8,761 research outputs found

    DS-CDMA microcellular networks with adaptive antennas

    Get PDF

    Insights and approaches for low-complexity 5G small-cell base-station design for indoor dense networks

    Get PDF
    This paper investigates low-complexity approaches to small-cell base-station (SBS) design, suitable for future 5G millimeter-wave (mmWave) indoor deployments. Using large-scale antenna systems and high-bandwidth spectrum, such SBS can theoretically achieve the anticipated future data bandwidth demand of 10000 fold in the next 20 years. We look to exploit small cell distances to simplify SBS design, particularly considering dense indoor installations. We compare theoretical results, based on a link budget analysis, with the system simulation of a densely deployed indoor network using appropriate mmWave channel propagation conditions. The frequency diverse bands of 28 and 72 GHz of the mmWave spectrum are assumed in the analysis. We investigate the performance of low-complexity approaches using a minimal number of antennas at the base station and the user equipment. Using the appropriate power consumption models and the state-of-the-art sub-component power usage, we determine the total power consumption and the energy efficiency of such systems. With mmWave being typified nonline-of-sight communication, we further investigate and propose the use of direct sequence spread spectrum as a means to overcome this, and discuss the use of multipath detection and combining as a suitable mechanism to maximize link reliability

    Application of adaptive antenna technology to third generation radio architectures

    Get PDF

    Spread spectrum techniques for indoor wireless IR communications

    Get PDF
    Multipath dispersion and fluorescent light interference are two major problems in indoor wireless infrared communications systems. Multipath dispersion introduces intersymhol interference at data rates above 10 Mb/s, while fluorescent light induces severe narrowband interference to baseband modulation schemes commonly used such as OOK and PPM. This article reviews the research into the application of direct sequence spread spectrum techniques to ameliorate these key channel impairments without having to resort to complex signal processing techniques. The inherent properties of a spreading sequence are exploited in order to combat the ISI and narrowband interference. In addition, to reduce the impact of these impairments, the DSSS modulation schemes have strived to be bandwidth-efficient and simple to implement. Three main DSSS waveform techniques have been developed and investigated. These are sequence inverse keying, complementary sequence inverse keying, and M-ary biorthogonal keying (MBOK). The operations of the three systems are explained; their performances were evaluated through simulations and experiments for a number of system parameters, including spreading sequence type and length. By comparison with OOK, our results show that SIK, CSIK, and MBOK are effective against multipath dispersion and fluorescent light interference becausc the penalties incurred on the DSSS schemes are between 0-7 dB, while the penalty on OOK in the same environment is more than 17 dB. The DSSS solution for IR wireless transmission demonstrates that a transmission waveform can he designed to remove the key channel impairments in a wireless IR system

    Performance of a linear interference canceller for a ds/cdma synchronous system based on the ekf delay estimator

    Get PDF
    Since the conventional detector often fails to produce reliable decisions for a CDMA channel, several new multiuser detectors have previously proposed. In the present paper, the authors propose both a simple linear scheme for interference cancellation, which exhibits good performance, and a synchronism scheme based on the extended Kalman filter (EKF) to achieve synchronization among the different users at the base station, for a direct-sequence code-division multiple-access (DS/CDMA) synchronous system. The influence of the synchronism scheme on the performance of the interference canceller is analyzed under Rayleigh multipath fading.Peer ReviewedPostprint (published version

    The Distribution of Minimum of Ratios of Two Random Variables and Its Application in Analysis of Multi-hop Systems

    Get PDF
    The distributions of random variables are of interest in many areas of science. In this paper, ascertaining on the importance of multi-hop transmission in contemporary wireless communications systems operating over fading channels in the presence of cochannel interference, the probability density functions (PDFs) of minimum of arbitrary number of ratios of Rayleigh, Rician, Nakagami-m, Weibull and α-” random variables are derived. These expressions can be used to study the outage probability as an important multi-hop system performance measure. Various numerical results complement the proposed mathematical analysis
    • 

    corecore