropriate. However, our extension
on guiding the architecture evolution can provide faster and higher quality
results in the future, when new techniques such as artificial intelligence are
incorporated.

6.3 Abstract Architecture Optimization Method

This section describes an abstract method for multi-objective design space
optimization of software-intensive systems. This method has been synthesized

6.3. Abstract Architecture Optimization Method 109

Figure 6.2: Abstract method for multi-objective architecture optimization of
software-intensive systems.

from the above-mentioned approaches. The method specifies the process of
designing and optimizing architectures with contradicting requirements on the
multiple quality attributes.

Figure 6.2 depicts the abstract optimization method in terms of an itera-
tive design workflow. The workflow is represented by logical blocks (actors and
data types) and arrows (actions and data relations). The workflow diagram
has two constraints: (a) only an actor can initiate a certain action and, (b) an
actor cannot be a source of a data relation. The following paragraphs describe
this workflow in four principal steps.

A. Definition of initial set of alternatives and evaluation of their
QA values.
The input to the workflow is a set of functional requirements and constraints.
In the design space identification phase, an architect creates an initial pop-
ulation of architectures based on the system requirements and his/her own

110 Chapter 6. Architecture Optimization

experience and intuition. A population of architectures forms a solution space
[73]. Each of the architectures may be characterized by a set of quality at-
tributes, e.g. task latencies, resource usage, performance sensitivity to load
peaks, reliability, and cost. To obtain values of the quality attributes, the
architecture is inspected by a specific QA Analyzer tool. This QA Analyzer
determines (with some level of accuracy) the values of the relevant quality at-
tributes that form a so-called quality space [73]. The available techniques that
can be used for such a QA Analyzer, are outlined in Chapter 3.

The solution space and quality space together form a design space of
the particular iteration. The design space can be represented by a multi-
dimensional diagram in which the architectures are positioned along QA-related
axes according to their predicted QA values.

B. Analysis of promising directions within the design space.
The next step of the workflow iteration involves extending the architecture
population. At this phase, the architect defines priorities between multiple
quality attributes, based on the extra-functional requirements. The above-
specified set of quality attributes allows to generate various kinds of trade-offs
in which multiple performance properties can be involved1. Normally, one
extra-functional requirement addresses one quality attribute. In case of con-
flicting requirements, the architect consults project stakeholders to identify the
right priorities. As an example, QA priorities can be specified as weighted cost
functions. The architect sets the priorities at the beginning of the optimization
process and may tune the priority values during following iterations.

A more advanced way to prioritize the contradicting quality attributes is
to employ utility functions [94]. In particular, utility functions allow dealing
with the situations when a value of a quality attribute comes close to the
required value, but still the corresponding requirement cannot be met. In case
the utility function for this quality attribute is set to be low, the architecture
can be accepted for further consideration.

These priorities (utility functions), together with the current design space
(population of architectures including their quality attributes) are the input
to a Design Space Analyzer tool. This tool plays a crucial role in the whole
architecture optimization process. The main functions of the Design Space
Analyzer are as follows.

1. Evaluation of the current design space and finding the set of non-dominated
architectures. The evaluation process can be based either on the Pareto-
frontiers methods [74], or on the various cost function approaches. In
case of the Pareto-frontiers methods, the evaluation identifies the set of
non-dominated architectures. If a cost function (e.g. weighted sums or

1Examples of performance properties forming the quality space are task latencies, proces-
sor, bus and memory usage, performance sensitivity.

6.3. Abstract Architecture Optimization Method 111

products) are used, the result would be one specific order that reflects
the realization of the different optimization objectives.

2. Identification of weak points in the design of the non-dominated architec-
tures. This step requires some knowledge on how certain design decisions
influence values of quality attributes. The initial data for extracting such
knowledge can be obtained from the QA Analyzer output (e.g., task be-
haviour timelines, hardware resource load imposed by tasks). Based on
this input, the Design Space Analyzer tool can identify weak points or
bottlenecks in the design of non-dominated architectures. For example, a
system has strict requirements on a response time of a certain task. The
QA Analyzer tool finds/predicts the response time value by simulating
the execution of the architecture. The Design Space Analyzer acquires
the simulation timeline of the task and analyzes the bottlenecks in the
system that led to the response time increase. Examples of such bot-
tlenecks are: low buffer capacity or network bandwidth, high processor
load due to other tasks, task blocking and deadlock.

3. Identification of guidelines for generation of the next architecture pop-
ulations. Having the data about weak points and bottlenecks in the
architecture designs and knowing how each particular bottleneck influ-
ences the architecture dependability, the Design Space Analyzer creates
guidelines for generating a new set of architectures. The guidelines may
specify: (a) the generation algorithm for the next iteration, (b) variable
elements in the architecture (e.g. measures to improve quality), and (c)
value ranges for these variable elements. For instance, the guidelines may
specify for a system that processor frequency and buffer capacity could be
reduced up to 50% of their current values without any consequences for
high-priority QAs. At the same time, the guidelines may point out that
the system bus bandwidth causes signal delays and should be increased.
Although this example refers to hardware variations only, it may equally
be possible to optimize in the software domain or in combinations.

In order to automate the analysis, the Design Space Analyzer may imple-
ment a machine-learning algorithm. This algorithm is supplied by an architect
with some initial rules and examples for: (a) identification of weak points of
an architecture leading to low values of corresponding quality attributes, and
(b) construction of the guidelines for removal of these weak points, thus for
generation of more balanced architectures.

C. Generation of new architecture alternatives.
The guidelines that are constructed by the Design Space Analyzer, together
with the available design space, form an input for an Evolution Engine. The
Evolution Engine is responsible for generation of new architecture population.

112 Chapter 6. Architecture Optimization

Possible working principles for the Evolution Engine are Monte Carlo Search,
Simulated Annealing [76], Tabu Search [68], Genetic Algorithms [105, 51, 65]
and Ant Colony-based Algorithms.

D. Evaluation of QA values of new architecture alternatives.
The newly generated architecture population is sent to the QA Analyzer to
determine their quality attribute values. Once the QA values are found, the
architect may take a decision to stop the optimization process, or to continue
with a next iteration. The criteria for the stop-decision are: (a) convergence
point achieved - no enhancement seen in comparison to previous iterations; (b)
requirements satisfaction - all relevant requirements are met; and (c) no time
available for next iterations.

An important feature of this generalized iterative method is that the dif-
ferent techniques for QA analysis and architecture generation can be applied
during the same process. We call this feature - cascaded optimization. Cas-
caded optimization allows varying the analysis and architecture generation
techniques depending on the current situation. For instance, once the Design
Space Analyzer notices that local search provided by the Simulated Annealing
algorithm comes close to a local optimum, then it generates and sends a guide-
line to the Evolution Engine to change from local to global search algorithms
(from Simulated Annealing to Genetic Algorithm) in order to explore a larger
design space.

6.4 Mapping the Abstract Method on the DeepCom-
pass Framework

The DeepCompass framework is fully compliant with the process of the afore-
mentioned abstract optimization method. The DeepCompass process applies
an iterative development (see Section 4.2) that includes the rapid construction
of architectural alternatives, assessment of their quality attributes based on
the architectural specifications and the trade-off analysis based on the Pareto-
frontiers principle. Let us explain how the abstract method can be mapped
onto the DeepCompass framework.

The initial set of architectural alternatives can be generated using the
Repository and the Graphical Designer tools of the CARAT toolkit. These
alternatives form the initial Solution Space. The functionality of the QA Ana-
lyzer is performed by the Preprocessor and Simulator tools, implementing our
scenario-based method for quality attribute predictions (see Chapter 5). The
predicted values of the quality attributes form the initial Quality Space.

The Solution and Quality Spaces define the Design Space, which can be ex-
plored with the Pareto-frontiers method, deployed in the DeepCompass frame-
work (see Section 4.6). Pareto-frontiers help to identify the non-dominated

6.4. Mapping the Abstract Method on the DeepCompass Framework 113

solutions and reason about the alternatives with the most balanced distrib-
ution of relevant quality attributes. The construction of the Guidelines for
further optimization of the non-dominated architectures is not yet automated
in the DeepCompass framework. An architect has to analyze how the design
decisions influence the quality attributes for each alternative. Some typical
issues for analysis points are the following: (a) which decisions lead to the
system bottlenecks; (b) which factors impose low values of important quality
attributes, (c) which decision influences multiple quality attributes and how.

Based on this analysis, an architect is able to construct the guidelines
for further optimization of the non-dominated alternatives. These guidelines
are formalized in terms of the rules for model transformations. Because this
research is still ongoing, we only outline the possible types of model transfor-
mations in the following list.

1. Change capacity of processor/memory/bus node. Based on the identi-
fied bottlenecks in the hardware resource usage, an architect can adjust
the deployment model by substituting the hardware nodes with different
processor frequency (memory size and bus bandwidth).

2. Change hardware topology. This transformation enables changing the
number of processing and memory nodes, as well as the topology of the
communication infrastructure that links those nodes.

3. Substitute software component. A component can be substituted by an-
other component, providing similar functionality, but possessing different
characteristics of its quality attributes.

4. Change deployment of software component. A component can be re-
deployed from one processing node onto another one. If a component
heavily uses an overloaded hardware node, it can be mapped on the less
loaded node.

5. Apply load balancer. The same reasoning as in the previous bullet applies
here, but with a different transformation. The load balancer is a software
or hardware entity that distributes the input events onto two software
components, providing identical functionality but deployed at different
hardware nodes. The balancer may distribute events evenly, or based on
the current loads of the corresponding processing nodes. The loads are
monitored in real-time.

As a result, a new set of architectural alternatives is generated. These
alternatives are the starting point for the next iteration of the optimization
process. The optimization can be halted when the saturation point is achieved
(no improvements are seen for last iterations), or once an architect obtains a
solution that satisfies the requirements.

114 Chapter 6. Architecture Optimization

6.5 General Challenges in Architecture Optimization

In this section, we present the main challenges that an architect faces at the
architecture optimization phase. The nature of these challenges is pluriform.
For example, they deal with the sometimes huge design space, or the inherent
inaccuracy of models and their parameters. Therefore, we only provide a brief
list here.

Inability to find all Pareto-optimal solutions. The design spaces of most
real-world applications are complex, if not infinite. As a result, a complete
exploration of the design space is unfeasible. To perform a guided search,
heuristics, like simulated annealing, genetic algorithms or Tabu search, are
used in the abstract method. These heuristics help to search through complex
design spaces. However, there is no guarantee that globally optimal solutions
will be found. These heuristics often only produce suboptimal or locally op-
timal solutions. Nevertheless, these solutions are typically better than the
original non-optimized architecture specification.

Inaccurate predictions of quality attributes. The outcomes of quality evalu-
ations at an architectural level are always estimations of the real dependability
attributes of the system in operation. The reason for this is that most pa-
rameters used for dependability evaluation, like the failure rate of a software
component, cannot be quantified exactly at the design time. Furthermore,
if off-the-shelf components are purchased, then the dependability evaluation
relies on the correctness of the dependability parameters provided by the com-
ponent vendor(s) [5]. Another source of inaccurate dependability evaluation
results are the limitations of the dependability evaluation models and methods
themselves. These models and methods make assumptions in order reduce the
complexity of the dependability evaluation (see for an example in [36]).

Problems with formalizing and automating architecture transformations.
Another requirement of fully automated architecture optimization approaches
is the need for formal and automatic architecture transformations. This limits
the selection of the architecture transformations to the class of dependabil-
ity improving measures that can be formally specified and applied without
intervention of the system architect. However, some transformations need ad-
ditional information that must be provided by the system architect in order
to apply the transformation. Examples are transformations that add extra
components into the architecture. These components must be formally speci-
fied and basic component-based dependability metrics must be added to allow
evaluations of the system dependability attributes after the transformation.

6.6. Conclusions and Future Work 115

6.6 Conclusions and Future Work

Requirements on quality attributes such as performance, robustness and cost
often conflict with each other, which make the development of dependable sys-
tems complicated. It is not always possible to design a system that fulfills all
of its dependability requirements. Therefore, it is necessary to identify these
conflicts early in the development process and to design an architecture with a
balanced distribution of the quality attribute values. This balancing requires
an iterative process, containing the phases of: (a) prediction of the quality
attributes of the available architectural alternatives; (b) comparison of the al-
ternatives with respect to multiple conflicting attributes; and (c) optimization
of these alternatives to obtain a better balance between these attributes.

In this chapter, we have performed a comparative review of the approaches
that address this architecture optimization problem. We have identified and
outlined the techniques that these approaches deploy for each of the iterative
phase of the optimization process. Our review suggests that none of these ap-
proaches consistently outperforms others in the quality of the derived solutions
or the computational effort and that, in general, performance largely depends
on the formulation of the problem and the nature of the potential design space.

Despite the wide diversity of the methods that we reviewed, significant
commonalities were identified to enable us to define an abstract method for
architecture dependability optimization. The abstract optimization method
has an open and extensible character. For example, it was discussed that an
architecture could be transformed with an evolutionary process, that could be
even based on artificial intelligence. In this sense, the presented optimization
method is not more than a skeleton. Such an abstract method can guide
developers in the optimization of dependability-critical systems by providing a
general reusable framework that will enable additional functionality (e.g. new
heuristics) to be included, or specific actions to be taken to suit particular
formulations of the optimization problem.

We have mapped the abstract method to the context of the DeepCom-
pass framework. We validate parts of generic results of this chapter in two
of the three case studies discussed in Chapter 9. As future work, we plan to
complete the generalized DeepCompass method with several aspects. Firstly,
we envisage the development of a self-learning engine that would enable au-
tomated identification of architectural problem points in the available alter-
natives, based on the predicted values of their quality attributes. The found
problem points should be converted by the engine into the rules/guidelines
for model transformation. Secondly, we need to formalize the specification of
these rules, as well as the specification of possible transformations. Finally, we
intend to develop an evolution engine for design space exploration, that would
realize the automated transformations of corresponding models, based on the
defined transformation rules.

116 Chapter 6. Architecture Optimization

Chapter7
CARAT Software Toolkit

7.1 Introduction

Design and development of current software-intensive systems requires sup-
port from powerful Computer-Aided Software Engineering (CASE) tools. Such
software tools, like Rational Rose [54] and ARTiSAN [4] , have proven to be
efficient for various design phases of the software development. They provide
a broad functionality from keeping the project documentation and checking
the consistency between different diagrams, to state-chart simulation and code
generation.

However, for the development of real-time embedded systems, the above
software tools often lack a decent function for performance verification. Real-
time systems are characterized by their strict end-to-end response-time, through-
put, and robustness requirements. An early verification of these constraining
requirements already at the design phase reduces technical risks and produc-
tion costs. Software tools (like VTune [55] and HProf [91]) exist that provide
full-fledged functionality for all kinds of performance verification and optimiza-
tion, but they require source code of an application and cannot be used at the
design phase, when the source code is not available.

The software tools, simultaneously providing facilities for design and perfor-
mance-analysis, can be divided into two categories: commercial and academic
tools. The LinuxLink [96] toolkit from TimeSys is an example of a commercial
tooling environment which enables design, performance assessment and opti-
mization for software products on Linux platforms. The performance assess-
ment is provided by an embedded simulator based on Rate-Monotonic Analysis
(RMA), which limits its applicability when a heterogeneous hardware platform

117

118 Chapter 7. CARAT Software Toolkit

is used. Academic tools provide various analysis techniques, ranging from for-
mal methods to simulation-based techniques. The Sesame environment [24]
features modeling and simulation methods and tools for the efficient design of
heterogeneous embedded multimedia systems. The Real-Time Calculus Tool-
box [95] uses an efficient analytical approach with “min-plus” and “max-plus”
algebra operators for resource load and event curves.

Presently, a trend is noticeable to build software for complex embedded
systems according to the principles of component-based software engineering
(CBSE). The amount of available CASE tools for component-based real-time
systems is rather limited. The CB-SPE Tool [7] features graphical design and
performance assessment of systems built from conventional software compo-
nents. It adopts RT-UML profile annotations for components and composes
these annotations into a system QN model at the component-assembly phase.
Analysis of the QN model leads to the predicted system performance. The
SEESCOA Tool [99] enables designing software systems from components with
specified timing contracts and run-time monitoring of these contracts. Both of
the tools provide solid performance-assessment functionality. However, these
tools lack design-support features, like repository, large-scale visualization and
automated code generation. The SAAM tool [59] based on the powerful SAAM
method, provides architecture evaluation of various extra-functional properties.
Unfortunately, the tool does not address performance analysis at sufficient level
of detail and accuracy. The DARPA Evolutionary Design of Complex Software
(EDCS) program [26] focuses on the development and integration of tools to
support architecture composition and evaluation of CORBA-based systems.
The Rapide tool is a primary example of EDCS. It allows to browse through
and animate complex sequences of events generated by an architecture sim-
ulation. The tool is efficient for understanding and validating the complex
behavior of distributed component-based architectures.

In this chapter, we present the CARAT toolkit for design and performance
analysis of real-time component-based software systems. The toolkit guides
an architect through the DeepCompass process providing functionality for the
complete design cycle and consists of the following integrated tools: a repos-
itory, graphical editors for software and hardware architecture modeling, a
model synthesizer, performance analyzer and visualizer.

The CARAT toolkit is different from the above tools in the sense that is
fully dedicated to the analysis of real-time embedded systems that are con-
structed with software components and using CBSE principles. Moreover, the
toolkit provides the functionality for a full iteration of the design cycle, includ-
ing constructing architectural alternatives from individual components, ana-
lyzing their performance properties and evaluating trade-offs between multiple
of those properties. The largest added value of the toolkit is that it automates
the complex reconstruction of the system-wide behaviour from the models of
independently developed components. The CARAT toolkit is freely available

7.2. Architecture of the CARAT Toolkit 119

for experiments from [10].
This chapter is structured as follows. Section 7.2 describes the architecture

of the toolkit. Section 7.3 discusses the benefits and limitations of the toolkit.
Section 7.4 concludes the chapter.

7.2 Architecture of the CARAT Toolkit

The CARAT toolkit is implemented in Java and realized as a number of Eclipse
plug-ins. This enables easy installation and high portability on any well-known
platform. The data specification and exchange between these plug-ins are
organized by XML-based model structures. The architecture of the toolkit,
depicted in Fig. 7.1, consists of the following components: Repository, Graphi-
cal Designer, Model Preprocessor, Performance Analyzer, Visualizer, Statistics
Reporter and Code Generator. A brief description of these components is given
in the following paragraph.

Figure 7.1: Architecture of the CARAT toolkit.

• The CARAT Repository provides storage and retrieval of executables and
various models of both software components and hardware IP blocks.

• The Graphical Designer contains two editors for constructing (a) service
instance assemblies, and (b) hardware resource topologies with assigned
deployment (mapping) of the service instances.

120 Chapter 7. CARAT Software Toolkit

• The Preprocessor takes the data from the Repository (model specifi-
cations) and from the Graphical Designer (defined architectures), and
synthesizes the models into an executable system model.

• The CARAT Performance Analyzer uses this model as an input for vir-
tual scheduling of the tasks on the corresponding hardware resources.
The Scheduler outputs an execution timeline for each task for every hard-
ware resource (processor, memory bank and bus).

• The CARAT Visualizer interactively draws the predicted timelines.
• The Statistics Reporter provides the designer with a broad range of data

on the obtained performance properties.
• The Code Generator constructs the application “glue-code”. The glue-

code instantiates and binds the software service instances according to
the specified assembly and prepares the deployment of the instances on
the defined hardware nodes.

The remainder of Section 7.2 presents the functionality and interdependen-
cies of these CARAT components in detail.

Figure 7.2: Example of access window to the CARAT Repository.

7.2. Architecture of the CARAT Toolkit 121

7.2.1 Repository

The Repository enables remote storage and retrieval of third-party component
executables and their corresponding models. It allows a designer to search for
services satisfying input criteria (functional and extra-functional requirements)
and to view the service specifications. The Repository (see Fig. 7.2) is acces-
sible from the Graphical Designer, hence, service instantiation by positioning
a service on the editor plane.

7.2.2 Graphical Designer

The Graphical Designer (see Fig. 7.3) provides graphical means for modeling
of a system architecture. The tool contains two complementary window views,
where an architect can interactively construct the architectural models (see
Fig. 7.3). The bottom window view is the SW Assembly Editor, in which
the scenario models are constructed. The top window view represents the
HW Architecture and Mapping Editor, in which the deployment models are
specified.

In the SW Assembly Editor, a designer instantiates selected services and
binds the provides and requires interfaces, thereby defining the static struc-
ture and communication topology of a software system. For the services whose
behaviour and resource usage depend on parameters, a designer should define
the parameter values. Besides this, a designer may also specify triggers (en-
vironmental/user events or interrupts) that stimulate activities in the service
assembly. The set of triggers together with the parameter values and service
assembly form a scenario model (defined in Section 5.4.2).

Fig. 7.3 depicts a snapshot of the design process of a Car Radio Navigation
(CRN) system, for which we have validated our DeepCompass framework and
the CARAT toolkit (see Chapter 9).

In the SW Assembly Editor, we instantiate the following ROBOCOP ser-
vices in order to satisfy functional requirements: the Man-Machine Interface
(MMI) service, the Navigation service and the Radio service. The MMI service
instance provides its functionality via IGUIControl interface and requires to
be bound to IParameters and IDatabase interfaces. The Navigation compo-
nent provides IDatabase, IRDSDecoder interfaces and requires IGUIControl
interface. The Radio service instance provides IParameters, IRDSReceiver in-
terfaces and requires IRDSDecoder interface. By binding the interfaces of the
same type, we define possible communication between the service instances.

These three service instances are not active (i.e. they have no active
processes implemented inside the components). The system behaviour can
be triggered by the user or environmental events. To emulate these events, we
create and parameterize three stimuli (dark-grey boxes in the SW Assembly
Editor) that actually trigger the behaviour of the CRN system. These stim-

122 Chapter 7. CARAT Software Toolkit

Figure 7.3: Graphical Designer consisting of HW Architecture Editor and
SW Assembly Editor, showing the CRN example.

uli include (a) the VolumeTrigger emulating the user event “change the sound
volume”, (b) the LookupTrigger emulating the user event “find and retrieve
an address” and (c) the TMCTrigger emulating the Traffic Message Channel
(TMC) messages arrival. We connect these triggers to the service operations
that they activate, once their events occur.

These three events may occur in parallel. Therefore, we set all three triggers
to form a critical scenario. This scenario is critical because it may impose a
resource overload or create a hazard for fulfilling the performance requirements.

7.2. Architecture of the CARAT Toolkit 123

Once the scenarios are defined, the hardware architecture and deployment
of service instances can be specified in the HW Architecture Editor (the graph-
ical panel located at the top in Fig. 7.3). The editor allows (a) selection of
the processors, memory blocks and communication lines from the repository,
(b) creation of an arbitrary topology from the selected hardware blocks, and
(c) mapping of the involved service instances onto the hardware blocks. The
processors and memory blocks can be connected by communication lines in
arbitrary styles, like star, token ring and mixed topologies. A memory block
can be specified as a local (in processor) or global memory. Conventional ser-
vices can be mapped onto processing nodes, while virtual services representing
memory buffers can be mapped only onto memory blocks.

7.2.3 Preprocessor and Performance Analyzer

The CARAT Preprocessor tool is a computationally complex part of the toolkit.
The tool performs the algorithms for synthesis of the executable system model
as shown in Section 5.5. As an input, the tool takes the scenario and de-
ployment models, as well as the models of the involved software components
and hardware nodes. These models are synthesized into the executable system
model specifying tasks running in the system (see Section 5.4.4).

The CARAT Performance Analyzer provides a set of schedulers for proces-
sors and communication lines and enables simulation of the executable sys-
tem model. The generic algorithm for a simulation scheduler is given in Sec-
tion 5.6.1. A designer enters the configuration details as an input for the
simulation (see Fig. 7.4). These details include simulation period, simulation
type (worst, best or average case), types of scheduling algorithms for hardware
resources and process/task priorities if needed. The simulation time-unit can
be set to millisecond or microsecond scale.

With the configuration settings defined, the executable system model is
simulated resulting in (a) the task-execution timeline for each processing node
and (b) the timelines of data occupancy for busses and buffers. Besides this,
the results include the identified maximum latencies and resource loads for
tasks, data throughput and total utilization of hardware resources.

The detailed presentation of the simulation results is given in the next sub-
section describing the Visualizer and Statistics Reporter tools.

7.2.4 Visualizer and Statistics Reporter

The CARAT Visualizer shows two types of resulting data: a synthesized
message-sequence chart (MSC) for every task, and the task-execution time-
lines of the involved hardware resources.

124 Chapter 7. CARAT Software Toolkit

Figure 7.4: Configuration window for simulation.

For the above-specified CRN system scenario, the CARAT Visualizer has
depicted three MSC diagrams (see Fig. 7.5). For example, the second MSC dia-
gram shows that the task instance is triggered by TMCTrigger every 3,000 ms.
The first triggered operation is receiveHandleTMC() of the Radio service. This
operation calls the decodeTMC() operation of the Navigation service, which,
in its turn, invokes the MMI.updateScreen() operation. The updateScreen()
operation is a leaf operation in the call-graph tree. The task instance completes
its execution when all return calls are made.

The predicted task-execution timelines for the three processors and the bus
load in the CRN system are given in Fig. 7.6.

The diagram should be read as follows. The timeline of the processor
MIPS_22 shows that the three tasks share this resource and interleave with
each other. For each task instance, the timeline shows the start, execution
and completion times together with the task deadline. Fig. 7.6 shows that the
first instance of the TMCTrigger_Radio task fails to meet the deadline. The
analysis of the available timelines results in the conclusion that this happens
due to the high MIPS_22 processor occupancy which is caused by the higher-
priority task VolumeTrigger_MMI.

The bus-load timeline shows the available bus bandwidth at each moment.
The numbers on top of the bus-usage peaks specify IDs of the tasks transferring
data over the bus at that moment.

The Statistics Reporter tool gathers all relevant information from the simu-

7.2. Architecture of the CARAT Toolkit 125

Figure 7.5: Synthesized message-sequence charts for the three tasks in the
CRN system.

lation, processes it and stores the data in a text file. The performance statistics
resulting from the simulation of the CRN system is depicted in Fig. 7.7. The
analysis of the CRN system shows that the task initiated by VolumeTrigger
takes 90.04% of the MIPS_22 processor. The total load (by all three tasks) of
this processor equals to 93.76%.

7.2.5 Code Generator

This tool takes the scenario and deployment models as an input and gener-
ates C/C++ application glue code. This glue code implements loading and
instantiating of services, as well as binding their provides and requires inter-
faces. The generated code also includes the memory-release functionality upon

126 Chapter 7. CARAT Software Toolkit

Figure 7.6: Predicted task-execution timelines for three processors and bus-
load timeline.

application completion. The outcome of the toolkit is a complete executable
code of the application and individual components.

7.3. CARAT Toolkit Properties 127

Figure 7.7: Example statistics on performance properties.

7.3 CARAT Toolkit Properties

In this section, we briefly discuss CARAT properties important for any soft-
ware tools, such as completeness, robustness and efficiency.

Completeness and Consistency Checks. The CARAT toolkit provides
completeness and consistency checks between various design diagrams. It iden-
tifies (a) missing component models in the repository, (b) erroneous bindings
between provides and requires interfaces, (c) absence of service instances on
the corresponding deployment diagram, and (d) missing hardware connections
for defined interface bindings.

128 Chapter 7. CARAT Software Toolkit

Robustness and Efficiency. We have validated the toolkit by designing
and deploying a number of embedded systems (see Chapter 9). Let us provide a
few details on the simulation speed of the CARAT Simulator. For a relatively
simple system (three tasks running on three processors for 10 million time-
units), the simulation completes within 2-10 minutes. Our experiments have
shown that the simulation time has a close-to-linear dependency with each
of the following system properties: (a) the number of tasks, (b) the number
of operations involved, (c) the number of software components, and (d) the
number of hardware units. If multiple properties grow at the same time, the
required simulation time will grow exponentially.

7.4 Conclusion

We have presented the CARAT toolkit for design and performance analy-
sis of component-based systems, which are deployed on heterogeneous multi-
processor platforms. The toolkit supports the complete design cycle of the
DeepCompass framework starting from component selection from the reposi-
tory and ending with a code generation for an application. The toolkit enables
performance analysis at the early design phase, when the source code is not
available, and automates the complex reconstruction of the system-wide be-
haviour from the models of independently developed components.

The benefits of the toolkit occur in multiple ways. Firstly, the toolkit en-
ables performance predictions for heterogeneous multi-processor platforms by
(a) provision of a wide set of protocols and virtual schedulers for simulation,
(b) supporting active and passive components, and (c) multi-processor speci-
fication of component resource requirements. Secondly, the framework and its
toolkit are generic with respect to various application domains and architec-
tural styles. For instance, the toolkit can be applied to systems designed in
“pipes-and-filters”, “blackboard” or “client-server” architectural styles. Thirdly
and finally, the toolkit enables smooth transitions through design phases by
keeping all data at a single location and by providing seamless communication
between its modules.

Chapter8
Survey on Scenario-Based

Performance Analysis

8.1 Introduction

As the complexity of software-intensive systems is constantly growing, the
analysis of their behaviour and quality attributes at the early architectural
phases becomes a non-trivial task. They often provide hundreds of functions to
the end-user and react on dozens of events from the environment. The software
itself implements multiple processes, running in parallel and featuring complex
behaviour with interleaving execution paths or traces.

From the other side, in order to carry out complete and thorough per-
formance analysis of such a system, an architect should explore all possible
behavioural patterns, system configurations and execution paths. However,
due to the strict time-to-market and cost requirements for industrial prod-
ucts, an architect is always limited in terms of time and resources. In these
circumstances, scenarios can help to perform architecture evaluation within
short time limits and with minimal efforts. Scenario-based analysis of software
architecture is increasingly seen as an elegant, cost-effective means of control-
ling the risks inherently occurring in architectural design. Usage of scenarios
allows architects to focus only on the subset of important (common, critical)
execution paths and configurations, in which the system may fail in satisfying
its performance requirements.

A scenario can be defined in a number of ways. In the general case, a
scenario is considered as a brief description of some anticipated or desired use

129

130 Chapter 8. Survey on Scenario-Based Performance Analysis

Figure 8.1: Factors triggering scenario execution in a system.

of a system [1]. Extending this definition, a scenario is defined as a set or
sequence of interactions between a system and its environment (users, sensors,
other cooperating systems), which lead to specific execution configurations
of a system. For instance, a digital TV set-top-box (STB) which decodes a
standard-definition video stream is one scenario, while the same STB decod-
ing a high-definition video stream will be another scenario. In our work, we
consider both types of scenarios in our performance prediction method.

In the last decade, scenario-based architecture evaluation methods received
serious attention both from the industry and academia. This is motivated by
the potential advantages that scenarios bring to system analysts and architects:
(a) enable deeper understanding of the system behaviour, performance bottle-
necks and usability, (b) allow better decomposition of the functional blocks
of the system, and (c) reduce time and cost for analysis of functional and
extra-functional system properties.

Initially, at the late 1980s, scenario-based analysis was adopted in the com-
munity of usability experts [53]. Scenarios proved to be effective in specifying
user actions and behaviour. Identification of usage scenarios (use-cases) be-
came an integral part of the requirements engineering phase within the devel-
opment processes. Later on, architects started using scenarios for assessment
of modifiability, evolvability and maintainability of system architectures. For
this purpose, a number of mature scenario-based methods, such as SAAM [60]

8.1. Introduction 131

and ATAM [61] have been developed in academia and adopted later in the
industry. Within these methods, a scenario is defined as a set of anticipated
post-development changes in the system requirements. For every scenario of
this type, a system architecture can be evaluated with respect to modifiability
or maintainability.

Recently, scenario-based approaches have attracted attention of architects
and researchers working in the field of performance-critical systems. For such
systems, performance and behaviour-related quality attributes are the most
important properties to evaluate at the architecting phases. In this field, sce-
narios help to clearly define and limit the scope of time-critical tasks for further
performance evaluation. Normally, such a scenario represents a set of concur-
rent tasks running at a specific system configuration. The set may contain not
only time-critical tasks, but also tasks without real-time requirements. Once
the scenario is executed, the behaviour of time-critical tasks and the total usage
of hardware resources can be analyzed.

OMG introduced scenarios as a standard in its UML Profile for Schedulabil-
ity, Performance, and Time [40]. Scenario-based approaches for performance
evaluation have been proposed for various application domains, i.e. object-
oriented software systems [64], component-based software systems [79], mobile
networks [81] and navigation systems [84].

Despite the benefits that scenario-based approaches bring to practitioners,
there are a number of challenges that an architect faces once deploying scenario-
based evaluation of architecture quality attributes. Table. 8.1 describes these
challenges in detail.

Due to the fact that our performance prediction technique is scenario-
based, we need to properly address these challenges and provide recommen-
dations and guidelines for scenario identification and selection. We have con-
ducted an empirical case-study survey by interviewing leading industrial archi-
tects about their experience and methods used for scenario-based assessment.

The case-study survey consists of written questionaires and results of face-
to-face interviews. In the interviews we have asked architects to share their
experience in applying scenario-based performance analysis and their ways to
solve the challenges specified in Table. 8.1.

This chapter presents the case study description and obtained results. It
will be shown that the survey reveals interesting findings. For example, we have
found that the rate of the scenario-based approaches among these techniques
is quite high. The architects explained that full-search or exhaustive analysis
techniques are the main alternative to scenario-based analysis.

The survey identified main benefits and drawbacks of scenario-based analy-
sis in comparison to full-search analysis. All the interviewees mentioned that
scenarios are inevitable for the analysis of large and complex systems, because
they allow to focus only on relevant architectural issues. This saves time and
resources while exhaustive analysis is hardly applicable in this context. Besides

132 Chapter 8. Survey on Scenario-Based Performance Analysis

Table 8.1: Challenges in scenario-based analysis.

Challenge Type Description
Completeness of analysis Scenarios do not guarantee complete architecture ex-

ploration, because they cover only a subset of all
possible system configurations, external stimuli and
behaviour traces

Scenario identification There are no straightforward ways to identify all rel-
evant and representative scenarios for analysis. The
analyst can only rely on the expertise of the stake-
holders and its own experience.

Scenario selection A complex system may be represented by thousands
of relevant scenarios. Due to the time and resource
limitations these scenarios should be scoped to the
set of most critical ones. Currently, there are no
guidelines available for accurate critical scenario se-
lection.

System-wide interpola-
tion of the obtained re-
sults

In order to draw conclusions on the quality attributes
of a global architecture, the results obtained from
analysis of individual scenarios should be interpo-
lated for the whole system. At present, architects
lack well-established techniques for such interpola-
tion.

this, scenario-based analysis is very efficient for product families and evolving
architectures, and enables only local analysis for small changes in architecture
and requirements. However, scenario-based approaches showed to have the
following drawbacks: (a) relatively low prediction accuracy due to incomplete-
ness of the analysis, (b) challenge in identification and selection of all relevant
scenarios for consideration, (c) technical risk of failing to meet requirements
after one or more scenarios were missed.

The chapter provides guidelines given by architects for both the scenario
identification and selection processes. Moreover, it exposes a number of risk
management methods and recommendations on the type of systems for which
scenario-based analysis can be applied.

The chapter is structured as follows. Section 8.2 describes the design of the
case study. In Section 8.3 we present the findings of the case study and sum-
marize various recommendations for deploying scenario-based analysis. Sec-
tion 8.4 provides a comparison between scenario-based and full-search types
of analysis and justifies the feasibility of applying scenarios for assessment of
large industrial systems. Section 8.5 concludes the chapter.

8.2. Design of the Case Study 133

8.2 Design of the Case Study

8.2.1 Data Collection Procedures

Six system architects with profound background in architecture design and
evaluation have participated in our study. They were invited based on their
knowledge in the real-time and embedded systems domain. The interviewees
were working as architects in middle- and large-scale projects in international
companies and institutes, such as Philips, Nokia, ESI, ASML, ICS, Sober-IT,
LogicaCMG and HUT.

The data collection consisted of written questionnaires and follow-up face-
to-face interviews. The interviews have been recorded and informally analyzed
for patterns in responses. Moreover, we asked the interviewees to be critical
and objective in their answers.

8.2.2 Issues Investigated

This section briefly describes the issues in the scenario-based analysis that
we have investigated. Though we are mainly focused on the approaches for
accurate identification of critical and relevant scenarios for architecture de-
velopment and performance assessment, the case-study survey also addressed
related topics like requirements analysis, architecture design methods and ar-
chitecture evaluation techniques. It started with gathering data on the back-
ground knowledge and experience of the architects. This data includes: years
of experience, number and size of the projects participated in the past, and
the application domains of the products designed by the architects.

Performance Requirements Realization and Architecture Evalu-
ation. This part of the interview was focused on obtaining the general view
of the architects on the architectural process, and more specifically, on the
requirements analysis and architecture evaluation (see Fig. 8.2). Here, we
collected empirical data on the architect’s methods for addressing (realizing)
performance requirements in the architectures. In detail, we planned to ob-
tain the interviewee’s experience on the following aspects: (a) clearness of the
performance requirements description, (b) methods for the requirements re-
alization in architectures, (c) most challenging performance requirements for
realization, and (d) deviation between the values specified in requirements and
the measured (real) performance values.

This section discovers challenges and problems that architects experience
during requirements analysis and architecture evaluation, as well as opens up
solutions that the architects use to address the challenges.

134 Chapter 8. Survey on Scenario-Based Performance Analysis

Figure 8.2: Generic development process with highlighted architectural
phases.

Scenario Identification and Analysis. This section of the interview
focused on collecting the architect’s experiences, methods and techniques used
in deploying scenario-based approaches for performance analysis. The following
main topics are addressed in this section.

• The usage frequency of scenarios employed for the architecture design
and assessment phases.

• Approaches for identification of relevant (critical, important) scenarios
for performance analysis.

• Criteria for selection of only relevant scenarios from all possibilities.
• Common difficulties in the accurate identification of the performance-

critical scenarios.
• Average rate of missing critical scenarios and the impact of that on the

further project development.

The concluding part of the interview involved discussion on the feasibility
of scenario-based approaches for reliable and accurate performance assessment.
In this part, we asked architects to justify applicability of scenarios for real-
time system design and assessment.

8.3 Main Findings of the Case Study

The findings of the case-study survey are summarized in this section and are
organized by the issues investigated. Besides that, we derive recommendations
for the usage of scenarios that emerge from these findings.

8.3. Main Findings of the Case Study 135

Figure 8.3: Architect’s profile: years of experience and number of projects.

Figure 8.4: Architect’s profile: average and maximum size of the projects.

8.3.1 Background of Interviewees

The interviewee’s experience and background data is summarized in Fig. 8.3
and Fig. 8.4. The architecting experience varies from 6 to 30 years, on the
average about 15 years. The number of projects, in which they have been
involved as architects differs from 5 to 50, with the average of 22 projects. In
total, the architects have reported their experience on 134 projects. The size
of these projects varied from 1 to 600 manyears, averaging to 273 manyears.

The scope of the application and knowledge domains of the interviewees
was quite broad. In Table. 8.2, we present these domains according to non-
orthogonal criteria.

The above-mentioned data shows that our selection of the highly-experienced
candidates is fairly broad and allows gathering of a wide spectrum of data.

136 Chapter 8. Survey on Scenario-Based Performance Analysis

Table 8.2: Reported experience in application domains.

Criteria Application Domain
Real-time domains Soft-, firm- and hard-real-time systems.
Hardware platforms PC-based, embedded systems, systems-on-chip, MP-

SoC, distributed systems.
Application domains Medical, navigation, surveillance, measurement, lo-

gistics systems, robotics, mobile phones, wafer-
steppers, set-top-boxes, 3G networks, switching,
base stations, DTV and HDTV systems.

8.3.2 Performance Requirements Realization and Architecture
Evaluation

A. Clearness of performance requirements

Most of the architects reported insufficient accuracy and clarity in the per-
formance requirements specifications (see Table 8.3.2). The general opinion
was that the stakeholders/customers primarily focus on functional require-
ments and expect the performance will be delivered by a product by default.
In most cases, customers put attention to the performance requirements, once
the product starts experiencing problems at the testing phases. These facts im-
pose high tolerance to vague, unclear and imprecise performance requirements
from the customer side.

Table 8.3: Clearness of performance requirements.

Interviewee ID 1 2 3 4 5 6
Were the performance requirements

stated clearly in your projects?
Scale from 0 (not) to 5 (very

clear)
1 2-4 4 3 1-5 1

Another consideration, mentioned by the architects was that the perfor-
mance requirements are often specified in the problem-domain terms (the de-
coder shall provide high-quality image, the user should not notice skipped
frames, etc) but not in the technical quantitative measure (milliseconds, bits
per second, etc.). Therefore, the technical analysis of requirements and their
conversion to the values within the technical domain is always needed.

8.3. Main Findings of the Case Study 137

Citation: In order to be successful, an architect should understand
the application domain better than his customer/stakeholder

B. Challenges in Realizing Performance Requirements
The architects encounter the following generic list of challenges.

• Vagueness of requirements. Conversion from application domain-specific
requirements to the technical domain-specific requirements demands deep
understanding of the application domain.

• Hardware resources constraints. In most cases, the hardware resources
are predefined, and some real-time requirements are hard to realize for
the given hardware platform. Moreover, this reduces the freedom in
selecting the most suitable solutions.

• Tracing requirements through architecture modules. Such type of perfor-
mance requirements as latency is a property of execution trace (task)
in a system. The execution trace may pass through many architectural
modules and can make complex loops. For complex systems, the identi-
fication of the trace route and the modules involved is not trivial.

• Dependencies between real-time tasks. The real-time tasks may interleave
and block each other in complex patterns. Therefore, for realization of
the related real-time requirements, the global analysis of the execution
architecture is needed.

• Hidden influence from other entities. An architect should be able to
anticipate indirect influence on the performance properties from other
architectural entities, such as, hardware interrupts, cache misses, bus
arbiters, memory access and hardware mismatches. Besides this, a de-
ployed technology may bring some indirect influence on the system per-
formance (e.g. Java garbage collector).

The above-mentioned items show the diversity of the challenges the ar-
chitects face at the design phases. The following findings on the case study
describe the consequences of the challenges experienced by the architects.

C. Realized-against-required deviations of performance
The architects encountered that every project, in which performance re-

quirements were specified, experienced deviations in the measured performance
properties (see Table 8.4). In some cases, these deviations were quite substan-
tial (factor of 10) and caused a complete redesign of a system. Those deviations
resulted in failure of product deadlines and increase of the total development
cost.

The architect’s experience proved that the performance properties are dif-
ficult to address in an architecture in an accurate and predictable way. The

138 Chapter 8. Survey on Scenario-Based Performance Analysis

Table 8.4: Measured-from-required deviations of performance.

Interviewee
ID

1 2 3 4 5 6

How often did the real (measured) performance
deviate from the required (planned) performance?

In percentage 20-40 80-100 NA 20-40 40-60 60-80
What are the worst performance deviations

you have experienced?
In percentage >500 1000 400 25 1000 25

Facts: The following reasons have caused the worst deviations: (a) Float
operations has been used for integer-based processor in MR-Scanner,
causing latency to be 10 times longer than required. (b) A mismatch be-
tween bus arbiter, DMA (Direct Memory Access) and network topology
in HDTV (High Definition TV) system caused latency to be 4 times
longer than allowed. (c) Introduction of design-patterns for object-
oriented software caused substantial slow down (10 times) of navigation
system operations.

following topics encounter what types of performance properties are the most
difficult to deal with.

D. Types of performance properties most difficult to realize
In this part of the interview, we explored which types of performance re-

quirements cause major problems during architecture design and assessment.
In other words, what properties are the most difficult to realize in an architec-
ture and to assess (predict) at the architecture evaluation. Table. 8.5 presents
the architect’s experience and opinions on this issue.

The answers show commonalities in the sense that requirements related to
latency and throughput are the most challenging to realize. This conclusion
is exacerbated by the fact that in many hard real-time systems, both of the
requirement types are the most critical ones.

E. Approaches for realization of performance requirements
Once the architects determined the challenges in addressing and evaluating

the performance requirements in architectures, we have tried to elicit their ap-
proaches in facing these challenges in a reliable and predictable way. We have
gathered a wide range of answers that are reported in this subsection and struc-
tured by the following types of architectural phases: (a) requirements analysis,

8.3. Main Findings of the Case Study 139

Table 8.5: Most challenging performance properties to realize.

What type of performance properties
showed to be most difficult to address and why?

1 Throughput is most difficult to predict and realize, because it is system-
wide property. To predict throughput values, all execution processes, hardware
topology and synchronization issues should be jointly considered.

2 Latency, throughput, processor and memory usage. One of the main
reason for the difficulties is the unpredictable and uncontrollable behaviour of
conventional operating systems. For instance, the task scheduling-algorithms
of Linux and Windows feature a "fair-use" protocol. In this case, an OS decides
itself which concurrent task to execute.

3 Latency requirements become hard to realize and verify in case of heavy mem-
ory fragmentation, task interleaving/blocking and cache misses. Besides this,
latency depends on the total CPU load on the system, e.g. 20% increase in
CPU load may impose a 200% increase in critical task latency.

4 Latency is a property of an execution task. An execution task comprises
many functions located at different architectural layers (deep layer propaga-
tion). Moreover, a task interleaves with other concurrent tasks and may be
blocked by them. The analysis of task interleaving and blocking patterns as
well as tracing the task functions through layers requires detailed and complex
performance evaluation methods and tools.

(b) architecture design, and (c) architecture evaluation. The approaches are
depicted in Fig. 8.5.

Note that the approaches are orthogonal and can be combined, e.g. iter-
ative development and modeling often go along. The approaches are charac-
terized by the architectural phases they are applied to, and by the number of
references (weight) given by the interviewees (from 1 to 6).

• Iterative evaluation. Phases: All. Mentioned: 4 times. Initially, when
no architecture and hardware modules are available, the architects eval-
uate alternatives and performance at the coarse grain level. After de-
veloping hardware platform , the architects prototype the most critical
software entities and check for possible bottlenecks in the system. When
the SW/HW architectures are available, the architects assess the perfor-
mance at a fine grain level and optimize the global system architecture.
At the testing phase, the architects monitor the performance, validate it
against the requirements and optimize architectural elements in detail if
needed.

140 Chapter 8. Survey on Scenario-Based Performance Analysis

Figure 8.5: Approaches for performance requirements realization.

• Scenarios. Phases: All. Mentioned: 4 times. The architects extract the
common or important usage scenarios from the requirements and convert
them into system execution scenarios. Then, they evaluate the architec-
ture by analyzing the execution scenarios and by looking at the propa-
gation of the scenario traces through the architectural blocks. Finally,
architects validate the performance of the system against the require-
ments by simulating (monitoring) the execution of the scenarios.

• Modeling. Phases: All. Mentioned: 3 times. Modeling was considered a
good way to represent complex entities at the high level of abstraction
and suitable for removing irrelevant details. Models were used to specify
different levels of abstraction, thereby helping to understand complex
structures and behaviour in a nested manner. Models were used in two
way: (a) to simplify the representation of already built entities, and (b)
to specify (in a structured and clear way) how the entities should be
constructed.

• Cross-domain discussions. Phases: All. Mentioned: 3 times. The in-
terviewees stressed that development of current systems involves signifi-

8.3. Main Findings of the Case Study 141

cant cross-domain knowledge. For instance, medical systems incorporate
knowledge on imaging, electronics, physics and medicine. Therefore, an
architect is to be able to talk to and understand experts from differ-
ent domains. Also, high-quality cross-team communication was found
crucial, i.e. an architect should ask the right questions and give clear an-
swers to people from the requirements, implementation, test and business
departments.

• Analyze application-domain implications. Phase: Requirements Analysis.
Mentioned: 2 times. Architects encountered the importance of analyzing
application-domain implications on satisfying requirements at the early
project phases. Often the critical issues, known only to application-
domain experts, are hidden in the requirements.

• Analyze and negotiate cost-vs-importance tradeoffs. Phase: Requirements
Analysis. Mentioned: 2 times. In some cases, realization of certain re-
quirements lead to substantial increase of system complexity and devel-
opment cost. An architect should be able to identify such requirements,
evaluate their importance and report them to stakeholders.

• Analyze technology implications. Phase: Architecture Design. Men-
tioned: 2 times. For time-critical systems, the implications of deploying
any kind of technology on the system performance are often hidden in the
beginning of a project and sensitive at the end of a project. Therefore,
an architect should analyze possible implications already at the design
phase. One of the architects gave an example of such implication: a
Java image processing library, deployed for a medicare scanner, showed
insufficient performance at the latest project phases, which led to partial
software re-design.

• Avoid preemptive scheduling. Phase: Architecture Design. Mentioned: 2
times. Preemptive scheduling features more efficient processor usage, but
reduces task-latency predictability and increases number of the context
switches.

• Add margins for performance. Phase: Architecture Design. Mentioned:
1 time. Architecture over-dimensioning helps to reduce risks related to
performance failures, though this may increase system complexity and
cost.

• Assign budgets and avoid parallel processing. Phase: Architecture Design.
Mentioned: 2 times. Assigning processor or bus budgets for real-time
tasks removes the task interleaving and blocking problems.

142 Chapter 8. Survey on Scenario-Based Performance Analysis

• Put critical tasks at lower layers. Phase: Architecture Design. Men-
tioned: 1 time. For layered architectures, a task execution flow propa-
gates through many layers, which causes significant performance over-
head. Putting time-critical tasks only at lower layers (hardware drivers,
operating system and middleware) shortens the task execution path and
removes unpredictable fluctuations in performance.

• Operational modes. Phase: Architecture Evaluation. Mentioned: 2 times.
An operational mode describes a stable execution configurations of a
system. The architect also stresses the importance of considering the
transitions between the operational modes, because they often pose per-
formance problems, like high processor load and task-latency delays.

• Analytical and simulation-based evaluation. Phase: Architecture Evalu-
ation. Mentioned: 3 times. Among various evaluation techniques pro-
posed in literature, the architects favor analytical and simulation tech-
niques due to their simplicity and short learning curve.

• Apply worst- and average-case loads. Phase: Architecture Evaluation.
Mentioned: 2 times. This approach considers variations in environmen-
tal inputs to a system. Considering average loads from the user, envi-
ronment or other systems helps to understand if the system is over- or
under-dimensioned. Worst-case loading enables the detection of possible
performance bottlenecks.

Summarizing this subsection, architects face vague/hidden requirements,
unpredictable hardware and operating system behaviour. Besides this, they
have to consider new technologies of which the the influence on the require-
ments is unclear. The most challenging properties to address are task latencies
and throughput. The architects encounter various approaches and techniques
to deal with the above problems. The scenario-related approaches have been
mentioned by all six architects, even prior to the discussions on scenarios in
the interview flow.

8.3.3 Scenario Identification and Analysis

As we have mentioned in the previous subsection, all of the architects deploy
scenarios in their architectural approaches. This subsection explains in detail
how the architects identify and analyze scenarios.

Table. 8.6 shows how frequently the architects deploy scenario-based analy-
sis in practice.

Four out of six interviewees reported direct usage of scenarios in every
project. All the interviewees noted that they have never explored the com-
plete state space of a system (all execution configurations) in their experience.

8.3. Main Findings of the Case Study 143

Table 8.6: Frequency of using scenarios for architecture analysis.

In your architectural practice, how often do you use scenarios
for realization and evaluation of performance properties?

Interviewee 1 2 3 4 5 6
From Never

to Every time
Every
time

Every
time

Often Often Every
time

Every
time

A. Scenario identification
There are no commonly used semi-automated methods and tools for sce-

nario identification reported in the literature. Hence, architects are still using
their own approaches, experience and intuition to find the set of right scenar-
ios for system analysis. The interviewees encountered a number of approaches
deployed in their practice. Fig. 8.6 summarizes the approaches and groups
them into the following fours clusters: software issues, hardware issues, do-
main knowledge and past experience.

Figure 8.6: Approaches for identification of scenarios for further analysis.

Below, we present explanations given by architects for each of the scenario
identification approach.

• Product-line knowledge. Product-line architectures are characterized by
similarities in requirements and design. If a currently designed system is
a next entity in a product-line family, an architect can reuse the scenarios
from the previous projects.

144 Chapter 8. Survey on Scenario-Based Performance Analysis

• Cross-team discussions. Project teams have expertise in different prob-
lem and technology domains. Therefore, open talks with customers,
analysts, test-team and even with end-users help to identify scenarios
initially hidden from an architect’s attention. Such discussions help to
make the scenario set more representative for further analysis and reduce
the risk of unexpected problems.

• Requirements. One of the most straightforward and reliable ways to
identify scenarios is to look at performance requirements. Normally, a
performance requirement defines a stimulus to a system (e.g. a user
action) and a latency interval, in which the system should process the
request and respond to it. Such a requirement already represents a simple
scenario. Combining the performance requirement helps to generate more
complex but still relevant scenarios.

• System interactions. Scenarios can be obtained by analyzing the sys-
tem’s interaction with the outside world (users, environment and other
systems). Any stimulus from the outside world causes at least one exe-
cution trace in a system. One stimulus or a number of such stimuli (if
they happen in parallel) can define a scenario relevant for consideration.

• Important functionality. An architect selects important or frequently
used functions from the functional requirements and analyzes possible
execution scenarios that represent these functions. The scenarios can be
combined, if the functions they represent may happen in parallel.

• Critical hardware resources. Scarce hardware resources always capture
attention of system architects, since they often cause performance dete-
rioration. Analysis of occupation of such critical resources enables iden-
tification of software entities (objects, messages and tasks) that use the
resources. The scarce hardware resources often block the software enti-
ties execution. Therefore, the execution scenarios, in which these soft-
ware entities take part in, are always relevant scenarios for performance
analysis.

• Load peaks. Hardware resource overload situations (e.g. a PDA proces-
sor is occupied by 100%, while decoding an MPEG video I-frame) may
significantly reduce performance of other software entities that use this
hardware resource at the same time. Therefore, an architect should con-
sider scenarios that model these overload situations.

• Technology domain. In some cases, an adopted technology causes hidden
problems for the system performance. A common example is the Java
garbage collector. In order to reduce the risk of such problems at the
early development phases, an architect may try to encounter and analyze

8.3. Main Findings of the Case Study 145

those scenarios that extensively exploit that adopted technology. For
instance, for a client-server architecture deploying CORBA technology, it
is worthwhile to consider scenarios with a heavy load from client messages
to a server.

• Application domain. The interviewees pointed out that application-
domain analysis is an important factor for successful design of any kind
of system. With respect to performance-critical systems, the application-
domain analysis helps answering the following questions: (a) what can
go wrong in a system environment that may lead to system failures or
deterioration in the system service, (b) how does the environment trigger
activities in a system, and (c), what kind of response should the system
give back to the environment?

The architects described the above-mentioned approaches for identification
of general or common scenarios. In this chapter, we also focus on methods for
identification of critical scenarios.

B. Usage of critical scenarios
This subsection is about the architect’s use of critical scenarios in the

performance analysis. First, we discussed with the interviewees the following
two issues: (a) the average number of scenarios used for analysis in one project,
and (b) the proportion of critical scenarios in the total amount of considered
scenarios (see Table 8.7).

Table 8.7: Empirical data on frequency usage of critical scenarios.

ID 1 2 3 4 5 6
How many scenarios do you normally consider for analysis?

>10 2-5 2-5 5-10 1-10 >10
Do you consider all scenarios or do you select only critical
scenarios that may jeopardize performance requirements?
Only crit-
ical

Only crit-
ical

Only crit-
ical

Critical
and non-
critical

Critical
and
common

Only crit-
ical

The answers show that four out of six architects consider only a few scenar-
ios (from 1 to 10) for the analysis. The other two architects reported that they
consider as many scenarios as needed to cover the requirements. However, all
architects mentioned that they consider mostly critical scenarios for analysis.
During the interview they acknowledged the awareness that, analysis of a lim-
ited subset of scenarios does not guarantee completeness of the performance

146 Chapter 8. Survey on Scenario-Based Performance Analysis

assessment results. The architects pointed out that due to the time pressure
they always focus only on critical scenarios. The architects reported that the
best way to handle the project risks imposed by limiting to critical scenarios
only, is to document and monitor these risks during the following phases of the
project.

C. Approaches for selection of critical scenarios
The correct selection of critical scenarios from the set of all scenarios is vital

for obtaining accurate performance predictions. It also helps to reduce the risks
of unexpected failures to meet performance requirements at the later project
development phases. During the survey, we have collected the approaches for
critical scenario selection employed by the architects in their industrial practice.
Fig. 8.7 outlines these approaches.

Figure 8.7: Approaches for selection of critical scenarios.

The survey has revealed two complementary types of selection approaches:
top-down and bottom-up. A workflow of the top-down approaches starts from
the analysis of high-level issues (risk analysis, requirements, etc.) and proceeds
to lower levels of considerations (static architecture, system behaviour and in-
teractions). The bottom-up approaches begin with investigation of fine-grained
architectural issues (hardware interrupts) that might cause performance prob-
lems and proceed with tracing those issues to general system behaviour. The
following paragraph describes both types of approaches in more detail.

• Stakeholder opinions. Stakeholders are normally experts in their appli-
cation domain. They can identify risks and potential performance prob-
lems based on previous experience in the development of the same type

8.3. Main Findings of the Case Study 147

of systems. The task of an architect is to collect these problems from
the stakeholders, analyze and convert them into architectural terms, i.e.
execution scenarios. For example, a stakeholder of a DTV system may
share his concern on channel zapping functionality, which was perform-
ing too slow in his previous product. In this case, an architect identifies
the “zap a channel” scenario as a critical one for later analysis.

• Important functionality. Important or critical functionality can be ana-
lyzed based on prioritized functional requirements. High-priority require-
ments normally show which functions are most important for successful
system operation. An architect may describe these functions as execution
scenarios for further task latency analysis.

• Performance requirements. Most of the performance requirements are
structured in the following way: “upon a stimulus X, a system should
complete an action A in N time units”. This type of requirements directly
represent an execution scenario specifying the input and system activity
to be performed. Moreover, this scenario is critical because it should
be executed in a timely manner. Combination of a set of performance
requirements can also represent a critical scenario, if a system obtains a
set of stimuli and executes actions in parallel.

• Risk analysis. Another source for critical scenarios selection is a risk
analysis specification. Risks related to technical aspects can be modeled
as a scenario, in which a stimulus is extracted from the list of undesired
inputs to the systems.

• New technology. Performance aspects of a new technology should be
checked prior to deployment. All possible system configurations and
behaviour related to or involved in the technology, are good candidates
for thorough analysis against performance requirements.

• High-load situations. Scenarios, in which a system receives a worst-case
input from the environment to be processed, are relevant for performance
analysis due to the possible artifacts like cache misses, bus/processor
blocking, memory overload, etc. For the specification of such high-load
scenarios, it is important to accurately identify worst-case boundary val-
ues for input stream or stimulus parameters.

• Scarce resources. Scarce hardware and software resources may be blocked
or overloaded during a system execution. Blocked or overloaded resources
may delay a time-critical task execution in an unpredictable way. There-
fore, the architect needs to: (a) identify a subset of scarce resources, and
(b) determine the scenarios that use these resources for execution.

148 Chapter 8. Survey on Scenario-Based Performance Analysis

• Complex interactions of tasks. Parallel execution of tasks or task depen-
dencies impose high variations in the task completion times. Therefore,
our architects proposed selecting scenarios in which a lot of task commu-
nication and interleaving occur. These scenarios help to discover possible
performance bottlenecks in a system.

• High-frequency interrupts. This approach suggests the following actions:
(1) identify hardware drivers with high-frequency interrupts, (2) trace
tasks that are triggered by these interrupts and, (3) specify execution
scenarios in which these tasks are involved. These actions help to find
and analyse resource overload situations, because frequently interrupted
drivers may impose a high load on processing and communication re-
sources.

• Exceptional cases. Architects pointed out the importance of searching
for unspecified environmental inputs and internal configurations. An
architect should ask himself “What can go wrong in the system or in its
environment?”. Scenarios representing these exceptional situations, are
relevant for throughput, task latency and resource load analysis.

As the reader may have noticed, the set of approaches is quite diverse
and requires not only knowledge and experience from an architect, but also
communication and business analysis skills. Besides this, most approaches
assume availability of well-written documents on requirements, risk analysis,
deployed technology and software/hardware architectural blocks. In practice,
these documents are only partly available in the industry.

The next two parts in the survey, described in the following subsections,
revealed the challenges that the architects experienced during selection critical
scenarios.

D. Challenges in selection of critical scenarios
Fig. 8.8 depicts an overview of the challenges in selecting critical scenarios.
The interviewees admitted that the most challenging issue for scenario

selection is a combinatorial explosion of scenarios in complex systems. For
instance, the number of possible scenarios for a set-top-box system is in the
order of magnitude of 100,000. Extraction of scenarios relevant for performance
analysis is a non-trivial task.

Requirements which are changing over development phases and even after
the product release, are another obstacle for correct scenario selection. A
requirement can evolve over time and convert a scenario to a critical one.
An architect should be able to forecast possible changes in the requirements,
based on current trends, in order to select scenarios that would reflect also the
requirements evolution.

8.3. Main Findings of the Case Study 149

Figure 8.8: Challenges in identification and selection of critical scenarios.

As we mentioned above, application-domain knowledge is one of the sources
for scenario identification and selection. However, an architect is not always
an expert in a certain application domain. He can only collect information
on the relevant scenarios for a particular domain from the stakeholders or
business people. However, that imposes the following assumptions: (a) the
people providing this information are available, (b) the architect interpretation
of the information is correct.

Another challenge appears once a new or unknown technology is deployed
for a product. In this case, there is no human-based source of information
available for the architect. Relevant data can be obtained either remotely from
Internet, or from technology documentation. Unfortunately, these two sources
do not guarantee a complete overview on the implications of the technology
deployment onto a certain system.

Non-transparent architecture or design of individual modules has been men-
tioned also as an obstacle for correct selection of critical scenarios. Incomplete
documentation and non-structured static and dynamic architectures compli-
cate the following aspects: (a) understanding of scenario behaviour resulting
from a certain input and (b) tracing the behaviour through system modules.
In other words, it precludes specification of scenario structure and behaviour
and limits the comparison/selection possibilities.

Last but not least, an important challenge mentioned by architects is the
analysis of system-load profiles. These load profiles specify various inputs to
the system from its environment and hardware interrupts. These inputs are
normally characterized by input frequency distribution, size of transferred data
and the system entity receiving that input. However, for some systems that

150 Chapter 8. Survey on Scenario-Based Performance Analysis

have a heterogeneous or context-dependent environment, these load profiles
cannot be obtained in a straightforward manner. This restrains the correct
description of stimuli/triggers for a scenario.

E. Critical scenario types most difficult to identify
The architects have been asked for their opinion on the scenarios that are

most difficult to identify. The scenarios mentioned in the answers have been
categorized into six types. Table 8.8 summarizes the reported types of critical
scenarios that are difficult to identify and ranks them by the popularity in the
interviewee answers.

Table 8.8: Most problematic types of critical scenarios to identify.

What types of critical scenarios
are most difficult to identify?

Number of
References

Scenario Type

5 Related to hidden resource utilization
4 Caused by environment and end-user
4 Caused by platform events
2 Related to future changes in a system
1 "What can go wrong" scenarios
1 Context-dependent scenarios

Five out of six architects consider that the scenarios related to a hidden
resource utilization are most challenging for identification. A hidden usage of
resources is not specified in design documentation and non-transparent to an
architect. While the hidden utilization may substantially reduce the expected
performance, it is often discovered only at the later testing phases of a project,
when the real execution profiles can be obtained.

Scenarios caused by the environment and end-user were marked as hard
to identify due to lack of user studies, prototype tests in real environment.
Scenarios triggered by hardware platform events can be identified from hard-
ware/driver specification. However, a comprehensive specification is rarely
available.

Two out of four architects mentioned that scenarios related to future changes
are hard to determine. The main reason is a system evolution path which is
difficult to predict. The same prediction problem holds for scenarios of the
type “What can go wrong”.

Finally, one architect mentioned context-dependent scenarios. Current sys-

8.3. Main Findings of the Case Study 151

tems tend to become dependent on the context, in which they operate. Dy-
namic systems may operate in hundreds of different contexts. Besides this,
these contexts can be combined, so a system operates in a number of con-
texts simultaneously. In this case, identification of context combination, which
would impose a threat to system performance, is non-trivial task for an archi-
tect.

F. Missing critical scenarios and consequences

In order to analyze the consequences of the scenario identification chal-
lenges discussed above, we have asked the architects to reflect on how fre-
quently they failed to identify the complete set of critical scenarios in practice.
Table 8.9 shows the interviewee answers in the range from never to always.

Table 8.9: Frequency of critical scenario identification failure.

In your architectural practice, how often did you fail
to identify complete set of critical scenarios?

Interviewee
ID

1 2 3 4 5 6

From Never
to Always

Often Often Rarely Rarely Rarely Rarely

The interviews showed that an accurate identification of critical scenarios
is a problem. One third of the interviewees admitted that they regularly fail to
identify the complete set of critical scenarios, while the rest reported that this
happens rarely. Table 8.10 describes the impact of missing critical scenarios
onto product development time and market success.

The consequences resulting from missing the critical scenarios have a broad
character, starting from several hours of system operation-stop, proceeding to
missing of market shares, and ending with a project cancelation. The following
project cancelation example has been given by one of the architects. A perfor-
mance requirement for a database conversion in an expert system specified a
maximum duration of 8 hours. First tests showed that the designed software
and hardware architecture completes the conversion in 300 days. This scenario
was not selected as a critical one and no further analysis was performed. Later
analysis encountered that the problem was in the disk access time, so that the
project was finally canceled.

152 Chapter 8. Survey on Scenario-Based Performance Analysis

Table 8.10: Consequences of failing to identify a critical scenario.

What was the impact of omission of critical scenarios
onto product development time and market success?

Interviewee
ID

Impact Example

1 Project cancelation
2 Unsatisfied customers
3 Missing market share
4 NA
5 Project cancelation
6 Several hours of system shut down

8.4 Justification of Scenario-Based Approaches

This subsection provides a comparison between the following two orthogonal
modeling and analysis approaches: scenario-based and full search. The full-
search approaches require modeling and analysis of all possible system con-
figurations and behaviour traces, while the scenario-based approaches suggest
specification and assessment of only relevant (important) execution and con-
figuration scenarios. We have asked the architects to evaluate both approaches
against various characteristics, such as modeling and analysis efforts, analysis
completeness and complexity, scalability and risk level. Table 8.11 presents
the comparison results. A sensitivity graph of the major three characteristics
(efforts, completeness and risk level) is also depicted in Fig. 8.9. Based on
the average of the curves, provided by the architects, each of the curves was
normalized to a unity interval, so that they can be jointly visualized.

The interviewees favored scenario-based approaches in terms of relatively
low modeling and analysis efforts. They save time and resources, which in an
industrial environment is a substantial advantage. Some architects pointed out
that deployment of full-search methods is not feasible for complex systems, due
to time pressure and unavailability of human resources. Moreover, complete
specification and analysis requires addressing many details that are irrelevant
for architectural issues. One of the architects even expressed that it would be
a complete waste of time and resources to analyze all possible behaviours and
configurations of a system.

However, full-search approaches provide analysis completeness and higher
accuracy of the predicted performance values. This results from the involved
exhaustive modeling. Moreover, the exhaustive search reduces risks of unex-

8.4. Justification of Scenario-Based Approaches 153

Table 8.11: Comparison of the scenario-based and full-search approaches.

Property Scenario-based ap-
proach

Full-search ap-
proach

Modeling efforts Medium High
Analysis efforts Low High
Analysis completeness and pre-
diction accuracy

Medium High

Risk level High Low
Usage complexity Low High
Value for hard real-time systems Medium High
Value for soft real-time systems High Low
Value for large systems High Low
Scalability for evolving architec-
tures

High Medium

Figure 8.9: Characteristics of the scenario-based and full search approaches.

pected performance problems at the later development phases or even during
the product deployment. Scenario-based analysis does not provide complete-
ness, and therefore, requires accurate risk management policies.

The next reviewed property was usage complexity of the two method types.
The survey showed that full-search approaches (especially, those involving for-
mal methods) have a high deployment complexity and a flat learning curve. In
order to achieve (or even prove) completeness of obtained results, a full-search
analyst should be able to accurately operate with corresponding mathematical
instrumentation (lemmas, theorems, proofs, etc.).

154 Chapter 8. Survey on Scenario-Based Performance Analysis

Another interesting comparison viewpoint of the methods is the efforts vs.
accuracy trade-off imposed by both method types. Fig. 8.10 depicts the com-
parison analysis of the scenario-based and full-search approaches in terms of
their efforts vs. accuracy trade-off. Based on the average of the curves, pro-
vided by the architects, each of the curves was normalized to a unity interval
(this also holds for the subsequent figures). The interpretation of the obtained
curves is as follows. Even when aiming at a low accuracy of performance pre-
diction (from 0 to 40%), the full-search methods require a substantial amount
of modeling and analysis effort. When striving for higher accuracy (up to
the level of 100%), the amount of required effort grows relatively slowly. In
contrast, the scenario-based methods require low effort for obtaining perfor-
mance predictions of low and medium accuracy. However, once the required
prediction accuracy reaches the level of 90-100%, the number of scenarios to
analyze substantially increases, and therefore, the effort grows exponentially.
As a result, for analysis of safety-critical systems requiring very high prediction
accuracy, it is more valuable to deploy one of the full-search approaches.

Figure 8.10: Effort vs. accuracy trade-off for full-search and scenario-based
methods.

An interpretation of this efforts vs. accuracy trade-off is given in Fig. 8.11,
which represents the value of scenario-based approaches applied for analysis of
soft and hard real-time systems. The horizontal axis of the chart depicts the
percentage of considered scenarios from all possible scenarios. The vertical axis
shows the value of applying a scenario-based approach. The value is measured
in abstract units starting from a null value. The chart shows that the value
of applying scenario-based approaches for soft real-time systems grows fastly
already from a low percentage of scenarios analyzed. The value curve saturates

8.4. Justification of Scenario-Based Approaches 155

at the level of 30% from all possible scenarios. Further increase in the amount
of the considered scenarios adds little value for assessment, because soft real-
time systems do not require completeness and high accuracy in predictions.

Figure 8.11: Applicability of scenario-based approaches for soft and hard real-
time systems.

For hard-real time systems, the trend is opposite. Due to the fact that such
systems require accurate and complete predictions, the low amount of analyzed
scenarios brings no value for performance analysis. In order to reach analysis
completeness, the amount of considered scenarios should be close to the 100%
bound. The Fig. 8.11 implies a conclusion that scenario-based approaches are
valuable for soft real-time systems and hardly applicable to hard real-time and
safety-critical systems.

The next comparison criterion for the two types of methods is the in-
volved modeling and analysis effort related to the scale and dimensionality
of the problem. The problem scale relates to the complexity of a system to
be designed (number of extra-functional requirements, software and hardware
building blocks, computational intensity). The data obtained from the archi-
tects is visualized in Fig. 8.12. The chart shows dependencies between the
problem size and the amount of effort needed for problem modeling and analy-
sis in full-search and scenario-based approaches. For small-sized problems,
both types of approaches require low efforts. However, once the problem size
increases, scenario-based approaches feature proportional effort increase, while
full-search approaches feature exponential increase in modeling and analysis
efforts. The chart shows that the full- search paradigm is hardly applicable to
the analysis of very large and complex industrial systems.

156 Chapter 8. Survey on Scenario-Based Performance Analysis

Figure 8.12: Dependency between amount of efforts and problem size for
scenario-based and full-search approaches.

The interviewees acknowledged that in practice, for complex systems, the
scenario-based approaches are used for global analysis, while the full-search
approaches are applied to safety-critical submodules.

Let us now discuss the scalability for evolving architectures aspect from
Table 8.11. Scenario-based approaches have higher scalability, due to their
modeling compactness and focus on specific operational modes. For instance,
a change in a system configuration would require adjustment and re-assessment
of related scenarios only. For full-search techniques, it is necessary to change
and solve the complete formal system model.

The architects also mentioned the side benefits of using scenarios for other
phases of a project. Scenario-based methods help with: (a) stakeholders to
express their needs, (b) requirements experts to elicitate and specify require-
ments, (c) architects to evaluate architectures and, (d) testers to identify proper
test cases. It is important to mention that for these project phases the same
set of scenarios can be used.

Summarizing this subsection, we state that, although scenario-based ap-
proaches are widely used in industrial practice, they also impose a number of
trade-offs for an architect. Usage of scenarios does not guarantee completeness
of analysis and, therefore, introduces technical risks of failing performance re-
quirements. For this reason, scenarios are hardly applicable to hard real-time
and safety-critical systems. Another drawback resulting from using scenarios
is the challenge in identification and proper selection of critical scenarios for
analysis. Despite of the above-mentioned disadvantages, scenario-based meth-
ods feature the following important benefits: (a) low effort for modeling and

8.5. Conclusions on the Survey 157

analysis, (b) relatively low usage complexity, (c) high applicability for large
and complex systems, and (d) high scalability for evolving architectures.

8.5 Conclusions on the Survey

This chapter has presented a survey that we have performed among a group of
experienced architects from different application domains in the industry. The
objective of the survey was to obtain empirical data and practical knowledge
on performance assessment and architecture evaluation using scenarios. The
survey consisted of two parts: written questionaire and face-to-face interviews.

The survey has revealed that scenarios are widely used in industry for as-
sessment of performance-critical systems. All six interviewed architects men-
tioned that they use scenarios in practice. Four out of six architects reported
that they deploy scenario-based approaches only for architecture performance
assessment. However, the interviews also showed that scenarios are not a “silver
bullet” solution in architecture assessment, because they have clear advantages
and drawbacks. The opposite paradigm to the scenario-based analysis is a full-
search analysis of system states and behaviour, which is often implemented by
formal methods. A comparison between these two orthogonal paradigms en-
ables drawing of a number of conclusions.

The major benefits of the scenario-based approaches are the following:

• reduction of time, cost and effort needed for performance assessment,
• focus on relevant performance issues only,
• human-readable specification of system interactions (inputs and outputs)

with the environment, as well as its internal behaviour.

The main drawbacks of using scenarios include the following:

• missing a scenario representing performance-critical interaction or behav-
iour trace of a system may lead to performance failures at the product
deployment phase,

• identification of scenarios requires substantial experience from an archi-
tect in the application and technology domains.

The comparison of the scenario-based and full-search analysis paradigms
introduces clear cost-vs-completeness trade-off. All the interviewed architects
reported that, in the industrial environment, due to the time-to-market pres-
sure, the trade-off is solved in favor of saving costs and efforts, i.e. for scenario-
based analysis. However, for safety-critical system domains, such as defense,
space, automotive and medical systems, this trade-off should be solved in favor
of completeness, i.e full-search analysis.

The interviews and literature search also uncovered that there are no well-
defined scenario-based methods deployed in the industry. The architects apply

158 Chapter 8. Survey on Scenario-Based Performance Analysis

scenarios using their own knowledge and past experience. The chapter de-
scribes a number of hands-on approaches for identification of scenarios and
later selection of critical scenarios for further analysis. Moreover, the chapter
presents common challenges that the architects experienced in using scenarios,
and the consequences when these challenges are not addressed in a correct and
accurate way.

The last section in this chapter is dedicated to justification of scenario-
based analysis in an industrial environment and reports on various trade-offs
between the two orthogonal paradigms: scenario-based and full-search ap-
proaches. The survey shows that scenario-based approaches do not guarantee
completeness of analysis and may impose technical risks of failing performance
requirements. Moreover, an architect needs substantial knowledge and experi-
ence in order to identify and select the correct scenarios for analysis. Never-
theless, scenario-based methods are a proper (and, sometimes, the only single)
choice for analysis of complex systems, due to their low modeling and analysis
complexity, relatively low usage complexity, and high scalability for evolving
architectures.

Chapter9
Case Studies

9.1 Introduction

The first objective of this chapter is to describe the validation of the DeepCom-
pass framework. The validation involves the design and development of the
three real-time applications: MPEG-4 Decoder, Car Radio Navigation (CRN)
System and JPEG Application. Apart from the validation of the performance
prediction techniques, we have also applied the architecture optimization to
the CRN and JPEG systems. The goal of the optimization of Chapter 6 was
to identify optimal solutions from a set of generated architectural alternatives
and to find out the guidelines for further improvements of these alternatives.

The second objective of this chapter is to help the reader in better under-
standing of the modeling details and working principles of the scenario-based
performance prediction method. Besides this, the reader can trace our way of
reasoning applied in practice through all phases of the DeepCompass frame-
work.

It is important to mention that these case studies have been carried out
during the development of the framework. The hands-on experience, obtained
from these case studies, has helped the author to correct and improve the
framework both from the process view and from the technical view.

The chapter is structured into the following sections. In Section 9.2, we
describe the MPEG-4 Decoder case study, which aims at a portable PDA with
video object-oriented processing. Section 9.3 discusses the case study on the
CRN system, which serves as a benchmark for performance analysis methods.

159

160 Chapter 9. Case Studies

Section 9.4 presents the results of our case study on the JPEG application,
employing active components. Section 9.5 concludes the chapter and indicates
results on the effort spent for each of the case studies.

9.2 MPEG-4 Decoder Application

After the first iteration of the development of the DeepCompass framework,
we have validated it with first case study on a state-of-the-art MPEG-4 cod-
ing application. We have used the full specification of the standard, featuring
arbitrary-shaped video objects. Applying the scenario-based approach which
is a cornerstone of the DeepCompass framework, we have predicted the perfor-
mance and real-time properties of the designed decoder. After the integration
phase, we have deployed the decoder on the Linux/Intel platform and have
measured actual performance data. The accuracy of predictions is obtained by
comparison of the predicted results with the real execution data.

9.2.1 MPEG-4 Decoder Functionality

Let us now provide some details of advanced video object-oriented processing.
Fig. 9.1 depicts the computation graph for arbitrary-shaped video object de-
coding as used in MPEG-4 [83]. Similar to MPEG-2, objects are divided into
macroblocks (MB). The diagram shows special processing stages for decoding
the shape and motion of the video objects, in addition to the usual texture
decoding. Each decoding job iteration starts with macroblock type decod-
ing (MBtype Dec). The ShapeMC stage computes the motion compensation
for the Shape part and provides referenced MBs for the Context Arithmetic
Decoding (CAD) stage. The CAD provides an MPEG-compliant shape repre-
sentation of the macroblock. The shape for the macroblock is represented by
a 16×16 binary sub-image, which is sent to the outputs of the Shape job. The
Coded Block Pattern (CBP) extracts information about parts of the texture
that need to be updated.

Texture decoding involves five steps: Motion vector Decoding (MvD),
IDCT Coefficient Decoding (Coeff Dec), Texture Motion Compensation (Tex-
tureMC), Inverse Quantization (IQ) and Inverse DCT (IDCT). The MBtype
Dec, CAD, CBP, MvD, and Coeff Dec stages are executed sequentially, be-
cause each stage depends on another stage, to specify the next position in the
input bit stream. Therefore, we introduce a loop surrounding these stages,
indicating the order between them. In [83] we discuss the decoder structure in
detail.

Having defined the MPEG-4 logical processing blocks and their communi-
cation, we follow the proposed DeepCompass framework to build the coding
application with predictable performance.

9.2. MPEG-4 Decoder Application 161

Figure 9.1: Computation graph of arbitrary-shaped MPEG-4 video object de-
coder. The nature of the arrows indicates their purpose.

9.2.2 Component specification

In this section, we distinguish the individual components and specify them
independently, including their interfaces. To satisfy the functional require-
ments of the application, we have developed four ROBOCOP CBA compo-
nents: Reader, Buffer, Decoder and Renderer (see Fig. 9.2). For simplicity of
explanation, each component contains one service with the same name. The
Reader service has an IRead provided interface (implementing readFrame()
and startReadingThread() operations) and an IBufferAccess required inter-
face. The Buffer service has only an IBufferAccess provided interface, imple-
menting buffering operations popElement() and pushElement(). The Decoder
service provides an IDecode interface with operations decodeFrame() and
startDecodingThread(). In addition, the Decoder service requires two buffers
for operation via its IBufferAccess interface. Finally, the Renderer service
provides an IWrite interface with writeFrame(), startWritingThread() op-
erations and requires IBufferAccess interface.

Figure 9.2: Components developed for the MPEG-4 decoder application.

Each component is accompanied with its corresponding resource and be-
haviour models (see a simplified version in Fig. 9.3). The resource model
specifies resource requirements per individual service operation, while the be-

162 Chapter 9. Case Studies

Figure 9.3: Behaviour and resource models of the developed components.

haviour model also describes the underlying calls to other operations per service
operation as well as thread triggers (if existing) implemented by this opera-
tion. The resource-usage data per operation has been extracted by testing
and profiling of each individual service. The operation behaviour data has
been generated from the service source code. Reading the Decoder model
as an example, we can see that the operation IDecode.decodeFrame() first
calls IBufferAccess.popElement() operation (takes encoded frame from the
buffer), then decodes the frame in the core of the decodeFrame() and fi-
nally calls IBufferAccess.pushElement() to store the decoded frame to a
buffer. All calls are synchronous. The maximum CPU claim of the operation
decodeFrame() itself equals 5.69 ms. Note that the CPU times (indicated as
‘claims’) of called pushElement() and popElement() operations are specified
in the Buffer model, being 9.25 ms and 11.51 ms, respectively1. Another ex-
ample is the startDecodingFrame() operation. It implements a timer which
periodically (40 ms) triggers the operation core execution. This means that
once the operation is called, the firing timer is created and the operation core
will be executed periodically.

1The relatively high processing claim of the buffering operations is explained by the
prototyping implementation, where the storage and retrieval functions are pixel-based.

9.2. MPEG-4 Decoder Application 163

9.2.3 Component Assembly and Scenario Identification

For the scenario identification, the services are graphically composed by means
of the CARAT toolkit into a component-based MPEG-4 application. The
composition process consists of two activities: (a) instantiation of services and
(b) binding the instances via their interfaces (see Fig. 9.4). As indicated by
the figure, the Reader instance is bound to Buffer1 to store the encoded video
frames. The Decoder instance is bound to Buffer1 to read these frames, and to
Buffer2 to store the decoded pixels. The Renderer instance is bound to Buffer2
to read the decoded pixels and render them on the display.

After composition, a critical scenario is selected. We predefine a normal
execution mode with a resolution of 340×280 pixels and a frame rate of 10
frames/s as a critical scenario. Furthermore, a scenario model is specified for
the chosen execution configuration (see Fig. 9.5). It consists of an assembly
structure and a number of control inputs (stimuli). Those inputs (event, peri-
odic timer, interrupt, etc.) lead to the frame-periodic execution of one of the
component operations. In our case, we have designed three application-level
periodic timers that call Reader.readFrame(), Decoder.decodeFrame() and
Renderer.writeFrame() operations with a periodicity of 100 ms, thereby es-
tablishing the pipes-and-filters execution architecture. Note that we specify a
deadline for each task instance triggered by a stimulus (also 100 ms). These
are the real-time requirements for the system that we are going to validate in
the later simulation and analysis phases.

Figure 9.4: Component assembly of the MPEG-4 decoder.

9.2.4 Model Synthesis and Task Generation

The CARAT preprocessor synthesizes all corresponding component resource
and behaviour models together with the scenario model in the executable sys-
tem model. The latter model details the set of tasks running in the scenario.
A task is defined by the following parameters: time period (or minimal inter-
arrival time, if aperiodic), deadline, offset, precedence constraints with other

164 Chapter 9. Case Studies

Figure 9.5: Specification of the scenario model. The scenario plays MPEG-
4 video with a rate of 10 frames/s.

tasks, and its sequence of operation calls through components made by each
task instance. Except for the last parameter, all parameters are inherited
from the stimulus parameters in the scenario model. The task call sequences
are reconstructed from the individual call sequences of constituent operations
specified in the behaviour models. The processor load of a constituent oper-
ation is known from the corresponding resource model, so that the CARAT
tool can calculate the total execution time of a task instance. The CARAT
visualizer draws the generated tasks (see Fig. 9.6) to help in understanding
and analysis of the task behaviour in the scenario.

For instance, the decoding task (see Fig. 9.6(c)), triggered by Stimulus2,
contains three operation calls of the Decoder, Buffer1 and Buffer2 service in-
stances. The CPU utilization times of each called operation are known from
the corresponding resource model (see Fig. 9.3). The accumulated total exe-
cution time of this task involving the three called operations is 26.25 ms. The
period and deadline of the task (100 ms) are derived from the parameters of
Stimulus2 specified in the scenario model (see Fig. 9.5).

9.2. MPEG-4 Decoder Application 165

Figure 9.6: Tasks generated for the scenario: (a) reading task triggered by
Stimulus1, (b) decoding task triggered by Stimulus2, (c) render-
ing task triggered by Stimulus3.

9.2.5 Scenario Simulation

The execution of the generated tasks is simulated with a rate-monotonic vir-
tual scheduler provided by the CARAT tool. The resulting execution timeline
is depicted in Fig. 9.7. The timeline indicates all running tasks of the decoder,
their predicted start and completion times, as well as deadlines. The gray boxes
in the figure represent the occupation of the CPU caused by their correspond-
ing tasks. The black vertical line in a gray box means a transition from one
operation executed to another within the task. The simulation time was set
to 1,500 seconds. The figure depicts only the first 400 ms of the simulation
execution. From the simulation results, we conclude that the deadlines for all
three tasks are met along the whole simulation time (also for non-plotted in-
tervals). The general performance property (processor utilization) was derived
from the timeline data. The total CPU utilization is predicted to 49.4%. In
the next section, we discuss and compare the predicted results with the real
execution data in more detail.

166 Chapter 9. Case Studies

Figure 9.7: Task execution timeline for the selected scenario, extracted from
the CARAT Visualizer tool.

9.2.6 Experiments and Results on the MPEG-4 Case

After prediction at the design phase, we integrate the software components
into an actual MPEG-4 decoder application and execute this on a Linux/32
platform. We aim at obtaining two types of data: (a) timeline data (which
task is executed at what moment) and (b) processor utilization data.

First, we compare the acquired (by the Linux Trace Toolkit) timeline data
with the predicted execution timeline. The analysis shows a slight difference
in the predicted-vs.-real execution moments of the tasks. This difference is
explained by numerous OS kernel activities (pagefaults, timestamps, i/o calls)
interrupting the decoder execution. Thus, the approach does not allow accurate
prediction of the starting/completion times of individual tasks. However, the
predicted patterns of the task execution coincide well with the real execution
patterns. Besides this, the real-time requirements of the tasks (100 ms) are
satisfied as predicted by the method. However, this prediction accuracy is
obtained under favorable conditions (CPU slack of 50% available). In case
of higher decoder CPU utilization, we expect that the real-time requirements
would be jeopardized by the kernel activities. It is clear that for those high-
load condition scenarios, the OS kernel activities should be also modeled and
incorporated into the simulation.

Second, we analyze the accuracy of the predicted performance properties
(see Table 9.1). The prediction accuracy error on the average processor uti-
lization appears to be about 10%, and proves to be reasonably stable. The
accuracy error on the time-detailed processor utilization (granularity = 1 s)
varies within 30%. The reason for the strongly varying processor usage is the
variable number of macroblocks for decoding of arbitrary-sized video objects
(as we mentioned above, the CPU claims of each operation are specified for
a worst-case scenario). This observation endorses us to enhance the scenario-
based method later with parameter-dependent modeling.

Finally, we have discovered an interesting phenomenon in the decoder tim-

9.2. MPEG-4 Decoder Application 167

Table 9.1: The predicted vs. real execution data comparison of the MPEG-4
decoding application.

Type of measurements Predicted Real data Prediction
exec. data tolerance

Average CPU utilization 49.4% 45.1% 8.7%
Reading Task av. utilization 9.5% 8.7% 8.4%
Decoding Task av. utilization 26.4% 23.6% 10.6%
Rendering Task av. utilization 13.5% 12.8% 5.2%
Time-detailed CPU util. (max) 49.4% 49.1% 0.6%

ing behaviour under memory-overload conditions. In the Linux OS, a concept
of virtual memory is used for dealing with memory overload. This virtual mem-
ory is implemented by page swapping, i.e. releasing memory slots by storing
memory data on a disk. Returning this data to the memory upon request takes
a relatively long time. In the MPEG-4 decoder, the swapping causes serious
latency in the processing (1-2 video frame periods), because the data cannot
be read instantaneously. The resulting behaviour is that latency requirements
are not met, while the CPU usage is very low. The conclusion is that in the
ideal case, the OS system activities need to be analyzed jointly to identify the
aspects that hamper accurate predictable system operation. However, mod-
eling the activities caused by a non-real-time operating system is hard and
sometimes even impossible due to unpredictability of the OS behaviour. If a
real-time OS is used, modeling of the OS behaviour can be performed in the
scenario model. The addition of triggers will emulate firing of OS events, while
the addition of a service representing an OS activity, will emulate the load of
the OS onto the hardware resources.

9.2.7 Conclusion on the MPEG-4 Case

We have exploited a scenario simulation approach that enables prediction of
real-time properties of an advanced software-intensive MPEG-4 coding system.
The average real-time behaviour of the MPEG-4 decoder can be predicted with
high accuracy (within 90%). The prediction accuracy error on the time-detailed
processor utilization varies within 30%. As an extra benefit, the timing results
give detailed performance information at the design phase. For obtaining the
time-detailed accuracy, we have found that integration of a timing model for
system activities into our modeling technique is indispensable, because our
experiments reveal a large variation of starting and completion times.

The knowledge about the generic computational costs resulting from our

168 Chapter 9. Case Studies

approach, provides important guidelines for efficient software/hardware co-
design of multimedia coding systems. The case study shows that the proces-
sor, memory and bus usage need to be analyzed jointly, instead of processor
analysis only. A second important result is that input parameter dependencies
should be incorporated in the method. Third, the system-level activities can-
not be neglected during the modeling phase. These three observations have
been taken into account in the next iteration on the DeepCompass framework
development. This new version of the framework is validated in the following
case study on Car Radio Navigation system.

9.3 Car Radio Navigation (CRN) System

In the the second framework iteration, we have extended the DeepCompass
framework with the following aspects.

• Facilities are added for modeling and analysis of systems mapped on
heterogeneous hardware platforms with multiple processor and network
nodes.

• Functionality for analysis of a robustness quality attribute. This enriched
our set of quality attributes for trade-off analysis and multi-objective
optimization.

• Feature for comparing several architectural alternatives by the Pareto-
frontiers technique.

The aforementioned framework extensions for resolving performance design
trade-offs have been validated by a subsequent case study on a Car Radio Nav-
igation (CRN) system. As a basis for the study, we have taken the benchmark
CRN application [101] used also in [102, 47].

We have identified the following goals and constraints for the study. The
CRN system has to be constructed according to the component-based paradigm
on a cost-limited (at the start not yet defined) hardware platform. The major
challenge is to find at an early design stage an optimal system architecture in
terms of the vital QAs like latency, robustness and cost. Technically speak-
ing, the objective is as follows: given a set of functional and extra-functional
requirements as well as a set of software and hardware components, our aim
is to determine a set of architecture solutions that are optimal with respect to
the above-mentioned quality attributes.

Requirements. We divide the requirements into two categories: func-
tional (Fn) and extra-functional (RTn). The main requirements are summa-
rized below.

9.3. Car Radio Navigation (CRN) System 169

• F1: The system shall be able to gradually (scale = 32 grades) change
the sound volume.

• RT1: The response time of the operation F1 is less than 200 ms (per
grade).

• F2: The system shall be able to find and retrieve an address specified by
the user.

• RT2: The response time of the operation F2 is less than 200 ms.
• F3: The system should be able to receive and handle Traffic-Message-

Channel (TMC) messages.
• RT3: The response time of the operation F3 for one message is less than

350 ms.

Functional decomposition. Requirements analysis lead us to a concep-
tual software view, as depicted in Fig. 9.8.

Figure 9.8: Overview of the CRN system functionality.

The CRN benchmarking application [101] contains three major functional
blocks.

• The Man-Machine Interface (MMI), that takes care of all interactions
with the end-user, such as handling key inputs and graphical display
output.

• The Navigation functionality (NAV) is responsible for destination entry,
route planning and turn-by-turn route guidance giving the driver visual
advices. The navigation functionality relies on the availability of a map
database and positioning information.

• The Radio functionality (RAD) is responsible for tuner and volume con-
trol as well as handling of TMC information services.

170 Chapter 9. Case Studies

In the next section, we illustrate how the DeepCompass framework enables
architecture comparison and resolves design trade-offs with respect to multiple
performance attributes and cost.

9.3.1 Quest for an Optimal CRN Architecture

For this case study, we implement three ROBOCOP services: RAD, MMI
and NAV, which correspond to the above-mentioned CRN functional blocks.
These three services and their provides/requires interfaces and operations are
depicted in Fig. 9.9(a).

This paragraph explains the interfaces in more detail. The MMI service
provides an IGUIControl interface and requires to be bound to IParameters
and IDatabase interfaces. The IGUIControl interface provides access to three
implemented operations: setVolume() (handles the volume rotary button re-
quest from the user), setAddress() (handles the address keyboard request
from the user) and updateScreen() (updates the GUI display). The NAV
service provides IDatabase, ITMC interfaces and requires operations from the
IGUIControl interface. The IDatabase interface gives access to the address-
Lookup() operation, which queries the address in the database and finds a
path to this address. The ITMC interface provides access to the decodeTMC()
operation. The RAD service provides IParameters, IReceiver interfaces and
requires an ITMC interface. The two operations implemented by this component
are adjustVolume() and receiveTMC().

Each service is accompanied by resource, behaviour (see Fig. 9.9(b), and
cost models. The operations’ resource usage (CPU claim) of a RISC processor
is obtained from the CRN benchmark case study [101]. The operation behav-
iour data is generated from the component source code. For example, the RAD
behaviour model describes that the operation adjustVolume() synchronously
calls once the IGUIControl.updateScreen() operation. This model also shows
the bus usage of the adjustVolume() operation: 4 Bytes. That means the op-
eration sends 4 Bytes of data outside (as an argument of updateScreen()).

9.3.2 Defining Architecture Alternatives

We compose a component assembly (see Fig. 9.10(a)) from the available ser-
vices. We are able to design only one software architecture alternative due to
the constraints from the CRN benchmark case study. The three services are
instantiated and bound together via pairs of their provided/required interfaces.
This assembly satisfies the three defined functional requirements: F1, F2 and
F3.

The next phase is to define a set of hardware architectures and map the
software components onto hardware. We reuse five feasible alternative hard-
ware architectures with different mapping schemes, as proposed in [101] (see

9.3. Car Radio Navigation (CRN) System 171

Figure 9.9: (a) Services used for the case study; (b) behaviour and resource
models of the selected services.

Fig. 9.10(b)). For instance in Architecture A, there are three processing nodes
connected with a single bus of 72 kb/s bandwidth. The MMI_Inst service
instance is executed (mapped) on a 22-MIPS processor, the NAV_Inst ser-
vice instance is mapped on a 113-MIPS processor, and RAD_Inst service
instance executes on an 11-MIPS processor. The capacity of the processing
nodes and communication infrastructure is taken from the datasheets of sev-
eral commercially available automotive CPUs. The performance analysis and
multi-objective optimization is performed for these five solutions.

9.3.3 Scenarios and Task Generation

From the CRN benchmarking case study, we select three distinctive execution
scenarios to assess the architecture against the six defined requirements. These
scenarios should impose the highest possible load on the hardware resources

172 Chapter 9. Case Studies

Figure 9.10: (a) Software component assembly of the CRN system; (b) five
alternative architectures for exploration.

for accurate evaluation of the real-time requirements RT1, RT2 and RT3.
“Change Volume” scenario. The user turns the rotary button and

expects instantaneous audible and visual feedback from the system. The max-
imum rotation speed of the button is 1 second from the lowest to the highest
position. For emulating this user activity, we introduce a VolumeStimulus task
trigger, which initiates execution of the IGUIControl.setVolume() operation.
The trigger parameters are defined in the following way: the event period is
set to 1/32 sec, as the volume button scale contains 32 grades. The task dead-
line is set to 200 ms, according to R1. The trigger and component assembly
resemble a scenario model.

For this scenario, the CARAT tool generates (from the behaviour models
of participating services) the message sequence chart (MSC) of operation calls

9.3. Car Radio Navigation (CRN) System 173

Figure 9.11: Model and message sequence chart for scenarios: (a) Change
Volume; (b) Address Lookup, and (c) TMC Message Handling.

involved in the task execution. The scenario model and obtained MSC are
shown in Fig. 9.11(a). The task is executed periodically (31 ms) and passes
through MMI_Inst and RAD_Inst.

“Address Lookup” scenario. A destination entry is supported by a
smart typewriter style interface. The display shows the alphabet and the user
selects the first letter of a street. By turning the letter-selection knob, the user
can move from letter to letter; by pressing the knob, the user selects the cur-
rently highlighted letter. The map database is searched for each letter that is
selected and so on. We assume that the worst-case rate of the letter selection is
1 time per second. This user activity is emulated with a LookupStimulus trig-
ger, which initiates execution of the IGUIControl.setAddress() operation.

174 Chapter 9. Case Studies

The trigger period is set to 1000 ms. The deadline for the address lookup task
is 200 ms, according to RT2.

The CARAT task-generation procedure outputs the task MSC for this
scenario. The obtained scenario model and MSC are shown in Fig. 9.11(b).
The task is executed periodically (1000 ms) and passes the MMI_Inst and
NAV_Inst service instances.

“TMC Message Handling” scenario. RDS TMC is digital traffic infor-
mation that enables automatic replanning of the route in case of a traffic jam.
Traffic messages are received by the RAD component (in the worst case 1 time
per 3 seconds). We introduce a TMCStimulus trigger emulating these TMC
messages. The trigger initiates execution of the IReceiver.receiveTMC() op-
eration. The period is set to 3000 ms. The deadline for the TMC handling
task is set to 350 ms, according to RT3.

The CARAT task-generation procedure results in the task MSC for this
scenario. The obtained scenario model and task are represented in Fig. 9.11(c).
The task is executed periodically (3000 ms) and passes through three service
instances: RAD_Inst, MMI_Inst and NAV_Inst. The fully decoded messages
are forwarded to the user.

9.3.4 Simulation and QA predictions

The scenarios sketched above have an interesting property: they can occur in
parallel. TMC messages must be processed while the user changes the volume
or enters a destination address at the same time. Therefore, we combine these
three scenarios into two, in order to obtain a worst-case load on the system
resources during simulation. We define ScenarioA as a combination of the
SetVolume and TMCHandling scenarios, and ScenarioB as a combination of
the AddressLookup and TMCHandling scenarios. From the processing point
of view, both new scenarios execute two tasks in parallel.

Following the DeepCompass process, we simulate the execution of these
two critical scenarios for each of the five system architectures. Prior to sim-
ulation, the preprocessing of the computation and communication time data
is performed as follows. For each processing node, the execution times of all
operations to be executed on the node are calculated from the component re-
source and node performance models (execution_time = CPU_claim_value
× processor_speed). The communication time of the operation calls made
through the processor boundaries is calculated by dividing the bus-claim value
of an operation on a bus-bandwidth value, which is already defined in a bus
performance model.

The scenario simulation is conducted using a preemptive rate-monotonic
algorithm (other policies can also be used). This results in (a) predicted system
timing behaviour description and (b) resource consumption of a system for
each scenario and task worst-case latencies. First, we analyze the predicted

9.3. Car Radio Navigation (CRN) System 175

Table 9.2: Experimental data of the predicted quality attributes for five ar-
chitecture alternatives.

Attribute Arch. A Arch. B Arch. C Arch. D Arch. E
Max. task latency

against RT1 37.55 ms 37.55 ms 30.52 ms 9.18 ms 3.58 ms
(RT1=200ms)

Max. task latency
against RT2 86.51 ms 86.51 ms 61.49 ms 63.79 ms 21.05 ms
(RT2=200ms)

Max. task latency
against RT3 325.05 ms 395.05 ms 101.71 ms 114.12 ms 46.02 ms
(RT3=350ms)
Perf. sensitivity
(latency increase 57.6% 51.1% 3.2% 3.1% 0.0%

for TMC handling)
Cost, euro 290 305 380 335 340

task latencies against the real-time requirements RT1, RT2 and RT3 for each
of the five architectures (see Table 9.2).

Analyzing the table data, we conclude that except for Architecture B, the
remaining four architectures satisfy the given real-time requirements. Architec-
ture B does not satisfy the requirement RT3, because it has a TMCHandling
task latency that is higher than 350 ms. Architecture A can be considered
fast enough, while Architecture E gives the fastest solution. Then, we analyze
the architecture robustness as a performance sensitivity to the changes in the
input event rates (arrival period of the three stimuli). We increase the data
rate of the three stimuli by 5% (i.e. VolumeStimulus to 33.6 events/s, Lookup-
Stimulus to 1.05 events/s and TMCStimulus to 0.35 events/s). Afterwards, we
re-simulate the adjusted scenarios and obtain new task latencies. The fourth
row in Table 9.2 describes the increase of the latency of the TMC handling task
as a percentage of the normal latency per architecture. For instance, the end-
to-end delay of the TMC message handling task for Architecture A increases
by 57.6%! This occurs due to a high overload of the 22-MIPS processor in this
scenario.

The system-cost attribute is calculated as a cumulative cost of the system
hardware and software components. The software-component cost is defined
with correlation to the component source-code complexity (in reality, the cost

176 Chapter 9. Case Studies

of a third-party component is defined by the component producer). The cost
of the hardware components is calculated from the available market prices.
The total calculated cost for each architecture is given in Table 9.2. The
most expensive architecture is number C due to the costly high-performance
processing nodes.

9.3.5 Analysis of Architecture Alternatives

The task latencies, robustness and cost attributes are selected as main objec-
tives for our design space exploration. Using the CARAT Pareto analysis tool,
we obtain several two-dimensional Pareto graphs. Two of them, robustness vs.
cost and performance vs. cost are depicted in Fig. 9.12.

Figure 9.12: Pareto exploration graphs based on (a) performance vs. cost, (b)
robustness vs. cost

The graphs are evaluated as follows. The Pareto curve is drawn by con-
necting the alternatives that are closest to the origin. This curve defines a
set of optimal alternatives. With respect to the cost-robustness trade-off (see
Fig. 9.12(b)), the optimal architectures are E, D and A, because they create
the curve closest to the null-coordinate point. The alternatives C and B are
non-optimal. When confining to one of those three optimal alternatives, a final
choice depends on a weighting function (priority) for the cost and robustness
attributes. If cost has a higher priority, then Architecture A should be se-
lected. If performance sensitivity is a critical factor, then Architecture A is
not the best candidate. Moreover, looking at the cost-performance trade-off
(see Fig. 9.12(a)), we can observe that TMC task latency for Architecture A
is close to its deadline. Therefore, a low robustness (57.6%) of Architecture A
cannot be tolerated.

9.4. JPEG Decoder Application 177

With respect to the cost-performance trade-off, again the optimal alterna-
tives are E, D and A, though C is not positioned on the hypothetical ideal
Pareto curve. Architecture B is not competitive because its TMC task latency
is higher than the task deadline. Although it has a low cost, Architecture A
provides a low performance and insufficient robustness, and is therefore also
omitted.

Concluding, the Architectures E and D are considered to be the optimal
alternatives. If the cost weighting function is higher than the performance
or robustness weighting function, Architecture E can be adopted for further
development and vice versa. In addition, we may also re-iterate the DeepCom-
pass process to achieve acceptable performance for the less costly Architecture
A. For instance, we can add a new software component TMCHandler, which
reduces the TMCHandling task latency, or re-dimension one of the process-
ing nodes. Another optimization technique would be to reduce the cost of
Architecture E, by sacrificing (within acceptable range) its performance and
robustness.

9.4 JPEG Decoder Application

After having evaluated the second case study (CRN), we have performed a third
refinement on the DeepCompass framework. In this refinement, we have added
facilities for design and analysis of multimedia applications. Most multimedia
systems are built using the pipes-and-filters architectural style. In this style,
active software components are frequently used. Active components start and
run their own process (thread of control), which reads data from a buffer,
processes the data and stores the processed data into a buffer. Summarizing,
we have extended the framework with the following facilities for modeling and
behaviour analysis of multimedia systems.

• Process component model for specification of active components.
• Virtual services representing memory buffers.

In this section, we present the design case study performed on a JPEG mul-
timedia application. The purpose of the case study is to validate the framework
for relatively complex industrial applications. The JPEG decoder software is
adopted from the JPEG Decoding Network (JDN), as developed in [67].

9.4.1 Services Identification

We have identified the main software building blocks of the JDN system and,
for each block, we have developed a ROBOCOP service. The JDN system
has been implemented as a process network using YAPI (similar to FIFO)

178 Chapter 9. Case Studies

buffers [66]. Therefore, we have made services of two types: executable ser-
vices and virtual buffer services (see Fig. 9.13). Executable services are con-
ventional services that have provides and requires interfaces and perform some
computations, while the virtual buffer services represent YAPI buffers that
only provide a communication infrastructure. The executable services commu-
nicate with each other via virtual buffer services. The modeling specification
for a virtual buffer service is given in Section 5.3.

Figure 9.13: JPEG software services: (a) executable services, (b) virtual
buffer-services

Fig. 9.13(a) depicts the following executable services. The FrontEnd ser-
vice provides the IStart interface that offers start-stream functionality, and
requires the following three interfaces: ImageH, ImageV, PixelRow. These in-
terfaces are used by the service to send three de-multiplexed and quantized
streams of pixels for further processing. The IDCT_Row service implements
one-dimensional Inverse Discrete Cosine Transformation (IDCT) and requires
two interfaces to be bound. The PixelRow interface is used to acquire a row
of pixels from the streamed 8×8 pixel block. The PixelCol interface is used
to send the partly processed pixel block further on. The IDCT_Col service
also provides functionality of the one-dimensional IDCT and requires two in-

9.4. JPEG Decoder Application 179

terfaces. The PixelCol interface is used to acquire a column of pixels from
the streamed 8×8 pixel block. The PixelRaster interface is used to send the
processed pixel block for a rastering operation.

The Raster service contains original downscaling, rastering, vertical scal-
ing, image-to-line operations and horizontal scaling. It requires six interfaces
to be bound. The ImageH, ImageV and PixelRaster interfaces are used by
the service to receive the pre-processed pixel streams for its own processing.
The PixelY, PixelCb and PixelCr interfaces are used to send the processed
pixel streams for rendering on a screen. The BackEnd service provides render-
ing functionality. It pulls the pixel streams via its three required interfaces:
PixelY, PixelCb and PixelCr.

Fig. 9.13(b) shows virtual buffer services that provide the communication
infrastructure. The PixelRowBuffer service provides PixelRow interface with
two operations: pop() and push(). The push() (pop()) operation can be used
by other services to write (read) a row of pixels to (from) a buffer. A simi-
lar type of functionality is provided by other buffer services (PixelColBuffer,
PixelRasterBuffer, ImageHBuffer, PixelHBuffer and PixelY (Cr/Cb) Buffer).
The differences between the buffer services refer only to the size of the single
element to be written (read) and the buffer capacity.

9.4.2 Specification of Component Models

Following the DeepCompass framework phases, we have specified supplemen-
tary models for the previously discussed services. As explained in Section 5.3.2,
the behaviour model is used for passive services that do not implement and
execute any processes or threads upon their activation. The process model
is used for active services that start and execute one or more processes. The
data for behaviour and process models have been obtained by the source code
analysis of the services. Analyzing the source code of the available executable
services, we have identified that the FrontEnd service is passive, while the rest
of the executable services are active. The source code analysis leads us to the
behaviour- and process- models of the services. The service’s stand-alone pro-
filing on a reference RISC processor provides data for the resource models. All
models reflect a decoding mode of the JPEG picture in 4:2:0 format with a pic-
ture size of 1004×669 pixels. For simplicity, we omit the parameter-dependent
specification here.

Fig. 9.14 illustrates a simplified version of the models of the FrontEnd,
IDCT_Row and BackEnd components. The next paragraphs explain the mod-
els in detail.

For each implemented operation, the behaviour model of the FrontEnd
service specifies the sequence of calls made to operations of other interfaces.
The model specifies that the implemented operation startStream() first calls
once the push() operation through the ImageH and ImageV interface (send-

180 Chapter 9. Case Studies

Figure 9.14: Models of the FrontEnd, IDCT_Row and BackEnd services.

ing the height and width parameters of the JPEG picture). Afterwards, our
operation enters the loop of 15,743 cycles. In each iteration of the loop,
the startStream() operation subsequently calls the readImage() operation
through the IStart interface and the push() operation through the PixelRow
interface. The latter call implements functionality of sending the processed
data to the buffer service. The volume of the sent (as an operation argument)
data is represented in the passedData token, which shows that 64 elements of
the size of 8 bits are sent to the buffer. The second implemented operation
readImage() does not call any other interfaces, thereby its behaviour token is
empty.

The resource model of the FrontEnd service specifies average, minimum
and maximum numbers of processing cycles that each implemented operation
needs for its execution. For example, the startStream() operation claims on
the average 12 cycles of a RISC processor (see the token cpuUsage in Fig. 9.14),

9.4. JPEG Decoder Application 181

while the readImage() operation takes on the average 6,352 processing cycles.
The process model of the IDCT_Row service (second column in Fig. 9.14)

describes a process that the service implements itself. The token by_default
specifies that the process is initialized and run upon service start-up. The
token whiledo_loop tells that the implemented functionality within the process
is executed within an infinite loop. The behaviour token describes the loop
functionality in terms of a sequence of calls to operations provided by other
interfaces. The pop() operation from the PixelRow interface is the first called
operation. The call is repeated 8 times (see token numberOfIterations). By
this operation, the process reads data from a buffer providing the PixelRow
interface. The amount of data to be read is shown in the passedData token.
The returnArg token specifies that 8 elements with a size of 8 bits are read
from the buffer during the operation invocation. The next called operation
is decodeRow() from its own interface IRow. The last invocation within the
loop is the push() operation through the PixelCol interface. The operation
is called 8 times. The passed arguments (data stored to a buffer) is an array
of 8 elements of 8-bit size. The IDCT_Row resource model specifies that the
decodeRow() operation claims on the average 2,540 cycles of a RISC processor.

The virtual buffer services are not supplemented with models because they
do not provide any processing functionality. The initialization of the buffer
sizes is to be performed at the software architecting phase.

9.4.3 JPEG Software Architecture

We have designed the software architecture for the JPEG decoder using the
CARAT repository and graphical editor tools. We have instantiated the de-
fined services and bound their respective provides and requires interfaces (see
Fig. 9.15).

The architecture satisfies the functional requirements of a JPEG decoder,
which works as follows. The Front_End service reads the input stream, demul-
tiplexes it and sends the processed data to the ImageHBuffer, ImageVBuffer
and PixelRowBuffer services. The IDCT_Row service reads the data from Pix-
elRowBuffer, performs IDCT transformation of rows in the 8×8 pixel blocks
and sends the processed data to PixelColBuffer. The IDCT_Col service fetches
the data from the PixelColBuffer, performs IDCT transformation of columns
in the 8×8 pixel blocks and stores the processed data to PixelRasterBuffer.
The Raster service reads data from the ImageHBuffer, ImageVBuffer, Pixel-
RasterBuffer services. After these actions, this service rasterizes and scales the
processed image, and sends the YCrCb pixel components to the PixelYBuffer,
PixelCrBuffer and PixelCbBuffer services, respectively. The BackEnd service
fetches the pixel components from these three buffers, and renders the image
on a screen.

182 Chapter 9. Case Studies

Figure 9.15: JPEG scenario model consisting of the software architecture and
starting-stream trigger.

Scenario identification
According to the DeepCompass process, the software architecture should

be incorporated in the execution scenario model by specifying environmental
or user-based events that trigger the execution flows within the system. In the
JPEG decoder, such a user-based event is a ‘view picture’ command from a
user that triggers the picture processing functionality. Upon the ‘view picture‘
command, the keyboard listener invokes the IStart.startStream() opera-
tion of the FrontEnd service. We have defined this trigger using the CARAT
software architecture editor (see Fig. 9.15). Besides this, we add a link to the
triggered IStart.startStream() operation and specify the trigger period and
deadline properties as follows. The period is set to 800 ms, due to the expec-
tation that the user’s fastest viewing speed (and the ‘worst-case’ conditions
for the system resources) is 10 pictures per 8 seconds. This trigger, together
with the component assembly, represents the scenario model. In the scenario
model, we set the storage capacity of each virtual buffer service to 1 Mbits.

9.4.4 JPEG Hardware Architecture Alternatives

Using the hardware architecture editor of the CARAT toolkit, we have de-
signed five hardware architectural alternatives which are depicted in Fig. 9.16.
Our reasoning behind these architectural choices is as follows. We aim at defin-
ing a spectrum of hardware architectures by varying the number of processor
(memory) nodes and the type of topology.

9.4. JPEG Decoder Application 183

Figure 9.16: The hardware architecture and mapping of (a) Alternatives A
and B, (b) Alternative C, (c) Alternative D, (d) Alternative E.

The Alternatives A and B, shown in Fig. 9.16(a), have one processor node
with a processing speed of 250 and 500 MIPS, respectively, and the local mem-
ory with a capacity of 32 MB. The Alternative C (see Fig. 9.16(b)) has two
processors with a processing speed of 500 MIPS each and one local memory
(16 MB) per processor. The processor communication is realized via a net-
work with a bandwidth of 1 Mbit/s. The communication infrastructure in
the next two alternatives is also implemented by this network. Alternative D
deploys three heterogeneous processors with different operation speed. One of
the processors has no local memory. Alternative E (see Fig. 9.16(d)) defines
four heterogeneous processors. Only two of these processors have access to
their own local memory of 16 MB.

9.4.5 SW/HW Mapping Alternatives of JPEG Application

Having defined the software and hardware alternatives, we proceed to static
mapping of the software services onto the hardware IP blocks. The executable
services are mapped on processing nodes, meaning that the code of an individ-
ual service will be executed on a predetermined processor. The virtual buffer

184 Chapter 9. Case Studies

services are mapped on memory blocks, implying that the data stored to a
buffer will be allocated on a predetermined memory block.

Using the CARAT toolkit, we map the services from the scenario model
on each of the five predefined hardware architectures (see Fig. 9.16). The rea-
soning behind the mapping choices is twofold. Firstly, communicating services
should be mapped as close as possible to each other. Secondly, the services
imposing a high load on the processing resources (this can be checked from
their resource models) should not be mapped on the same resource. For in-
stance, Alternative C defines that the FrontEnd, IDCT_Col and IDCT_Row
services are mapped on the MIPS1_500 processor, while the Raster and Back-
End services are executed on the MIPS2_500 processor. The PixelColBuffer,
PixelRowBuffer and PixelRasterBuffer services are mapped on the Mem1_16
local memory block. The rest of the virtual buffer services are mapped on the
Mem2_16 local memory block.

9.4.6 Synthesis of the Executable System Model

Once the software and hardware architectures are defined and the SW/HW
mapping is specified for an architectural alternative, the CARAT toolkit syn-
thesizes the executable system model of this alternative. For the JPEG de-
coder, the synthesis results in five identified tasks: one triggered by the start-
stream event and the other four triggered by the processes running in the
IDCT_Row, IDCT_Col, Raster and BackEnd services. The synthesized call-
graphs of the tasks are relatively simple. Each of them is propagating only
to the neighboring buffers. For instance, the task initiated by the process in
the IDCT_Row service has the following call graph extracted from the related
component process model (see Fig. 9.14): 8*PixelRow.pop(), 1*IRow.decode-
Row(), 8*PixelCol.push().

The obtained call graphs of tasks are applied to a scenario model and a
SW/HW mapping specification. Knowing the operations executing in a task
call graph, the CARAT tool scans the SW/HW mapping specification to find
the processing nodes on which the services implementing these operations are
deployed. It results in a full specification of the task allocations in the system
architecture.

These steps result in the executable system model that is employed for
performance analysis.

9.4.7 Performance Analysis

We have simulated the five design alternatives of the JPEG decoder using
a round-robin scheduler for the processing nodes and a first-come-first-served
scheduler for the communication lines. The duration of simulation has been set
to 5M microseconds. The input to the performance analysis are the executable

9.4. JPEG Decoder Application 185

Figure 9.17: Execution timelines of the Alternative D.

system models of the alternatives. The analysis results can be divided in two
categories: (a) resource usage timeline2 indicating which task is executed at

2Although this name better covers the meaning, in the sequel we rename resource usage
timeline to task execution timeline to preserve analogy with the previous cases.

186 Chapter 9. Case Studies

Table 9.3: Obtained performance data for five architectural alternatives
(Alt.) for the JPEG application.

Attribute, worst case Alt. A Alt. B Alt. C Alt. D Alt. E
Completion latency 1412 718 395 343 780

(ms)

MIPS_250 util., % 98.41 - - 61.16 -
MIPS_500 util., % - 97.89 - - -
MIPS1_500 util., % - - 54.95 29.35 21.42
MIPS2_500 util., % - - 59.01 65.09 16.80
MIPS1_250 util., % - - - - 31.87
MIPS2_250 util., % - - - - 38.08
Bus_1000 util., % - - 25.04 80.76 99.54

Hardware cost 1.2 2.2 4.7 5.7 6.7
(abstract units)

every moment in time (see Fig. 9.17), and (b) predicted performance properties
of the alternatives, such as utilization of hardware resources, task response
time, completion time and number of missed deadlines (see Table 9.3).

The task execution timeline is analyzed to understand the task interleaving
on individual hardware resources, identify where and why a task misses its
deadline and analyze performance bottlenecks. For each processor timeline,
we show the tasks executing the operations from the components mapped on
the processor. The bus-load timeline represents the bus utilization imposed
by the communicating operations in the tasks. The buffer utilization timeline
shows the consumed buffer capacity at each moment in time. For instance,
Fig. 9.17 depicts the obtained partial timelines from 0 to 94 microseconds of
the hardware nodes of Alternative D. The figure shows the timelines of all
three processors used in the system, the bus timeline and the PixelRowBuffer
timeline. The timeline analysis shows that at upon the start-stream event,
the stream-reading task executes on the MIPS_250 processor and writes the
processed data into the PixelRowBuffer via the Bus_1000 network. Once
there is enough data in the PixelRowBuffer service, the process implemented
by the IDCT_Row service executes on the MIPS1_500 processor and stores
the processed data into the PixelColBuffer via the Bus_1000 network also.
The MIPS2_500 processor is idle at this time period, because the Raster and
BackEnd processes (tasks) assigned onto this processor are waiting for the data
to appear in their corresponding input buffers.

9.4. JPEG Decoder Application 187

The main criterion for the performance evaluation is the completion latency
of the processing of one image. The completion latency is the time between the
arrival of the stream-start event to the FrondEnd service and the moment when
the last pixel of the image is rendered on the screen by the BackEnd service
process. We have set the real-time requirement that the completion latency
should not exceed the predefined period of the start-stream event (800 ms).
From the end-user point of view, the requirement implies that the system
should allow viewing images with a rate of 10 pictures per 8 seconds.

Table 9.3 aggregates the simulation results of the five architectural alterna-
tives. Except for the completion latency, the table shows the utilization rates
of the hardware resources and hardware cost. For simplicity, the hardware cost
is calculated in abstract units. The abstract unit is based on normalizing the
cost of the resources to the cost of the MIPS_250 processor. The MIPS_250
(MIPS_500) processor cost is set to 1 (2) unit(s), the Mem_32 (Mem_16)
costs 0.2 (0.1) units, and the Bus_1000 cost is set to 0.5 units.

9.4.8 Exploiting the Trade-Offs

For these five alternatives, we perform a trade-off analysis with respect to
the latency and hardware cost attributes. The CARAT tool converts the la-
tency and cost values shown in Table 9.3 into a Pareto graph (see Fig. 9.18).
The Pareto graph positions the five architectural alternatives in the two-
dimensional space, according to the obtained values for completion latency
and normalized hardware cost.

Figure 9.18: Pareto analysis with respect to hardware cost and completion
latency attributes.

Our resulting Pareto-curve passes through Alternatives B, C and D, which
in our case, are optimal solutions. Alternative E is not optimal due to its high

188 Chapter 9. Case Studies

cost and completion latency. Alternative A is not further considered because
its completion latency is higher than the specified deadline (800 ms).

A further selection of the architecture alternatives depends on the priorities
among the quality attributes. If the cost has higher priority, then Alternative B
should be selected. If completion latency is a critical factor, then Alternative B
is not the best candidate. Moreover, the latency of Alternative B is close
to its deadline. The most balanced solution is Alternative C that combines
reasonable cost with high performance.

Analysis of the resource utilization data in Table 9.3 helps to identify per-
formance bottlenecks and optimize these architectures. For example, the high
bus utilization (80%) in Alternative D imposes relatively high latency, while its
three processors are not fully loaded. Increasing the bus bandwidth will lead
to excellent performance at reasonable cost. Another optimization technique
is to increase the clock frequency of the single processor in Alternative B. This
leads to sufficient performance with low hardware cost.

9.5 Conclusions on Case Studies

In order to validate the presented DeepCompass framework and the scenario-
based method, we have performed design and analysis case studies on three
real-time applications: an MPEG-4 Decoder, a CRN System and a JPEG Ap-
plication. Besides the validation of the performance prediction techniques, we
have additionally applied the architecture optimization method to the CRN
and JPEG systems. After the MPEG-4 Decoder case, we have extended the
framework with (a) parameter-dependent modeling, (b) support for hetero-
geneous processor platforms and (c) the architecture optimization method.
The parameter-dependent modeling has proven to be important to cope with
large variations in the input-dependent computations. The extension towards
heterogeneous platforms is indispensable because this hardware setup is state-
of-the-art in the embedded systems domain. The architecture optimization
method is needed to enable systematic and balanced improvements starting
from the initial architecture. The second case study (CRN) directly led to
incorporating the facilities for the pipes-and-filters architectural style, which
features sequences of stream-oriented processing with high throughput. This
architecture style is broadly applied in the design of multimedia processing
systems.

With respect to the accuracy of performance predictions, the case studies
have revealed the following results. The MPEG-4 decoder showed 30% devi-
ations from the profiled measurements for worst-case task latencies and 10%
deviations for processor utilization. The CRN system showed deviations within
5% (with a slight shift to more optimistic worst-case task latencies) in compar-
ison to other well-established performance prediction approaches [95] [48]. The

9.5. Conclusions on Case Studies 189

Table 9.4: Efforts (in working hours) spent for the three case studies.

Case study Modeling SW/HW Synthesis Perform., Total
/ Activity Components Architect. Simulation Trade-Off

Modeling Analysis
1. MPEG-4 12 9 1 4 26
2. CRN 10 13 3 8 34
3. JPEG 20 14 4 10 48

JPEG application has shown 15% deviations from the profiled measurements
of the realized application for worst-case task latencies and 5% deviations for
processor, bus and memory utilization.

At this point, the reader may be interested in the effort that is involved per-
forming the architecture analysis and optimization for these three case studies
when using the DeepCompass framework. We have measured this effort calcu-
lating the time periods for each activity. For each case study, these activities
include: component modeling, SW/HW architecture modeling, synthesis and
simulation, performance analysis and trade-off analysis. Table 9.4 summarizes
the recorded efforts (in working hours) spent for each activity. The average
time spent for a case study equals 36 hours, which is equivalent to 4.5 working
days.

With the achieved extensions and refinements resulting from the case stud-
ies, the final framework is applicable to a broad spectrum of architectural
styles, communication styles and arbitrary hardware topologies. In these case-
studies we have used (a) pipes-and-filters and blackboard architectural styles;
(b) synchronous, message-based and buffers-based communication styles; and
(c) hardware topologies with homo- or heterogeneous processing nodes, single
and multiple processors, as well as different types of memory blocks.

190 Chapter 9. Case Studies

Chapter10
Conclusions

10.1 Conclusions of the Thesis

Performance properties of real-time systems are vital and, at the same time,
most challenging properties to predict, enforce and measure. Performance de-
pends on multiple dynamic factors related to software, hardware and user /
environment behaviour. Performance failures cause project delays, cost over-
runs, and even abandonment of projects. In order to avoid these failures, the
performance properties should be predicted and analyzed already at the early
design phases of a project. Prediction of performance properties at an early
phase is facilitated by using a ‘predictable assembly’ of components, as in-
troduced by the CBSE community. In a predictable assembly, the functional
and extra-functional properties of individual components are used to reason
about the functional and extra-functional properties of a component composi-
tion. Unfortunately, an integrated solution for performance-centric predictable
assembly with the following combination of characteristics is missing. First,
a solution enabling an automated synthesis of system performance properties
from the related component properties; second, it requires low modeling and
analysis effort; third, a solution provides a reasonably high prediction accuracy.

This thesis presents a new framework called DeepCompass (see Chapter 4),
which features the three aforementioned characteristics. The DeepCompass
framework defines a design process which guides an architect through an it-
erative design cycle, while focusing on performance properties. The iterative
cycle contains the following phases. Firstly, rapid construction of a number

191

192 Chapter 10. Conclusions

of alternative architectures from the available software and hardware compo-
nents. Secondly, for each alternative, synthesizing the models of these indi-
vidual components into a system-wide performance-related model. Thirdly,
analyzing these performance models with respect to bottlenecks and the as-
pects where the alternative does not satisfy the requirements. These three
phases save effort and help in selecting promising alternatives and eliciting
the best directions for their optimization. Fourthly and finally, the iteration
cycle concludes with a performance optimization of promising architectures,
while keeping other properties (e.g reliability, cost of materials) within defined
boundaries. Depending on the outcome of this phase, an architect may re-
peat the iteration cycle (without the construction phase), or select the best
architecture alternative for implementation.

From a design-process view, the DeepCompass framework features the fol-
lowing principal benefits.

• No system implementation is needed within the iteration cycle. The de-
sign and analysis can be performed prior to the purchase of the compo-
nents, because the system analysis is based purely on component models.
An architect needs to obtain (supposedly free of charge) only the corre-
sponding models of the components, design a system and conduct the
performance analysis.

• Rapid architecture prototyping and performance analysis is enabled. This
is achieved by combining both scenario-based and model-based princi-
ples. Synthesis of component models allows to characterize system be-
haviour in a consistent and automated way, while usage of scenarios
allows an architect to avoid analysis of all possible system states and
focus only on the critical operational modes.

• The performance analysis can be carried out for systems constructed
from an arbitrary set of third-party software and hardware components.
This generic feature is achieved by applying the CBSE principles and
providing a rich model set for various types of components. An assump-
tion is that each individual software or hardware component has to be
accompanied with pre-defined models specifying the internal properties
of that component.

The DeepCompass framework is based on a scenario-based analysis method
as described in Chapter 5. One cornerstone of the scenario-based method is
the use of composable models of individual software components and hardware
blocks. The models are specified at the component-development time and
are shipped in a component package. At the system design, thus component-
composition phase, the models of the constituent components are automatically
synthesized into an executable system model. The executable system model
represents the dynamic characteristics of a system and contains the detailed

10.1. Conclusions of the Thesis 193

data about the tasks running in a system. Simulation of this model provides
performance property values.

Another cornerstone of the method is the usage of critical scenarios. In
this thesis, we advocate considering only critical scenarios for performance
analysis. The scenario-based approach helps an architect to focus only on those
scenarios that may potentially hinder performance requirements, which saves
development time and effort. This scenario-based method allows the analysis
of complex systems having a large number of states and configurations.

The scenario-based method features the following benefits.

• The method enables accurate performance predictions in addition to
rapid prototyping and analysis. The accuracy of performance predictions
is computed as the deviation between the predicted and actual worst-case
values of performance properties. The case studies described in Chap-
ter 9 show deviations within 30%, obtained in a short time period. The
average time spent on modeling and analysis of multiple alternatives for
one iteration cycle proved to be only 36 working hours.

• The method supports all common architectural styles, e.g. pipes-and-
filters, blackboard and client-server, and can be used for systems having
an arbitrary hardware topology with homo- or heterogeneous processing
nodes.

• The method enables modeling of (a) parameter-dependent behaviour and
hardware resource usage of software components, and (b) complex behav-
iour patterns of components, such as loops and conditional statements.

• The method requires low modeling and computational effort. This is
achieved by accurate selection of modeling primitives and a relatively
high abstraction level of individual component models.

However, this scenario-based method imposes a number of drawbacks. The
method requires some experience in identifying the correct critical scenarios
and does not guarantee completeness of the selected set of critical scenarios.
To address this shortcoming, we have interviewed experienced architects from
different industrial domains. The interviews revealed (see Chapter 8) that in
practice, architects do use critical scenarios in analysis and never explore the
complete state space of a system. For our purpose, we have accumulated the
reported experience into a set of guidelines for the identification of correct
critical scenarios and their usage in practice.

In Chapter 6, we have performed a comparative review of the architecture
optimization approaches that resulted in an abstract optimization method.
This abstract method defines the following key steps in optimization: QA
analysis, design space analysis, identification of optimization guidelines, and
generation of new alternatives. In our opinion, this optimization cycle can
be applied to a broad set of optimization approaches. We have found that

194 Chapter 10. Conclusions

the DeepCompass framework can be mapped onto the steps of this abstract
method. The automation of all the steps was only partially realized in Deep-
Compass, in particular, the QA analysis and design space analysis steps. The
completion aspects of the automated optimization are discussed in the last
section of this chapter.

The CARAT software toolkit, presented in Chapter 7, supports an archi-
tect in all DeepCompass framework phases, starting from component selection
from the repository and ending with code generation for an application. The
toolkit enables smooth transitions through design phases by keeping all in-
volved data at a single location and by providing seamless communication
between its modules. Additional objecties of the toolkit are to automate com-
plex computational operations and to provide graphical means for designing
the alternatives and visualizing the analysis results.

In order to validate the presented DeepCompass framework and the scenario-
based method, we have performed case studies on three real-time applications:
an MPEG-4 Decoder, a Car Radio Navigation (CRN) System and a JPEG
Application. These case studies contain all development phases, starting from
the requirements elicitation and ending with the profiling of the deployed sys-
tem on the actual device. Besides the validation of the performance prediction
techniques, we have applied the architecture optimization method to the CRN
and JPEG systems.

The MPEG-4 and CRN case studies have revealed that the framework ini-
tially lacked facilities for analysis of systems that have parameter-dependent
behaviour and that are mapped onto an arbitrary multi-processor hardware
topology. Moreover, these case studies have shown the need for support of mul-
timedia systems designed in the pipes-and-filters architectural style. Using this
feedback, we have enriched the initial framework with facilities for parameter-
dependent modeling, process models for active components and multi-processor
simulation. All these facilities have been validated by the third JPEG case
study. However, the majority of the framework functionality was validated by
all three case studies. The conclusions on the obtained prediction accuracy
and effort required by the framework are discussed in the following section.

10.2 Discussion on Research Questions

Let us review the four research questions that we posed in Chapter 1 of this
thesis. The following paragraphs describe how we address these research ques-
tions at the end of this thesis.

RQ1: How should behaviour- and performance properties of individual
components be specified in order to enable automated composition of these
properties into an analyzable model of a complete system?

10.2. Discussion on Research Questions 195

We address the answer to this question by discussing two important as-
pects: the behavioural properties of components can be expressed by behav-
iour and process component models, and the performance properties can be
specified by using a resource component model.

The introduced behaviour and process component models (see Sections 5.3.2
and 5.3.3) describe a component behaviour by specifying actions that the
provided operations of the component are performing upon their invocation.
These actions specify the sequence of “external” operations called by each spec-
ified operation. These “external” operations are provided by interfaces of neigh-
boring (not known yet) components. At the time of specifying the component
models, these neighboring components are not known (this information is only
available at the component assembly time). However, a component developer
does not need to have this information, because it is sufficient to know the
signatures of the provided interfaces (of other components). These signatures
are obtained from the required interfaces of the modeled component. As we
mentioned in Chapter 2, the signatures of the provided and required inter-
faces of two bound components should match. The above-mentioned actions
of an operation, specifying the sequence of calls of the “external” operations,
can be considered as open connectors enabling the compositionality. At the
time of creating a component assembly, when the neighboring components are
known, the behaviour and performance properties of individual components
represented in the models can be synthesized into system-wide properties, by
use of these connectors.

The component resource model, described in Section 5.3.4 has been de-
signed also for enabling compositionality. This model specifies hardware re-
source claims for each operation provided by a component. The processor
claims are specified in terms of the number of instruction cycles that an op-
eration requires from a processor to be executed. At the architectural phase,
when it becomes known on which processor a component providing this oper-
ation is mapped, the number of instruction cycles can be recomputed into the
execution time metric. This metric is then added to the system-wide model to
annotate the processor usage of each operation involved in each task.

RQ2: How to combine the models of individual components into the model
of a complete system in an automated way, such that the resulting system
model can be analyzed with respect to the performance properties?

The global answer to this question is that we start from identifying the
scenario and deployment models at the system level, in order to synthesize
the involved component models in an automated way. The results lead to a
list of synthesized tasks with the detailed behavioural and performance char-
acteristics, which can be simulated to obtain the performance properties of

196 Chapter 10. Conclusions

the system. The details of this approach are described in the following three
paragraphs.

The architectural scenario and deployment models (see Section 5.4.2 and
Section 5.4.3) are the input for the automated synthesis of the component mod-
els. The scenario model contains the specification of the composition of the
service instances, the description of triggers, and the definition of parameter
values for the parameter-dependent entities of component models. The de-
ployment model defines the hardware architecture and the mapping of service
instances onto the hardware nodes.

The proposed synthesis algorithm, described in Section 5.5 applies the mod-
els of the involved components to these scenario and deployment models. The
algorithm identifies and generate tasks from the triggers (given in the sce-
nario model) and the processes (specified in the process models of the involved
components). Then, for each task, the algorithm recursively synthesizes the
call graph of the involved operations, based on the call graphs of individual
operations (these call graphs are provided by the behaviour/process models).
Finally, for each element in the synthesized call graph, the algorithm computes
the hardware resource-usage data (execution time or transfer size), based on
data from the corresponding deployment, resource and hardware performance
models.

This synthesis algorithm results in the constructed executable system model
(see Section 5.4.4), which specifies a task execution architecture. This task ex-
ecution architecture contains parameter-dependent data on the tasks running
in the designed system, and the allocation of these tasks on the software and
hardware components. The obtained tasks are suitable for different types of
performance analysis (simulation, schedulability or hybrid), resulting in pre-
dictions of various performance properties of a system.

RQ3: How can architectural alternatives be compared and optimized with
respect to multiple quality attributes?

In Chapter 6 we have presented a method for architecture optimization.
The method proposes an iterative cycle containing the steps for (a) design
of architectural alternatives, (b) predictions of multiple performance quality
attributes of these alternatives, (c) Pareto-based trade-off analysis of the al-
ternatives with respect to multiple performance attributes (e.g. task latencies,
processor, bus and memory usage, performance sensitivity), and (d) identi-
fication of optimal alternatives and possible architecture transformations for
further improvement of the optimal alternatives. This method is incorporated
into the DeepCompass framework, supporting the above-mentioned four steps
with the automating functionality of the CARAT toolkit.

10.3. Framework Limitations 197

RQ4: How can the assessment process of performance attributes be accel-
erated without a substantial reduction of the prediction accuracy?

We have proposed to accelerate the assessment process by (a) component
models specified at relatively high level of abstraction and (b) usage of only
critical scenarios for architecture analysis. Our models for a software compo-
nent specify the behaviour or resource usage characteristics of the component
at the level of operations (as an atomic entity), thereby omitting detailed
programming constructs inside the operations such as variables, memory al-
locations, pointers, etc. This reduces modeling and analysis efforts, however,
imposes certain inaccuracy in predicted results. In addition, the proposed us-
age of scenarios allows focusing only on those use cases and system execution
paths which may hinder the performance requirements. These two proposals
(high abstraction and critical scenarios) reduce the analysis time and effort. As
indicated in Section 9.5, the average effort for a case study (including modeling
and analysis of multiple alternatives for one iteration cycle) has proven to be
only 36 hours.

Both the high-abstraction models of components and scenario-based analy-
sis may potentially increase the prediction inaccuracy. Therefore, that was
important to record the inaccuracy rate for each case study. The MPEG-4
case has shown the worst inaccuracy among the three studies. The deviations
from the profiled measurements for the worst-case task latencies were within
30% and the deviations for the total processor utilization were within the 10%
range. The highest prediction error has been recorded for the peak loads of
the processor utilization. At some points of the timeline, the actual peaks
have shown to be three times higher than the predicted peaks. This has hap-
pened due to the data-dependent processing nature of the MPEG-4 decoder.
In the following iterations of the DeepCompass framework, we have addressed
this issue by adding the facilities for parameter-dependent modeling to the
component models.

10.3 Framework Limitations

Despite its benefits, the DeepCompass framework is not a “silver bullet” solu-
tion and has the following limitations.

The framework assumes that the component models are already available at
the design phase. However, currently most of the existing CBSE components
do not provide such models. Moreover, the specification of the required set of
component models imposes some overhead for a component developer, despite
the high abstraction level of these models.

The proposed analysis is performed at a high abstraction level. The pro-
vided set of modeling primitives allow specifying component implementation

198 Chapter 10. Conclusions

only at high levels of abstraction (e.g. no modeling for pointers and asynchro-
nous messages). The method does enable modeling the operation resource-
claims that are characterized by probability distribution curves. Besides this,
the method does not consider such important system-specific aspects as cache-
misses, IO and memory access delays, as well the hard disc read-write latencies.
We have imposed these limitations deliberately to reduce modeling and compu-
tational efforts. However, these limitations increase the performance prediction
inaccuracy. To avoid this inaccuracy, the method can be extended with a ‘cas-
caded’ analysis, where another set of models specified at the medium or low
abstraction level can be used for the post-analysis forming a final judgement
of the performance properties.

The framework does not provide a complete tool set for automated multi-
objective comparison of architectural alternatives and design space exploration.
For the automation, the analytical activities required for the comparison and
exploration stages should be formalized and implemented as a self-learning
engine.

The scenario-based approach requires that the architect has a good under-
standing of the system-environment interaction aspects, and has some analyti-
cal skills in identifying the scenarios. We have addressed this issue by providing
guidelines on scenario identification (see Section 8.3.3) obtained from the series
of interviews with industrial architects.

10.4 Open Issues and Future Work

In order to improve the prediction accuracy, while keeping the modeling and
computational efforts low, we aim to introduce a so-called cascaded perfor-
mance analysis method. The method should provide a number of sub-methods
at different abstraction levels. These sub-methods will provide a different set
of modeling primitives and computation engines, but will be complementary
and compatible with each other.

In addition to the high-abstraction sub-method (our scenario-based method),
the medium- and low-abstraction sub-methods can be used as an extension,
when the architectural overview is already defined and more accurate perfor-
mance analysis is required. The low-abstraction sub-method should provide a
set of highly-detailed models for software and hardware components, as well
as semi-formal analysis engines. This provisioning should allow the architect
to obtain the precise values for system performance properties. Such highly-
detailed models may include a specification of the processor cache, IO and
memory issues, as well as the description of intrinsic properties of a component
implementation. As an obvious drawback, the low-abstraction sub-method
would require substantial effort for modeling and computations.

In addition, we focus on the enhancement of the automated architecture op-

10.4. Open Issues and Future Work 199

timization method, which we have outlined in Chapter 6. Firstly, we aim at the
development of a self-learning engine, that would enable automated identifica-
tion of architectural problem points in the available alternatives, based on the
predicted values of their quality attributes. The found problem points should
be converted by the engine into the rules/guidelines for further transforma-
tions of architectural models. Secondly, we need to formalize the specification
of these rules, as well as the specification of possible transformations. Finally,
we aim at the development of an evolution engine for design space exploration,
that would realize the automated transformations of corresponding models,
based on the defined transformation rules.

It is quite encouraging for the author that a considerable amount of the
described modeling for components and assemblies – though with partly differ-
ent terminology – has been recently adopted in the MPEG community (pro-
ceedings ICIP 2009, November). This has resulted in a working group that
specifies components for Reconfigurable Video Coding (RVC). The purpose of
these components is to quickly establish system simulations and performance
analysis of a complete MPEG-4 AVC/H.264 coder that can be mapped on
various platforms. It would be highly interesting to study and compare this
approach with our method and come to joint improvements.

200 Chapter 10. Conclusions

References

[1] G. Abowd, Analyzing Development Qualities at the Architecture Level:
The Software Architecture Analysis Method, Software Architecture in
Practice, Addison-Wesley, ISBN 0321154959, 1998.

[2] J. Andersson and D. Wallace. Pareto optimization using the struggle
genetic crowding algorithm. Engineering Optimization, 34(6):623–643,
Dec. 2002.

[3] F. Arbab. Abstract behavior types: a foundation model for components
and their composition. Sci. Comput. Program., 55(1-3):3–52, 2005.

[4] ARTiSAN Software Tools. ARTiSAN Software Tools. Public website,
http://www.artisansw.com.

[5] P. Asterio, Integrating COTS software components into dependable soft-
ware architectures, Proc. of the 6th IEEE Int. Symposium on Object-
Oriented Real-Time Distributed Computing (ISORCŠ03). Hokaido, 2003.

[6] S. Becker, H. Koziolek, and R. Reussner, Model-based performance pre-
diction with the palladio component model, WOSP ’07: Proceedings of
the 6th international workshop on Software and performance, New York,
NY, USA, ISBN 1-59593-297-6, 2007. ACM, pp. 54–65.

[7] A. Bertolino and R. Mirandola, Software performance engineering of
component-based systems, WOSP ’04: Proceedings of the 4th interna-
tional workshop on Software and performance, New York, NY, USA,
ISBN 1-58113-673-0, 2004. ACM, pp. 238–242.

[8] E. Bini, G. C. Buttazzo, and G. M. Buttazzo. Rate monotonic analysis:
The hyperbolic bound. IEEE Trans. Comput., 52(7):933–942, 2003.

[9] P.E. Black. Dictionary of Algorithms and Data Structures.
http://www.nist.gov/dads/HTML/preorderTraversal.html.

201

202 References

[10] Y. Bondarau. CARAT-RTIE Performance toolkit, stable version.
http://www.win.tue.nl/trust4all/.

[11] E. Bondarev, M. R. V. Chaudron, H. Byelas, and P. H. N. de With,
A toolkit for design and performance analysis of real-time component-
based software systems, ICSEA ’06: Proceedings of the International
Conference on Software Engineering Advances, Washington, DC, USA,
ISBN 0-7695-2703-5, 2006. IEEE Computer Society, pp. 4.

[12] E. Bondarev, M. R. V. Chaudron, and E. A. de Kock, Exploring perfor-
mance trade-offs of a JPEG decoder using the deepcompass framework,
WOSP ’07: Proceedings of the 6th international workshop on Software
and performance, New York, NY, USA, ISBN 1-59593-297-6, 2007. ACM,
pp. 153–163.

[13] E. Bondarev, M. R. V. Chaudron, and P. H. N. de With, Composi-
tional performance analysis of component-based systems on heteroge-
neous multiprocessor platforms, EUROMICRO ’06: Proceedings of the
32nd EUROMICRO Conference on Software Engineering and Advanced
Applications, Washington, DC, USA, ISBN 0-7695-2594-6, 2006. IEEE
Computer Society, pp. 81–91.

[14] E. Bondarev, M. R. V. Chaudron, and P. H. N. de With, CARAT: a
toolkit for design and performance analysis of component-based embed-
ded systems, DATE ’07: Proceedings of the conference on Design, au-
tomation and test in Europe, San Jose, CA, USA, ISBN 978-3-9810801-
2-4, 2007. EDA Consortium, pp. 1024–1029.

[15] E. Bondarev, M. R. V. Chaudron, and P. H. N. de With. Multidimen-
sional design space exploration for component-based architectures. IEEE
Transactions on Software Engineering, pp. Accepted and under revision,
Submitted in 2007.

[16] E. Bondarev, M. R. V. Chaudron, P. H. N. de With, and J. Muskens,
Modelling of input-parameter dependency for performance predictions
of component-based embedded systems, EUROMICRO ’05: Proceedings
of the 31st EUROMICRO Conference on Software Engineering and Ad-
vanced Applications, Washington, DC, USA, ISBN 0-7695-2431-1, 2005.
IEEE Computer Society, pp. 36–43.

[17] E. Bondarev, P. H. N. de With, and M. R. V. Chaudron, Towards predict-
ing real-time properties of a component assembly, EUROMICRO04: Pro-
ceedings of the 30th EUROMICRO Conference, Washington, DC, USA,
ISBN 0-7695-2199-1, 2004. IEEE Computer Society, pp. 601–610.

References 203

[18] E. Bondarev, P. H. N. de With, and M. R. V. Chaudron, A process
for resolving performance trade-offs in component-based architectures,
Component-based software engineering, 9th International Symposium,
CBSE6, Vasteras, Sweden, Berlin, Germany, ISBN 3-540-35628-2, 2006.
Springer, pp. 254–269.

[19] E. Bondarev, J. Muskens, P. H. N. de With, M. R. V. Chaudron, and
J.J. Lukkien, Predicting real-time properties of component assemblies: A
scenario-simulation approach, EUROMICRO04: Proceedings of the 30th
EUROMICRO Conference, Washington, DC, USA, ISBN 0-7695-2199-1,
2004. IEEE Computer Society, pp. 40–47.

[20] E. Bondarev, M. Pastrnak, P. H. N. de With, and M. R. V. Chaudron,
Predictable component-based software design of real-time MPEG-4 video
applications, Visual communications and image processing, VCIP05.
Conference, Beijing , CHINE. SPIE proceedings series, ISBN 0-8194-
5976-3, 2005, pp. 254–269.

[21] G.C. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, Springer, October 2004.

[22] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN
1.7: graphical editor and analyzer for timed and stochastic Petri nets.
Perform. Eval., 24(1-2):47–68, 1995.

[23] S. Chuprat and S. Salleh, A deadline-based algorithm for dynamic task
scheduling with precedence constraints, PDCN’07: Proceedings of the
25th conference on Proceedings of the 25th IASTED International Multi-
Conference, Anaheim, CA, USA, 2007. ACTA Press, pp. 158–163.

[24] J. E. Coffland and A. D. Pimentel, A software framework for efficient
system-level performance evaluation of embedded systems, SAC ’03:
Proceedings of the 2003 ACM symposium on Applied computing, New
York, NY, USA, ISBN 1-58113-624-2, 2003. ACM, pp. 666–671.

[25] V. Cortellessa, A. Di Marco, and P. Inverardi, Integrating performance
and reliability analysis in a non-functional MDA framework, 10th In-
ternational Conference, FASE, Vol. 4422 of Lecture Notes in Computer
Science. Springer, ISBN 978-3-540-71288-6, 2007.

[26] R. Creps and P. Kogut. Using DARPA Software Architecture Technolo-
gies to Design and Construct CORBA-based Systems. Position Paper,
http://www.objs.com/workshops/ws9801/papers/paper006.html.

[27] I. Crnkovic, M. Larsson, and O. Preiss, Vol. LNCS 3549, Concerning
Predictability in Dependable Component-Based Systems: Classification

204 References

of Quality Attributes, in R. de Lemos (Ed.), Architecting Dependable
Systems III, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-40539-
9, 2005, pp. 257 Ű 278.

[28] DARPA. The Defense Advanced Research Projects Agency. OWL-S:
semantic markup for web services. White Paper, 2003. Available from:
http://www.daml.org/services/owl-s/1.0/owl-s.pdf.

[29] B. P. Douglass, Doing hard time: developing real-time systems with UML,
objects, frameworks, and patterns, Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

[30] J. C. Laprie (ed), Dependability: basic concepts and terminology, Springer
Verlag, 1992.

[31] D. Frankel, Model Driven Architecture: Applying MDA to Enterprise
Computing, John Wiley & Sons, Inc., New York, NY, USA, 2002.

[32] J. Fredriksson, K. Sandström, and M. Åkerholm, Optimizing resource us-
age in component-based real-time systems, Proceedings of th 8th Interna-
tional Symposium on Component-Based Software Engineering (CBSE8),
Vol. 3489 of Lecture Notes in Computer Science(LNCS), May 2005, pp.
49–66.

[33] L.M. Garshol. BNF and EBNF: What are they and how do they work?
http://www.garshol.priv.no/download/text/bnf.html.

[34] T. Genssler, Components for embedded software: the PECOS approach,
CASES ’02: Proceedings of the 2002 international conference on Com-
pilers, architecture, and synthesis for embedded systems, New York, NY,
USA, ISBN 1-58113-575-0, 2002. ACM, pp. 19–26.

[35] T. Givargis and M. Palesi, Multi-objective design space exploration using
genetic algorithms, Proceedings of the Tenth International Symposium on
Hardware/Software Codesign (CODES-02), New York, 2002. ACM Press,
pp. 67–72.

[36] S. S. Gokhale. Architecture-based software reliability analysis: Overview
and limitations. IEEE Trans. Dependable Secur. Comput., 4(1):32–40,
2007.

[37] K. Goseva-Popstojanova and K.S. Trivedi. Architecture-based approach
to reliability assessment of software systems. Perform. Eval., 45(2-
3):179–204, 2001.

[38] G.S. Graham. Guest editor’s overview: Queuing network models of com-
puter system performance. ACM Comput. Surv., 10(3):219–224, 1978.

References 205

[39] V. Grassi, R. Mirandola, and A. Sabetta. Filling the gap between de-
sign and performance/reliability models of component-based systems: A
model-driven approach. J. Syst. Softw., 80(4):528–558, 2007.

[40] Object Management Group. UML Profile for Schedulability, Per-
formance, and Time. OMG Document ptc/2003-09-01, 2003,
http://www.omg.org/cgi-bin/doc?ptc/2002-09-03.

[41] OMG Group. Success Story. Boeing Commercial Airplanes Group.
http://www.omg.org/corba/industries/mfg/boeing.html.

[42] L. Grunske, Transformational patterns for the improvement of safety
properties, in Proc. of the Second Nordic Conference on Pattern Lan-
guages of Programs (VikingPLoP 03), Bergen Norge, 2003.

[43] L. Grunske, Identifying "good" architectural design alternatives with
multi-objective optimization strategies., in Leon J. Osterweil, H. Dieter
Rombach, and Mary Lou Soffa (Ed.), 28th International Conference on
Software Engineering (ICSE 2006), Shanghai, China, May 20-28, 2006.
ACM, ISBN 1-59593-375-1, 2006, pp. 849–852.

[44] L. Grunske, B. Kaiser, and R. H. Reussner, Specification and evaluation
of safety properties in a component-based software engineering process,
Vol. 3778 of Lecture Notes in Computer Science. Springer-Verlag Berlin
Heidelberg, 2005.

[45] L. Grunske, P. A. Lindsay, E. Bondarev, Y. Papadopoulos, and
D. Parker, An outline of an architecture-based method for optimizing
dependability attributes of software-intensive systems, Architecting De-
pendable Systems IV, Lecture Notes in Computer Science, Heidelberg,
Germany, ISBN 978-3-540-74033-9, 2007. Springer Berlin, pp. 188–209.

[46] H. Hansson, SaveCCM - a component model for safety-critical real-time
systems, EUROMICRO ’04: Proceedings of the 30th EUROMICRO Con-
ference, Washington, DC, USA, ISBN 0-7695-2199-1, 2004. IEEE Com-
puter Society, pp. 627–635.

[47] M. Hendriks and M. Verhoef. Timed automata based analysis of em-
bedded system architectures. Parallel and Distributed Processing Sym-
posium, 2006. IPDPS 2006. 20th International, April 2006.

[48] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
System level performance analysis - the SymTA/S approach, IEE Pro-
ceedings Computers and Digital Techniques, 2005.

[49] S. Hissam. Predictable assembly of substation automation systems: An
experiment report, 2002.

206 References

[50] S. Hissam, G. Moreno, J. Stafford, and K. Wallnau. Enabling predictable
assembly. J. Syst. Softw., 65(3):185–198, 2003.

[51] J. Horn, N. Nafpliotis, and D. E. Goldberg, A Niched Pareto Genetic Al-
gorithm for Multiobjective Optimization, Proceedings of the First IEEE
Conference on Evolutionary Computation, IEEE World Congress on
Computational Intelligence, Vol. 1, Piscataway, New Jersey, June 1994.
IEEE Service Center, pp. 82–87.

[52] M. Hussein and M. Zulkernine. Intrusion detection aware component-
based systems: A specification-based framework. J. Syst. Softw.,
80(5):700–710, 2007.

[53] A.T.H. Hutt, N. Donnelly, L.A. Macaulay, C.J.H. Fowler, and D. Twig-
ger, Describing a product opportunity: A method for understanding
the users’ environment, in D. Diaper and R. R. Winder (Ed.), People
and Computers III, British Computer Society, Cambridge: CUP, ISBN
0521351973, Feb 1988.

[54] IBM. IBM Rational Rose Software. Public website,
http://www.ibm.com/rational.

[55] Intel. Intel VTune Performance Analyzer. White paper,
http://www.intel.com/support/performancetools/vtune/sb/cs-
009650.htm.

[56] ITEA Consortium. Robocop: Robust Open Component Based
Software Architecture. Public Deliverables, http://www.hitech-
projects.com/euprojects/robocop/deliverables.htm.

[57] J. Ivers and N. Sharygina. Overview of ComFoRT: A Model Checking
Reasoning Framework, 2004.

[58] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Devel-
opment Process, Addison-Wesley Professional, Feb 1999.

[59] R. Kazman, Tool support for architecture analysis and design, 2nd In-
ternational Software Architecture Workshop (ISAW-2) at SIGSOFT ’96,
New York, NY, USA, ISBN 0-89791-867-3, 1996. ACM, pp. 94–97.

[60] R. Kazman, L. Bass, M. Webb, and G. Abowd, SAAM: a method for an-
alyzing the properties of software architectures, ICSE ’94: Proceedings of
the 16th international conference on Software engineering, Los Alamitos,
CA, USA, ISBN 0-8186-5855-X, 1994. IEEE Computer Society Press, pp.
81–90.

References 207

[61] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Car-
riere. The architecture tradeoff analysis method. Engineering of Complex
Computer Systems, IEEE International Conference on, 0:00–68, 1998.

[62] M. Kerholm, J. Carlson, J. Fredriksson, and H. Hansson. The SAVE
approach to component-based development of vehicular systems. J. Syst.
Softw., 80(5):655–667, 2007.

[63] K. M. Khan and J. Han, Deriving systems level security properties of
component based composite systems, ASWEC ’05: Proceedings of the
2005 Australian conference on Software Engineering, Washington, DC,
USA, ISBN 0-7695-2257-2, 2005. IEEE Computer Society, pp. 334–343.

[64] S. Kim, J. Parka, and S. Hong, Vol. 48, Scenario-based multitasking for
real-time object-oriented models, Information and Software Technology,
Elsevier, ISBN 978-3-540-40539-9, Feb 2006, pp. 820–835.

[65] J. D. Knowles and D. W. Corne. Approximating the Nondominated
Front Using the Pareto Archived Evolution Strategy. Evolutionary Com-
putation, 8(2):149–172, 2000.

[66] E. A. de Kock, YAPI: application modeling for signal processing systems,
DAC ’00: Proceedings of the 37th conference on Design automation, New
York, NY, USA, ISBN 1-58113-187-9, 2000. ACM, pp. 402–405.

[67] E. A. de Kock, Multiprocessor mapping of process networks: a JPEG de-
coding case study, ISSS ’02: Proceedings of the 15th international sym-
posium on System Synthesis, New York, NY, USA, ISBN 1-58113-576-9,
2002. ACM, pp. 68–73.

[68] S. Kulturel-Konak, D. W. Coit, and F. Baheranwala. Reliability opti-
mization of series-parallel systems using a genetic algorithm. IIE Trans-
actions, 45(2):254–260, 2006.

[69] S. Künzli, L. Thiele, and E. Zitzler. Modular design space exploration
framework for embedded systems. IEE Proceedings - Computers and
Digital Techniques, 152(02):183–192, March 2005.

[70] C. Le and S. Hensley. Using COTS Components for Real-Time Process-
ing of SAR Systems. 2004.

[71] C. L. Liu and James W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[72] Y. Liu, A. Fekete, and I. Gorton. Design-level performance prediction
of component-based applications. IEEE Trans. Softw. Eng., 31(11):928–
941, 2005.

208 References

[73] D. Livolsi, T. O’Neill, J. Leaney, M. Denford, and K. Dunsire, Guided
architecture-based design optimisation of CBSs, ECBS 2006. IEEE Com-
puter Society, ISBN 0-7695-2546-6, 2006, pp. 247–258.

[74] C. A. Mattson and A. Messac. Pareto frontier based concept selection
under uncertainty, with visualization. Optimization and Engineering,
6(1):85–115, 2005.

[75] T. Mowbray and R. Zahavi, , Essential Corba, John Wiley and Sons,
New York, 1995.

[76] D. Nam and C. H. Park. Multiobjective Simulated Annealing: A Com-
parative Study to Evolutionary Algorithms. International Journal of
Fuzzy Systems, 2(2):87–97, 2000.

[77] M. Nicholson, Selecting a Topology for Safety-Critical Real-Time Control
Systems, PhD thesis, Department of Computer Science, University of
York, 1998.

[78] D. M. Nicol, W. H. Sanders, and K. S. Trivedi. Model-based evalua-
tion: From dependability to security. IEEE Trans. Dependable Secur.
Comput., 1(1):48–65, 2004.

[79] S. Nimmagadda, C. Liyanaarnchchi, A. Gopinath, D. Niehaus, and
A. Kaushal, Performance Patterns: Automated Scenario-Based ORB
Performance Evaluation, Proceedings of the 5th Conference on Object-
Oriented Technologies and Systems, May 1999, pp. 15–28.

[80] G. Palermo, C. Silvano, and V. Zaccaria, A flexible framework for fast
multi-objective design space exploration of embedded systems, Proceed-
ings of 13th International Workshop, PATMOS 2003, Torino, Italy, Sep-
tember 10-12, 2003, Vol. 2799 of Lecture Notes in Computer Science.
Springer, ISBN 3-540-20074-6, 2003, pp. 249–258.

[81] M. Pandey and D. Zappala, A Scenario-Based Performance Evaluation
of Multicast Routing Protocols for Ad Hoc Networks, Proceedings of the
6th Symposium on a World of Wireless Mobile and Multimedia Networks
(WoWMoM), Los Alamitos, CA, USA, ISSN 0-7695-2342-0, May 2005.
IEEE Computer Society, pp. 31–41.

[82] Y. Papadopoulos and C. Grante. Evolving car designs using model-
based automated safety analysis and optimisation techniques. Journal
of Systems and Software, 76(1):77–89, 2005.

[83] M. Pastrnak, P.H.N. de With, and J.L. van Meerbergen, QoS Concept for
Scalable MPEG-4 Video Object Decodidng on Multimedia (NoC) Chips,

References 209

IEEE Trans. on Consumer Electronics, No. 4, Vol. 52, ISSN 0098-3063,
Nov. 2006, pp. 1418–1426.

[84] D. Petriu, D. Amyot, and M. Woodside, Vol. 2708, Scenario-Based
Performance Engineering with UCMNAV, SDL 2003: System Design,
Springer Berlin / Heidelberg, Cambridge: CUP, ISBN 978-3-540-40539-
9, Feb 2003, pp. 155.

[85] K. Philippe, The 4+1 View Model of architecture, IEEE Softw., Vol. 12,
Los Alamitos, CA, USA, ISSN 0740-7459, 1995. IEEE Computer Society
Press, pp. 42–50.

[86] A. D. Pimentel, C. Erbas, and S. Polstra. A systematic approach to
exploring embedded system architectures at multiple abstraction levels.
IEEE Trans. Computers, 55(2):99–112, 2006.

[87] F. Plasil, Enhancing component specification by behavior description:
the SOFA experience, WISICT ’05: Proceedings of the 4th international
symposium on Information and communication technologies. Trinity Col-
lege Dublin, ISBN 1-59593-169-4, 2005, pp. 185–190.

[88] R. H. Reussner, H. W. Schmidt, and I. H. Poernomo. Reliability pre-
diction for component-based software architectures. J. Syst. Softw.,
66(3):241–252, 2003.

[89] V. S. Sharma and K. S. Trivedi, Architecture based analysis of perfor-
mance, reliability and security of software systems, WOSP ’05: Proceed-
ings of the 5th international workshop on Software and performance, New
York, NY, USA, ISBN 1-59593-087-6, 2005. ACM, pp. 217–227.

[90] D. Slama. CORBA – The IT garage: Enterprise CORBA comes to
Japan. http://www.japaninc.com/cpj/features/features06a.html.

[91] SUN Microsystems. PerfAnal: A Performance Analysis Tool. White
paper, http://java.sun.com/developer/technicalArticles/Programming.

[92] Arcticus Systems. Rubus OS Reference Manual. White Paper,
http://www.arcticus.se.

[93] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming, Addison-Wesley Professional, December 1997.

[94] G. Tesauro, W. E. Walsh, and J. O. Kephart, Utility-function-driven
resource allocation in autonomic systems, ICAC ’05: Proceedings of the
Second International Conference on Automatic Computing, Washington,
DC, USA, ISBN 0-7965-2276-9, 2005. IEEE Computer Society, pp. 342–
343.

[95] L. Thiele, S. Chakraborty, and M. Naedele, Real-time calculus for
scheduling hard real-time systems, Proc. IEEE International Symposium
on Circuits and Systems (ISCAS), Geneva, Switzerland, 2000. pp. 101–
104.

[96] Timesys. LinuxLink by TimesysTM. Public website,
http://www.timesys.com/products/what.htm.

[97] M. Timmerman and L Perneel. RTOS Evaluation Project. Dedicated
Systems Experts BN Document,DSE-RTOS-EVA-001b, 2005-09-13.

[98] S. Uchitel, G. Brunet, and M. Chechik. Synthesis of partial behav-
ior models from properties and scenarios. IEEE Trans. Softw. Eng.,
35(3):384–406, 2009.

[99] D. Urting, Y. Berbers, S. v. Baelen, T. Holvoet, Y. Vandewoude, and
P. Rigole, A tool for component based design of embedded software, CR-
PIT ’02: Proceedings of the Fortieth International Conference on Tools
Pacific, Darlinghurst, Australia, Australia, ISBN 0-909925-88-7, 2002.
Australian Computer Society, Inc., pp. 159–168.

[100] R. van Ommering, Vol. 33, , The Koala component model for consumer
electronics software, IEEE Trans. Computer, Mar 2002, pp. 78–85.

[101] M. Verhoef. The In-Car Radio Navigation case study. White Paper,
http://www.tik.ee.ethz.ch/ leiden05/data/pset/p2.pdf.

[102] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse. System architecture
evaluation using modular performance analysis: a case study. Int. J.
Softw. Tools Technol. Transf., 8(6):649–667, 2006.

[103] X. Wu and M. Woodside. Performance modeling from software compo-
nents. SIGSOFT Softw. Eng. Notes, 29(1):290–301, 2004.

[104] H. Ma X. Jin and Z. Gu, Real-time component composition using hier-
archical timed automata, QSIC ’07: Proceedings of the Seventh Inter-
national Conference on Quality Software, Washington, DC, USA, ISBN
0-7695-3035-4, 2007. IEEE Computer Society, pp. 90–99.

[105] E. Zitzler, M. Laumanns, and L. Thiele, SPEA2: Improving the strength
pareto evolutionary algorithm, in K. Giannakoglou, D. Tsahalis, J. Peri-
aux, P. Papailou, and T. Fogarty (Ed.), EUROGEN 2001. Evolutionary
Methods for Design, Optimization and Control with Applications to In-
dustrial Problems, Athens, Greece, 2002. pp. 95–100.

Curriculum Vitae
Yahor Bondarau received his MSc degree in Robotics and Informatics from

the State Polytechnic University, Belarus Republic, in 1997. In 2003, he com-
pleted the post-master education program called OOTI of the Eindhoven Uni-
versity of Technology (TU/e), The Netherlands, for which he obtained a Pro-
fessional Doctorate in Engineering (PDEng) in September 2003.

Currently, he is a Researcher at the Video Coding Architectures group,
at the Electrical Engineering Faculty of the TU/e. He is focusing on the
design of real-time component-based software, literally on the performance
prediction of component-based systems on multiprocessor architectures. He
was involved in several European research projects on software architectures
(Space4U, Trust4All). He (co-)authored over 15 publications for international
conferences, a book chapter on architecture optimization and he was a tutorial
speaker for two IEEE conferences.

	1. Introduction
	2. Background on CBSE and RT Systems
	3. State of the Art on Predictable Assembly of Components
	4. DeepCompass Analysis Framework
	5. Scenario-Based Performance Analysis Method
	6. Architecture Optimization
	7. CARAT Software Toolkit
	8. Survey on Scenario-Based Performance Analysis
	9. Case Studies
	10. Conclusions
	References

