7 research outputs found

    Exploiting memory allocations in clusterized many-core architectures

    Get PDF
    Power-efficient architectures have become the most important feature required for future embedded systems. Modern designs, like those released on mobile devices, reveal that clusterization is the way to improve energy efficiency. However, such architectures are still limited by the memory subsystem (i.e., memory latency problems). This work investigates an alternative approach that exploits on-chip data locality to a large extent, through distributed shared memory systems that permit efficient reuse of on-chip mapped data in clusterized many-core architectures. First, this work reviews the current literature on memory allocations and explore the limitations of cluster-based many-core architectures. Then, several memory allocations are introduced and benchmarked scalability, performance and energy-wise, compared to the conventional centralized shared memory solution to reveal which memory allocation is the most appropriate for future mobile architectures. Our results show that distributed shared memory allocations bring performance gains and opportunities to reduce energy consumption

    Coordinated management of the processor and memory for optimizing energy efficiency

    Get PDF
    Energy efficiency is a key design goal for future computing systems. With diverse components interacting with each other on the System-on-Chip (SoC), dynamically managing performance, energy and temperature is a challenge in 2D architectures and more so in a 3D stacked environment. Temperature has emerged as the parameter of primary concern. Heuristics based schemes have been employed so far to address these issues. Looking ahead into the future, complex multiphysics interactions between performance, energy and temperature reveal the limitations of such approaches. Therefore in this thesis, first, a comprehensive characterization of existing methods is carried out to identify causes for their inefficiency. Managing different components in an independent and isolated fashion using heuristics is seen to be the primary drawback. Following this, techniques based on feedback control theory to optimize the energy efficiency of the processor and memory in a coordinated fashion are developed. They are evaluated on a real physical system and a cycle-level simulator demonstrating significant improvements over prior schemes. The two main messages of this thesis are, (i) coordination between multiple components is paramount for next generation computing systems and (ii) temperature ought to be treated as a resource like compute or memory cycles.Ph.D

    Extending Memory Capacity in Consumer Devices with Emerging Non-Volatile Memory: An Experimental Study

    Full text link
    The number and diversity of consumer devices are growing rapidly, alongside their target applications' memory consumption. Unfortunately, DRAM scalability is becoming a limiting factor to the available memory capacity in consumer devices. As a potential solution, manufacturers have introduced emerging non-volatile memories (NVMs) into the market, which can be used to increase the memory capacity of consumer devices by augmenting or replacing DRAM. Since entirely replacing DRAM with NVM in consumer devices imposes large system integration and design challenges, recent works propose extending the total main memory space available to applications by using NVM as swap space for DRAM. However, no prior work analyzes the implications of enabling a real NVM-based swap space in real consumer devices. In this work, we provide the first analysis of the impact of extending the main memory space of consumer devices using off-the-shelf NVMs. We extensively examine system performance and energy consumption when the NVM device is used as swap space for DRAM main memory to effectively extend the main memory capacity. For our analyses, we equip real web-based Chromebook computers with the Intel Optane SSD, which is a state-of-the-art low-latency NVM-based SSD device. We compare the performance and energy consumption of interactive workloads running on our Chromebook with NVM-based swap space, where the Intel Optane SSD capacity is used as swap space to extend main memory capacity, against two state-of-the-art systems: (i) a baseline system with double the amount of DRAM than the system with the NVM-based swap space; and (ii) a system where the Intel Optane SSD is naively replaced with a state-of-the-art (yet slower) off-the-shelf NAND-flash-based SSD, which we use as a swap space of equivalent size as the NVM-based swap space

    An Intelligent Framework for Energy-Aware Mobile Computing Subject to Stochastic System Dynamics

    Get PDF
    abstract: User satisfaction is pivotal to the success of mobile applications. At the same time, it is imperative to maximize the energy efficiency of the mobile device to ensure optimal usage of the limited energy source available to mobile devices while maintaining the necessary levels of user satisfaction. However, this is complicated due to user interactions, numerous shared resources, and network conditions that produce substantial uncertainty to the mobile device's performance and power characteristics. In this dissertation, a new approach is presented to characterize and control mobile devices that accurately models these uncertainties. The proposed modeling framework is a completely data-driven approach to predicting power and performance. The approach makes no assumptions on the distributions of the underlying sources of uncertainty and is capable of predicting power and performance with over 93% accuracy. Using this data-driven prediction framework, a closed-loop solution to the DEM problem is derived to maximize the energy efficiency of the mobile device subject to various thermal, reliability and deadline constraints. The design of the controller imposes minimal operational overhead and is able to tune the performance and power prediction models to changing system conditions. The proposed controller is implemented on a real mobile platform, the Google Pixel smartphone, and demonstrates a 19% improvement in energy efficiency over the standard frequency governor implemented on all Android devices.Dissertation/ThesisDoctoral Dissertation Computer Engineering 201

    DSPatch: Dual Spatial Pattern Prefetcher

    Full text link
    High main memory latency continues to limit performance of modern high-performance out-of-order cores. While DRAM latency has remained nearly the same over many generations, DRAM bandwidth has grown significantly due to higher frequencies, newer architectures (DDR4, LPDDR4, GDDR5) and 3D-stacked memory packaging (HBM). Current state-of-the-art prefetchers do not do well in extracting higher performance when higher DRAM bandwidth is available. Prefetchers need the ability to dynamically adapt to available bandwidth, boosting prefetch count and prefetch coverage when headroom exists and throttling down to achieve high accuracy when the bandwidth utilization is close to peak. To this end, we present the Dual Spatial Pattern Prefetcher (DSPatch) that can be used as a standalone prefetcher or as a lightweight adjunct spatial prefetcher to the state-of-the-art delta-based Signature Pattern Prefetcher (SPP). DSPatch builds on a novel and intuitive use of modulated spatial bit-patterns. The key idea is to: (1) represent program accesses on a physical page as a bit-pattern anchored to the first "trigger" access, (2) learn two spatial access bit-patterns: one biased towards coverage and another biased towards accuracy, and (3) select one bit-pattern at run-time based on the DRAM bandwidth utilization to generate prefetches. Across a diverse set of workloads, using only 3.6KB of storage, DSPatch improves performance over an aggressive baseline with a PC-based stride prefetcher at the L1 cache and the SPP prefetcher at the L2 cache by 6% (9% in memory-intensive workloads and up to 26%). Moreover, the performance of DSPatch+SPP scales with increasing DRAM bandwidth, growing from 6% over SPP to 10% when DRAM bandwidth is doubled.Comment: This work is to appear in MICRO 201
    corecore