
COORDINATED MANAGEMENT OF THE PROCESSOR AND MEMORY FOR
OPTIMIZING ENERGY EFFICIENCY

A Dissertation
Presented to

The Academic Faculty

By

Karthik Rao

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

August 2018

Copyright c© Karthik Rao 2018

COORDINATED MANAGEMENT OF THE PROCESSOR AND MEMORY FOR
OPTIMIZING ENERGY EFFICIENCY

Approved by:

Dr. Sudhakar Yalamanchili, Advi-
sor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Yorai Wardi, Co-Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Magnus Egerstedt
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Saibal Mukhopadhyay
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Santosh Pande
School of Computer Science
Georgia Institute of Technology

Dr. Joseph Greathouse
Senior Member of Technical Staff
Advanced Micro Devices Inc.

Date Approved: May 14, 2018

You have the right to work only but never to its fruits.

Let not the fruits of action be your motive, nor let your attachment be to inaction.

Bhagavad Gita Chapter 2 Verse 47.

To Amma, Anna and Deepa.

ACKNOWLEDGEMENTS

The Guru is Brahma (creator); the Guru is Vishnu (protector); the Guru is Maheshwara

(destroyer). The Guru is verily the Supreme Brahman. I offer my salutations to that Guru,

the remover of my darkness and my ignorance.

To my advisers, my Gurus, Dr. Sudhakar Yalamanchili and Dr. Yorai Wardi, I offer

my sincere salutations. They have been the guiding lights in my journey through graduate

school. The technical discussions were truly enriching and have expanded my perspective

not just in my own area of research but on research in general as well. They have taught me

to appreciate the art of identifying subtle insights and also the rigor involved in presenting

ideas in a crisp and articulate manner. Looking back at my first meeting with both of them

five years ago, when I was quite unsure about working in computer architecture, I can now

say safely that I am a better engineer and hopefully a better researcher because of their

guidance. Their general life advice and subtle course corrections have steered my ship

to where it is now. I will never forget the non-technical discussions with Dr. Wardi that

spanned a plethora of topics. Remembering Dr. Wardi’s words, ”You are not out of my

orbit yet!”, I eagerly look forward to continuing this relationship with both my advisers.

I would also like to thank my committee Dr. Magnus Egerstedt, Dr. Saibal Mukhopad-

hyay, Dr. Santosh Pande and Dr. Joseph Greathouse for providing their valuable sugges-

tions and comments that have improved the quality of this thesis. I must thank Dr. Egerstedt

in particular for introducing me to my advisers. Special thanks to Dr. Joseph Greathouse

for believing in my abilities and bringing me to AMD Research.

My graduate studies have been generously supported by multiple sources and I would

like to thank them profusely viz. NSF, Huawei and AMD. The internship at Huawei Tech-

nologies, that essentially decided my thesis topic, was made possible by my mentor Jun

v

Wang and manager Handong Ye. The constant encouragement given by Jun, Zongfang Lin

and other colleagues at Huawei made me productive and insightful discussions lead to my

very first patent applications.

During the six years at Georgia Tech, I had the privilege of interacting and sharing

lab space with members from the CASL and GRITS Labs. I am very grateful to William

Song, Minhaj Hasan, Eric Anger, Jin Wang, Xinwei Chen, Chad Kersey, Tine Blaise, Hugh

Xiao, Matt Hale, Thiagarajan Ramachandran, Maria Santos, Tina Setter, Swamit Tannu,

Gururaj Saileshwar and many others. The course homeworks, research collaborations and

many discussions over coffees have helped me stay afloat. I look forward to maintaining

the same level of communication in the future as well.

A heartfelt thank you to all my teachers who helped shape my career, especially K. Sub-

rahmanya Bhat, Mrs. Shahin Masood, Dr. Kumara Shama, Dr. U.Sripathi, Dr. M.S.Bhat,

Chirag Jain, Dr. Kadagattur Srinidhi, Dr. Ed Coyle and many others. I would be remiss if I

do not thank Sundar, Garima and Dhawal, who believed in me right from our undergradu-

ate days at Manipal. To Megha Sandesh, Ayush Sharma and many other friends at Georgia

Tech, thank you for all the philosophical exchanges. Words are insufficient to express my

gratitude to “Dhani” Shishir Kolathaya, who held me up during tough times. I am indebted

to him. To my partners in crime, my roommates at one time or the other, my brothers,

Kaivalya Bakshi and Srinivas Hanasoge. Our “conferences” on every little topic under the

sun, shall never be forgotten. The joys, sorrows, frustrations and successes we shared will

undoubtedly make for a good laugh later on.

My parents Jyoti Umesh and Govindarao Umesh, my sister Deepa, my grandmother

Puttalakshmi and my foster parents in the US, Mr. Bhaskar and Dr. Jayanthi Srinivasiah

have been my pillars of moral support since the very beginning. Without their encouraging

words during tough times, I do not think I would have made it thus far. My father, a

professor himself, deserves a special mention especially since he helped me edit this thesis.

I aspired to be like him since my childhood and I hope I have made him proud.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xii

List of Figures . xiv

Chapter 1: Introduction . 1

1.1 Thesis Statement . 3

1.2 Thesis Organization . 8

Chapter 2: Problem Formulation and Related Work 11

2.1 The Memory Wall . 11

2.2 Power, Energy and Thermal Management of Processors and Memory 13

2.2.1 Dynamic Voltage and Frequency Scaling (DVFS) 13

2.2.2 CPU Idling . 17

2.2.3 Microarchitecture Optimizations 18

2.2.4 OS, Compiler Optimizations . 18

2.3 Coordinated Management of Processor and Memory 19

2.4 Summary . 20

Chapter 3: Performance, Power and Energy Characterization: Mobile Devices . 22

vii

3.1 Overview . 22

3.2 Methodology . 24

3.2.1 Experimental Testbed . 25

3.2.2 Hardware and Software Testing Options 27

3.2.3 Other Factors . 29

3.3 Results . 30

3.3.1 Compiler Optimizations and Thread Level Parallelism 30

3.3.2 CPU Governors . 33

3.3.3 Memory Bandwidth Governors . 35

3.3.4 GPU Governors . 38

3.3.5 Cross Effects . 39

3.4 Summary . 45

Chapter 4: Coordinated Control: Mobile Devices 47

4.1 Overview . 47

4.2 Motivation . 50

4.3 Controller Design . 52

4.3.1 Offline Profiling . 52

4.3.2 Online Controller . 55

4.3.3 Implementation Challenges . 59

4.3.4 Applications . 60

4.4 Evaluation . 61

4.4.1 Results and Analysis . 62

viii

4.4.2 Application Scope . 70

4.4.3 Effect of Different Background Loads 71

4.4.4 Comparison with CPU-only DVFS 73

4.5 Summary . 74

Chapter 5: Coordinated Control: Generalization to Multi-Core Multi-Memory-
Controller Systems . 76

5.1 Overview . 77

5.2 Memory Controller Configurations . 78

5.3 Performance and Power Model for a Single-Core Single-Memory-Controller
System . 79

5.4 Optimization Problem: Single-Core Single-Memory-Controller 82

5.5 Solution Strategy . 83

5.6 Results . 84

5.7 Microbenchmark Characterization: Two-Cores Two-Memory Controllers . . 86

5.8 Optimization Problem: Four-Cores Two-Memory-Controllers 90

5.9 Solution Strategy . 91

5.10 Results . 92

5.11 Discussion . 93

5.12 Summary . 94

Chapter 6: Thermal Management: 2D Architectures 96

6.1 Overview . 97

6.2 Regulation Technique . 100

6.3 Temperature Control in Multi-Core Processors 104

ix

6.4 Results . 108

6.5 Summary . 115

Chapter 7: Characterization of a 3D Processor-Memory Architecture 117

7.1 Overview . 118

7.2 Characterization . 121

7.2.1 Experimental Framework . 122

7.2.2 Nomenclature . 122

7.2.3 Thermal Coupling Analysis . 125

7.3 Summary . 132

Chapter 8: Coordinated Management in 3D Architectures: Performance, En-
ergy and Temperature . 135

8.1 Overview . 136

8.2 TRINITY . 140

8.2.1 System Models . 141

8.2.2 Solution Strategy . 143

8.3 Results . 145

8.3.1 Benchmarks . 146

8.3.2 Analyzing TRINITY Performance 147

8.3.3 Impact on Lifetime Reliability . 150

8.3.4 Effect of TRINITY Parameter Variations 151

8.4 Summary . 153

Chapter 9: Conclusions and Future Work . 154

x

9.1 Thesis Conclusions . 154

9.2 Future Work . 157

References . 174

xi

LIST OF TABLES

3.1 List of benchmarks suites. 26

3.2 Table listing different options tested. 3indicates the tested option for the
benchmark group. *Except 3DMark. 27

3.3 3DMark score for different GPU governors on N6. CPU governor fixed to
interactive. 38

3.4 Performance difference when changing CPU governor from interactive
to powersave, with fixed BW governor. All numbers compared against
intCPU-defBW on N6. 40

3.5 Performance difference when changing BW governor from default to powersave
or performance, with fixed CPU governor. Numbers compared against
intCPU-defBW and powsavCPU-defBW, respectively, on N6. 41

3.6 Power difference when changing CPU governor from interactive to
powersave, with fixed BW governor. All numbers compared against
intCPU-defBW on N6. 41

3.7 Power difference caused by changing BW governor from default to powersave
or performance, with fixed CPU governors. Numbers compared against
intCPU-defBW and pwrsavCPU-defBW, respectively, on N6. 41

3.8 Performance, Power and Energy difference of different CPU and idle con-
figurations as compared to default intCPU-idleON on N5X. 44

3.9 Summary of tests and findings. 46

4.1 Sample table with performance and power data profiled offline for Angry-
Birds application . 54

4.2 List of CPU frequencies and memory bandwidths on Nexus 6 59

xii

4.3 Summary of performance difference and energy savings obtained by the
controller . 62

4.4 Summary of performance difference and energy savings obtained for the
tested applications under Baseline Load (BL), No Load (NL), Heavier Load
(HL) conditions . 71

4.5 Summary of performance difference and energy savings obtained by the
CPU-only DVFS controller . 73

5.1 DDR3 Timing parameters for different speed grades. 79

5.2 Performance model parameters . 81

7.1 Simulation framework parameters. Technology node is 16nm. 123

8.1 Table demonstrating variable application heat capacities and room for im-
proving balance between performance, temperature and energy. 139

8.2 Parameters estimated offline. 141

xiii

LIST OF FIGURES

1.1 Thesis Overview: Characterization of three parameters leading to TRINITY,
a control theory based solution for 3D stacked architectures. 6

2.1 Memory Wall Problem [41] . 12

3.1 Effect of compiler optimization on performance, power, and energy on N6.
Normalized w.r.t O3. 31

3.2 PARSEC Threads: Performance, Power and Energy on N6. Normalized
w.r.t 4 threads. 32

3.3 CPU Governors: (a) Performance (b) Power and (c) Energy on N6. Nor-
malized w.r.t interactive governor. 34

3.4 Memory BW Governors: (a) Performance (b) Power and (c) Energy on N6.
Normalized w.r.t cpubw hwmon BW governor. 37

3.5 (a)AngryBirds and (b)MXPlayer: Performance and Power trends on N6
for different CPU frequencies and mem BW combinations. Performance
normalized to configuration (0.3GHz, 762MBps). 43

4.1 Histogram of CPU frequencies for eBook application. The numerals indi-
cated on the x-axis stand for the choice of 18 discrete frequencies (in the
range 0.3− 2.65GHz). See Table 4.2 for details. 51

4.2 Block diagram of feedback controller . 55

4.3 Pictorial representation of the energy optimization 59

4.4 Histogram of CPU frequencies: controller vs. default 63

4.5 Histogram of memory bandwidths: controller vs. default 64

xiv

4.6 Energy Consumption: controller vs. default 65

5.1 Performance model for a single-core single-memory-controller system. . . . 80

5.2 Performance of a memory bound workload for different memory controller
frequencies. 81

5.3 Solution strategy for optimizing EDP in a Single-Core Single-Memory-
Controller system. 83

5.4 EDP Comparison: Single-Core Single-Memory-Controller 85

5.5 Two-core two-memory-controller system for microbenchmark characteri-
zation. 86

5.6 Performance of a microbenchmark for different ops/Byte and memory ad-
dressing patterns. 88

5.7 Performance sensitivity graph . 89

5.8 Four-core two-memory-controller system. 90

5.9 Memory controller arbitration algorithm. 91

5.10 EDP Comparison: Four-Cores Two-Memory-Controller. 92

6.1 Control System Block Diagram . 100

6.2 System Model . 105

6.3 Floor Plan of the 4 Core Processor . 109

6.4 Tracking results with Continuous Frequencies 112

6.5 Tracking results with Discrete Frequencies 112

6.6 Tracking results with fixed gains and variable gains 115

7.1 Physical layout of the 3D stacked architecture. 123

7.2 Functional description of the 3D stack. 124

xv

7.3 Microbenchmark characterization nomenclature. 124

7.4 Performance and temperature variation when running mem bound and com-
pute bound benchmarks on a source core accessing source and remote cache
banks at different core frequencies. 126

7.5 Performance and temperature variation when running mem bound and com-
pute bound benchmarks on a source core accessing source and remote cache
banks at different core frequencies. SC is Core2. 127

7.6 Performance and temperature variation when running mem bound and com-
pute bound benchmarks on a source core accessing source and remote cache
banks at different core frequencies. SC in Core3. 128

7.7 Thermal coupling Cases (b) and (c). The error bars are variances in tem-
perature due to different ops/byte and physical locations of the source core. 130

7.8 Thermal coupling Case (d). The error bars are variances in temperature due
to different ops/byte and physical locations of the source core. 131

7.9 Influence of package boundaries on thermal coupling and performance. . . . 133

8.1 Heat map of the core layer showing reduction in thermal headroom for
neighboring cores. 137

8.2 Temperature Regulation Inefficiency: Except for Core5 and Core11, rest of
the cores are idle. At 400ms mark Core11 becomes idle as well. 139

8.3 Leakage power and temperature model. 143

8.4 Behavior of the optimization cost. 145

8.5 TRINITY Algorithm. 146

8.6 Pseudo code for re-calibrating R. 147

8.7 Controller performance compared against the ondemand heuristic. Con-
troller Parameters: T = 1ms and TR = 1ms. Left y-axis and right y-axis
units are EDP and Kelvin, respectively. 149

8.8 Average power consumption by TRINITY compared against the ondemand
heuristic. Controller Parameters: T = 1ms and TR = 1ms. 150

8.9 TRINITY Parameter Variation . 152

xvi

SUMMARY

Energy efficiency is a key design goal for future computing systems. With diverse com-

ponents interacting with each other on the System-on-Chip (SoC), dynamically managing

performance, energy and temperature is a challenge in 2D architectures and more so in a

3D stacked environment. Temperature has emerged as the parameter of primary concern.

Heuristics based schemes have been employed so far to address these issues. Looking

ahead into the future, complex multiphysics interactions between performance, energy and

temperature reveal the limitations of such approaches. Therefore in this thesis, first, a com-

prehensive characterization of existing methods is carried out to identify causes for their

inefficiency. Managing different components in an independent and isolated fashion using

heuristics is seen to be the primary drawback. Following this, techniques based on feedback

control theory to optimize the energy efficiency of the processor and memory in a coordi-

nated fashion are developed. They are evaluated on a real physical system and a cycle-level

simulator demonstrating significant improvements over prior schemes. The two main mes-

sages of this thesis are, (i) coordination between multiple components is paramount for

next generation computing systems and (ii) temperature ought to be treated as a resource

like compute or memory cycles.

xvii

CHAPTER 1

INTRODUCTION

The ever-increasing demand for better computational performance has driven several in-

novations at the hardware, software and microarchitectural levels. In tune with Moore’s

law, the microprocessor has undergone an exponential growth in performance since its ad-

vent in 1971. Simultaneously, supply voltage scaling governed by the tenets of Dennard

scaling has enabled this increase in performance by keeping power consumption under a

reasonable envelope. However, the bandwidth, latency and energy consumption of off-chip

memories have not kept pace with their processor counterparts. The energy consumed by

a DRAM access is more than twice that of a double precision floating point operation [1,

2]. The US Department of Energy estimates that 70% of the total power of a 100,000 node

exascale system will be consumed by the DRAM accesses alone (See [3] and references

therein). In the age of Cloud Computing, Big Data processing and the Internet of Things,

applications require moving large amounts of data to and from off-chip memories. The per-

formance of a computing system is, therefore, not a function of the processor alone. The

memory system is more often than not, the bottleneck in deciding the overall performance

while consuming a significant portion of the input power.

Addressing the so-called “Memory Wall”, 3D packaging of silicon dice, enabled by

advances such as Through-Silicon Via (TSV) technology [4], has led to the integration of

memory and logic into a single package. Their footprint is small and they promise signif-

icant reductions in data movement latency and energy. Further, the 3D package provides

an order of magnitude increase in memory bandwidth. For example, commercial stan-

dards like DDR3-1333 [5], DDR4-2667 [6], HBM2 [7] and HMC2 [8] realize 10.66 GB/s,

21.34 GB/s, 256 GB/s and 320 GB/s, respectively. To effectively exploit the high band-

width provided by 3D die-stacked DRAM, multiple efforts have explored moving compute

1

logic inside the package as part of the die-stack, revisiting the early efforts at architecting

Processing-In-Memory (PIM) designs [9, 10, 11, 12, 13, 14, 15].

Alongside high performance server computers, the world of mobile System-on-Chips

(SoC) is also rapidly expanding. It is predicted that by 2020 there will be over 20 billion

mobile-connected devices [16]. The mobile CPU itself has improved 10× in performance

between 2009 and 2015 [17]. Furthermore, it has evolved from a single core (2009) to

multiple homogeneous cores (2011) to multiple heterogeneous cores (2013). With mobile

applications becoming more memory intensive, the effects of the “memory wall” are be-

ing observed on mobile SoCs as well. Complementing the mobile CPU, newer low power

mobile memories such as LPDDR [18] and Wide I/O [19] have been introduced. The mo-

bile SoCs of today are more diverse and capable with advanced GPUs, DSPs, audio/video

decoders, WiFi, 3G and 4G LTE modules etc. Despite this, the two pillars defining perfor-

mance of such systems continue to be the mobile CPU and the memory.

As transistor sizes get smaller, effects due to leakage currents and subthreshold volt-

ages, which are not accounted for in Dennard scaling rules, start to to play a dominant

role. Since the breakdown of Dennard scaling in 2006, microprocessor performance scal-

ing has demanded a more detailed understanding of the multi-physics interactions between

performance, energy and temperature of the computing environment. While 3D stacking

of memory and logic die delivers an order of magnitude improvement in available memory

bandwidth, the price paid, however, is tighter thermal constraints. Due to thermal shielding,

the logic die temperatures can reach unsustainable levels, thereby placing an upper limit on

clock frequencies (and hence performance). Furthermore, large localized temperature vari-

ations across different layers of DRAM and logic die can lead to detrimental effects on

the performance and reliability. It is therefore natural to ask the following questions: How

should one go about managing such computing environments? Is it beneficial to expect a

‘balance’ between achievable performance and the physics of the device?

Attempting to answer these questions inevitably leads to a related, yet important, issue:

2

the choice of the optimization metric. Power efficiency and energy efficiency are two com-

monly used metrics. Power efficiency is measured as the ratio of Watts of power dissipated

for a given number of operations executed, whereas energy efficiency is measured as the

ratio of Joules of energy consumed for a given number of operations executed. In most of

the research efforts in the past, the third parameter, temperature, is included in the prob-

lem definition only as a constraint to be observed. Minimizing power or energy consumed

subject to performance constraints, a problem definition which falls in the same categories,

have also been considered. The choice of the metric is strongly influenced by the platform

i.e. mobile SoC or server class processor, primarily because the end-user demands vary

widely. While a mobile phone user requires consistent performance and a long battery life,

a server processor typically demands the best performance.

Researchers have proposed and implemented innovative techniques to manage proces-

sor and memory system power at various levels of the hardware and the software stack.

For the processor, hardware-level power management methods such as clock gating, ag-

gressive CPU idling and Dynamic Voltage and Frequency Scaling (DVFS) help in reigning

in excess power consumption. Similarly on the software end, optimized application code,

per-module governors implementing DVFS and software enabled low-power modes help

to save power. Power management of memory systems involve dynamic frequency scal-

ing, dynamic bandwidth throttling and multiple power-down states. Since the 3D stacked

memory is a relatively new technology, limited studies on dynamic power and thermal

management have been reported (see [20, 21, 22]). However, as discussed in CHAPTER

2, there is a need for detailed investigations to achieve higher efficiency levels.

1.1 Thesis Statement

While the power/energy/thermal management methods proposed so far work well in gen-

eral, more often than not, these methods implement their respective policies for distinct ele-

ments in an independent and isolated manner. A few studies ([23, 24, 25]) have shown that

3

independent power/performance control strategies can lead to conflicting policies causing

performance and/or power losses. Addressing this problem, researchers have investigated

the coordinated control of different hardware subsystems on servers [23], System-on-Chips

(SoC) [26, 27, 28], heterogeneous architectures [24] and embedded systems ([29] and ref-

erences therein). Looking ahead into the future, computing platforms such as servers are

expected to process exabytes of data using (a) heterogeneous cores, (b) specialized and

dedicated hardware (accelerators) and (c) high-bandwidth low-latency memories. Sim-

ilarly, mobile devices powered by increasingly heterogeneous SoCs are expected to be

highly energy efficient while providing the best end-user experience. Techniques proposed

until now either, (a) optimize only power consumption, (b) are not amenable to expanding

the scope of the solution or (c) are based on heuristics. Heuristics based solutions have

been the state-of-the-art and state-of-the-practice primarily because of their simplicity and

practical implementation constraints. However, the tight physical and functional coupling

between the major components (processor and memory) require much better power, en-

ergy, performance and thermal management strategies that go past the achievable bound-

aries set by heuristics. These challenges lead to the main theme of this thesis: Interactions

between (a) thermal behaviors (b) compute and memory microarchitecture and (c) appli-

cation workloads necessitate the management of performance, energy and temperature in

a coordinated fashion. Control theory inspired approaches to coordinate the power man-

agement of the processor and memory can dynamically trade-off performance, energy and

temperature, both leading to better energy efficiency.

In order to go beyond heuristics based approaches, this thesis makes a case for exploit-

ing the rich set of tools available from fields such as mathematical optimization and control

theory. Feedback controllers have been employed to regulate power, throughput and tem-

perature of the processor [30, 31, 32, 33]. There have also been research efforts that sought

to optimize power, performance-per-watt, performance-per-joule etc. using more complex

tools such as Model Predictive Control (MPC) [34, 35, 36]. The approach presented in

4

this thesis is along the lines of the aforementioned works. However, the results reported

here emphasize the need to coordinate power management between the processor and the

memory by exploiting control theoretic tools. The notion of coordination between con-

trollers used in this thesis is as follows. Suppose there are two controllers A and B, one

for the processor (A) and another for the memory (B). Coordination between the two con-

trollers A and B, monitoring a system output means that the decision taken by controller

A for the current control cycle depends on the decision taken by B in the previous cycle

and vice versa. Controllers implementing DVFS on the processor and memory have im-

plications on the performance, energy and temperature of the entire computing system. It

is demonstrated that control decisions made for the processor and memory in an uncoor-

dinated fashion leads to energy inefficiency. This aspect is elucidated in the subsequent

chapters.

A recurring theme throughout this thesis is the pursuit of simple, effective and robust

feedback controllers that can be implemented on a real physical system with minimal over-

heads. The quest for achieving the aforementioned ‘balance’ is what drives this thesis

towards unravelling key observations leading to simple and effective solutions. The vehi-

cles of exploration in this thesis are the following two computing platforms: (1) A mobile

SoC processor and (2) a server-class processor. The exploration algorithm is divided into

three steps: (1) Characterization (2) Insight identification and (3) Solution development.

Figure 1.1 pictorially describes the exploration algorithm. The end goal is the design of

TRINITY, a control theory based technique that dynamically balances the three parameters

of interest: performance, energy and temperature.

Characterization: The first contribution of this thesis is the characterization of various

power/energy management methods implemented in different hardware and software lev-

els of the SoC stack, using a smartphone as an example of a mobile device. Finding the

right balance between performance and energy consumption in an SoC, when application

complexity varies widely, has generally been influenced by heuristics, end user demands

5

Characterization

TRINITY

Performance TemperatureEnergy

Figure 1.1: Thesis Overview: Characterization of three parameters leading to TRINITY, a
control theory based solution for 3D stacked architectures.

etc. Understanding the behavior of the SoC and its components under a variety of operating

conditions helps in identifying areas of energy inefficiency. The impact on power, perfor-

mance and energy by varying a multitude of design parameters and governors are analyzed

individually. The investigation of interactions between individual governors reveals that

governors implementing their policies in an isolated manner are energy inefficient, thus

laying the groundwork for coordinated control of the processor and memory.

A second set of characterization experiments are conducted on a 3D stacked processor-

memory architecture. A comprehensive characterization of the multi-physics interaction

between (a) thermal behaviors (b) compute and memory microarchitecture and (c) applica-

tion workloads is presented. Insights from this exploration reveal the need to manage per-

formance, energy and temperature in a coordinated fashion. Furthermore, the concept of

“effective heat capacity”, the heat generated beyond which no further gains in performance

are observed with increases in voltage and frequency in the compute logic, is established

as a useful metric. This characterization study also opens up multiple directions for further

research.

Optimization: In light of the insights generated from the SoC characterization, this the-

sis demonstrates a software controller designed to maintain application performance while

6

minimizing energy consumption on a Nexus 6 smartphone [37]. The controller is based on

the work presented in [38] and exploits (a) techniques from feedback control theory and

mathematical optimization and (b) the in-depth understanding of the SoC components and

its governors. It chooses a combination of CPU frequency and memory bandwidth simulta-

neously, thus making it an energy-efficient coordinated control scheme. The novelty of this

work is that it, (1) successfully demonstrates a coordinated controller, (2) is generic enough

to incorporate other SoC components into the ambit of the problem and (3) indicates the

viability of application-specific controllers on SoC platforms.

Since the dependence on application-specific offline data limits the extent and effective-

ness of such a controller, an improvement/extension is explored as well. Simple analytic

models for the performance and power of the processor and memory are developed which

are subsequently used by the feedback controller at run-time to optimize energy efficiency.

Using the parameter (ops/byte) measured at run-time, the controller classifies the applica-

tion as compute bound or memory bound or a mix of the two and selects the processor

and memory frequencies that minimize the energy-delay-product. A similar approach is

explored for a multi-core multi-memory-controller system.

Neither of the works described in the previous two paragraphs consider temperature

in the problem formulation. This thesis explores Dynamic Thermal Management (DTM)

on Chip MultiProcessors (CMP)s using feedback controllers. An adjustable gain integral

controller is demonstrated in [39] to regulate the temperature of each core in a CMP to a

fixed value by performing per-core DVFS. The controller is tested on a cycle-level simu-

lator running PARSEC and Splash2 benchmarks. An important insight gained from this

work is the connection between workload characteristics and thermal behavior of the core.

Specifically, the wastage of energy in the form of heat is clearly observed during mem-

ory intensive phases of the workload. The concept of “effective heat capacity” is strongly

motivated by this phenomenon.

The final part of this thesis tackles this very issue in a 3D stacked processor-memory

7

architecture where its effects are exacerbated. As opposed to prior works which consider

temperature as a constraint to be met, this thesis advocates using temperature as a resource

just like compute or memory cycles. The characterization experiments provide ground rules

for the design of a real-time, numerical optimization based, application agnostic controller,

TRINITY, for intelligently managing performance, energy and temperature. TRINITY

achieves up to 11% improvement in energy-delay-product (EDP) over heuristic schemes.

On an average, TRINITY reduces temperature by 4 Kelvin for similar EDP. An analysis of

device reliability shows an increase by up to 26% on account of reduced temperature.

In summary, the contributions of this thesis are as follows:

• Performance characterization of current power management strategies in SoCs demon-

strating the scope for coordinated power management.

• A control-theoretic solution to the coordinated management of the core and the mem-

ory to minimize energy consumption for a target performance level.

• Extending the coordinated control framework to multi-core multi-memory-controller

systems to improve energy efficiency.

• A distributed feedback controller to regulate core temperatures in a 2D multi-core

processor.

• A comprehensive characterization of a 3D stacked processor-memory architecture.

• A distributed coordinated control framework for performance, energy and thermal

management in a 3D stacked processor-memory architecture.

1.2 Thesis Organization

Apart from CHAPTER 1, this thesis comprises of the following 9 chapters:

CHAPTER 2 begins with a brief discussion of the evolution of microarchitecture from

planar 2D to 2.5D to 3D stacked architectures. The issues associated with each architectural

8

design and the limitations of the solutions adopted emerge out of a detailed literature sur-

vey. The state-of-the-art power, energy and thermal management techniques in the domain

of SoCs and traditional server-class processors are described in detail. Their associated

shortcomings are highlighted which forms the basis of this thesis. It concludes with a list

of challenges that are addressed in the subsequent chapters.

CHAPTER 3 presents characterization of performance, power and energy consump-

tion in an SoC using a commercially available mobile phone as a platform for exploration.

It describes in detail, the interaction between a multitude of software and hardware opti-

mizations on a wide range of target applications. It also highlights the need to coordinate

the power management between the processor and memory. This, and more insights are

summarized in the end forming the basis for the next chapter.

In CHAPTER 4, a feedback controller is developed which minimizes energy consump-

tion while maintaining a performance target. Experimental results obtained from a mobile

phone are discussed in detail. The results confirm the need for coordinating processor and

memory clock frequencies to trade-off energy and performance. The chapter concludes

with a summary of results and shortcomings of the presented approach.

CHAPTER 5 extends the feedback controller framework presented in CHAPTER 4.

This chapter proposes an application agnostic energy optimization approach for a more

generic architecture. Starting from a single-core single-memory controller model, the con-

cept is extended to explore a multi-core multi-memory-controller system. The chapter

concludes with a discussion of the results and also prospects for future implementation on

a real system.

CHAPTER 6 focuses on the role of temperature, the third key parameter in this thesis.

Using a cycle-level simulator coupled with power and thermal calculations, a distributed

feedback controller designed to regulate temperature in a 2D multi-core processor environ-

ment is described. Experimental results are presented and key observations regarding the

potential inefficiency of such an approach in thermally constrained 3D stacked processor-

9

memory architectures are also mentioned.

CHAPTER 7 analyzes the interaction between performance, processor-memory inter-

actions and thermal coupling in a 3D stacked architecture. Insights from the previous

chapter motivate the development of the concept of “effective heat capacity”. This chapter

lists key insights which open up many possibilities for future research.

CHAPTER 8 presents details of a feedback controller (TRINITY) which manages per-

formance, energy and temperature of a 3D stacked processor-memory architecture. The

power, performance and temperature models used in the controller are described in detail.

An in-depth analysis of experimental results shows the benefits of TRINITY over existing

state-of-the-art techniques.

Finally, CHAPTER 9 summarizes the main contributions of this thesis and discusses

potential future research directions.

Collectively, through the different contributions presented in this thesis, the following

aspects are substantiated: (1) The need to manage the processor and memory in a coor-

dinated fashion for current and future architectures, (2) The benefits of control theoretic

approaches over heuristics, and (3) The importance of managing temperature as a resource

similar to compute or memory cycles. Furthermore, this thesis identifies a set of future

research directions pointing towards to innovative inter-disciplinary solutions.

10

CHAPTER 2

PROBLEM FORMULATION AND RELATED WORK

This chapter begins by describing the “Memory Wall” problem and provides an overview of

related research efforts that address this problem from architectural, software and hardware

perspectives. A second important aspect, discussed in detail is the dynamic management

of performance, power, energy and temperature of processors and memory. Finally, this

chapter concludes with a list of open problems that stress the need to optimize energy

efficiency for compute and memory in a coordinated fashion.

2.1 The Memory Wall

The rate of increase in microprocessor speed and memory speed have been following an

exponential curve. However, the exponent for the microprocessor has been larger than that

for the DRAM (See Figure 2.1). The memory wall is described as a situation where the rate

of increase of processor speed as compared with that of the DRAM will eventually lead

to processor speed improvements being masked by the DRAM. Quoting an example from

[40], consider the following equation:

tavg = p× tc + (1− p)× tm (2.1)

where p is the probability of a cache hit, tc is the cache access time, tm is the DRAM

access time and tavg is the average time to access the memory. The above equation implies

the following: Suppose 20% of the instructions reference the DRAM, if tavg exceeds 5tc,

the performance of the processor is entirely determined by tm. Consequently, the queuing

delays grow (tavg continues to increase) and the processor performance hits a wall i.e. the

memory wall.

11

Figure 2.1: Memory Wall Problem [41]

Researchers have addressed this issue at multiple levels. The details can be found in

the technical report [42] and references therein. Some of the efforts aimed at improving the

DRAM are access latency reduction, increasing bandwidth, latency hiding via aggressive

prefetching, non-blocking caches etc. Improving cache performance however, is not a very

obvious method to handle the memory wall because the DRAM access speed will continue

to be the critical bottleneck. Nevertheless, reducing the number of requests between the

last level cache and the DRAM can potentially improve system performance. Optimizing

cache size and cache associativity for reducing cache misses, memory compression etc. are

a few techniques listed here among several others. Simultaneous Multi Threading (SMT)

and Chip Multi Processors (CMP) try to hide the DRAM latency by executing available

work on a thread while the other thread waits for the memory request. SMT can keep

a single processor busy whereas a CMP can have better overall system throughput even

though some cores remain idle.

The US Department of Energy predicts that for an exascale system with 100,000 nodes,

the memory size, bandwidth and hierarchy are some of the important challenges [43]. The

steep performance demands (≥ 1 ExaFlop/s) are expected to be met subject to a cap on

the maximum power consumed (≤ 20MW). As mentioned in CHAPTER 1, the DRAM

is projected to consume 70% of this total power. To address this issue, device manufac-

turers proposed a solution: 3D and 2.5D die stacking of compute logic and memory [44].

Accordingly, 3D die stacked memories such as HBM [45] from JEDEC and HMC [46]

12

from Micron were introduced which offered an order of magnitude better bandwidth than

traditional DDR technologies. These hardware and architectural innovations are primarily

aimed at meeting the performance target. Dynamically managing the power consumed by

the processor and the memory under a variety of workloads has been an active research

topic for the past two decades.

2.2 Power, Energy and Thermal Management of Processors and Memory

Power and energy management strategies have been extensively explored ever since the ad-

vent of the very first series of computers. In the last decade, with the proliferation of cloud

technologies, thermal management too is receiving a great deal of attention. A number of

technological innovations have been proposed that span the entire hardware-software stack:

from the logical circuit to complex applications. Many have become industry standards.

2.2.1 Dynamic Voltage and Frequency Scaling (DVFS)

At the circuit level, DVFS is a widely used technique which has been implemented with

multiple design objectives. The basic principle of DVFS emerges from the dynamic power

equation P ∝ V 2 · f , where V is the supply voltage and f is the clock frequency. Re-

ducing voltage leads to quadratic power savings whereas lowering the frequency reduces

the power linearly. Modern processors and even peripheral devices such as RAM, GPU

etc., support DVFS. Linux provides OS-level support for CPU-DVFS through a subsystem

known as cpufreq [47] and devfreq enables DVFS for other peripheral devices. The DVFS

policies are called governors. In [48], different cpufreq governors provided by Linux are

tested for a variety of applications. The power, performance and energy numbers are com-

pared for each of the CPU governors. On mobile systems running the Android OS as well,

DVFS policies for the CPU and other subsystems are inherited from the Linux kernel de-

signed for servers. The two main objectives are: (1) energy/power saving and (2) meeting

task deadlines. DVFS has benefits in reducing power and energy but it does so at the cost

13

of performance. In reference [49], the authors investigate the effects of DVFS on power,

energy and performance on a Pentium III and a PowerPC system. DVFS algorithms imple-

mented on processors available in the market today are described in references [50, 51, 52,

53, 54]. The effects of DVFS are also evaluated on three generations of AMD processors

in [55], wherein the authors claim that DVFS will have diminishing returns for future pro-

cessors and memories. Nevertheless, reaffirming the efficacy of DVFS based techniques,

the more recent survey article [56], reviews among other approaches, recent research works

which perform DVFS to reduce power consumption on embedded processors.

Optimization based approaches aim to minimize (i) system wide energy consumption

under performance bounds [57], (ii) energy-delay2 [58], (iii) power-per-watt [59], (iv)

power budgets with temperature constraints [60]. More exotic schemes use game the-

ory for maximizing performance under power budgets [61], machine learning to efficiently

share system resources for performance maximization [62], balance resource utilization

and fairness in a CMP using market based strategies [63, 64] and [65] finds a Pareto op-

timal per-core configuration by integrating multiple power management techniques. On

mobile systems, power/energy consumption is a top priority. Accordingly, a model-based

DVFS governor for Android systems is presented in [66]. At first, offline profiling is per-

formed on a set of benchmarks and for each benchmark the critical speed (CS), i.e., the

energy-optimal CPU frequency is obtained along with the corresponding memory access

rate (MAR), which in turn is obtained from the hardware performance monitoring unit.

Statistical methods are then used to derive a model for CS with regard to MAR. This model

is called the MAR-based CS Equation, or MAR-CSE. A DVFS governor is created that

uses MAR-CSE to select the optimal CPU frequency based on the run-time MAR values.

This approach is application-agnostic in the sense that it is independent of the running ap-

plication. Furthermore, it is designed to optimize energy without considering performance.

Another work in the same domain is the POET system [38]. It minimizes energy consump-

tion of an application while attempting to meet its performance requirement. The system

14

requires two inputs before it starts: a performance target, and performance and power data

for different system configurations. At run-time, it repeatedly measures the actual perfor-

mance, and uses feedback control and linear programming to select energy-optimal con-

figurations that meet the performance target. POET consists of a C library and a run-time

system, and is designed for traditional embedded systems with soft real-time constraints.

Because of the diversity of such systems, one of the key design goals of POET is porta-

bility. The problem it tries to solve is to create an application and platform-independent

resource allocation framework. The advantage of [38] over [66] is the inclusion of perfor-

mance constraint within the ambit of the problem. CHAPTER 4 is based on [38] for this

very reason.

As opposed to optimization, researchers have implemented simpler PID based tech-

niques for power budgeting via DVFS [67, 68, 69]. Power regulation [32, 70] and in-

struction throughput regulation [71] using adaptive gain integral controllers has also been

explored on traditional desktop/server class processors. Benefits of using adaptive gain

feedback controllers versus fixed gain controllers are: (i) robustness to modeling errors and

(ii) rapid convergence. Fixed gains can lead to sluggish response or worse, oscillations.

While most approaches tend to be application-agnostic DVFS methods, the authors in [72]

present a DVFS algorithm for a specific application: video decoding. Application specific

techniques can outperform their agnostic counterparts but at the added cost of switching

between multiple policies depending on the application type.

Modern manufacturing technologies, while allowing for faster processing, have the un-

avoidable effect of increase in static power dissipation as well. Researchers have proposed

Dynamic Thermal Management (DTM) strategies for the CPU and chip packages based

on (i) power gating, (ii) reducing instruction fetch rate, (iii) thread migration, (iv) DVFS

and (v) external cooling. What began as heuristic approaches eventually gave way to more

formal control-theoretic solutions. References [31, 30] use PI and PID controls to slow

down the rate of the instruction-fetch unit whenever the temperature exceeds a given up-

15

per bound. Stressing the importance of managing temperature effectively, the work in [73]

points out that minimizing thermal impact extends the sustainability of desired Quality-of-

Service levels on mobile devices.

In contrast to power gating, DVFS allows for reducing the temperature by simply reduc-

ing the dynamic power dissipated. Reference [74] applies DVFS for temperature control

when the temperature hits an upper bound. Capitalizing on the drawbacks of threshold

based control, researchers have proposed more advanced and rigorous formulations for

DTM using techniques from the domain of optimal control and numerical optimization

[35, 34, 36, 75]. These works however, assume linear and time-invariant plant-models for

their respective control systems; [34, 75] updates the model on-line while [35, 36] do not.

DTM under soft and hard real-time constraints has been investigated in [76] and [77],

respectively.

Power and thermal management are not limited to the CPU alone. The survey paper

[78] classifies and describes several DRAM power and thermal management techniques.

Recently, researchers have started to focus on the DTM of 3D stacked memories as well.

Due to the 3D architecture, higher power densities lead to larger thermal gradients, local-

ized heating and heat shielding. The state-of-the-art for the DTM of 3D stacked memories

is evolving along the lines of CPU-DTM strategies. The approaches vary from architectural

level changes [79] to applying numerical optimization to maximize instruction through-

put under strict power and thermal constraints [80]. Some other approaches involve data

compression at the memory controller [21], two level prefetching with throttling off-chip

memory links [20], dynamic page allocation [81], DVFS [82], thread migration [83] and

data block reallocation with heterogeneous memory architectures [84].

3D stacking of memories has been explored academically [12] and also by the indus-

try [7, 19, 46] for performance improvements. Memory intensive applications can benefit

greatly due to availability of increased bandwidth as predicted by [85]. PIM architectures

are being proposed to further increase performance by offloading memory-intensive code

16

to the logic die of the 3D memory. Some researchers have characterized the performance

of 3D processor-memory systems [79, 86, 87] under a variety of benchmark applications.

Reference [79] goes onto propose a new 3D memory architecture specifically suited for

SoCs and compares it against 2D memory systems, whereas [87] explores the possibility

of controlling CPU and 3D memories simultaneously. The authors in [3] explore the via-

bility of using the execution unit of a General Purpose GPU (GPGPU) as the in-memory

processing element. An important observation they make is that exascale computing work-

load may benefit from PIM; PIM itself does not require exascale workloads in order to be

useful. In their experiments, they observe a tremendous reduction in energy-delay-product

(85%) at marginal performance improvements (7%). However, they design their experi-

ments such that power and thermal emergencies are not triggered. [88] proposes moving

the hottest datapaths closer to the heat sink (thermal herding) for better heat dissipation.

More recently, the use of thermal TSVs to extract heat from the different layers has been

proposed [22], wherein the authors propose boosting the performance of applications by

exploiting the improved cooling efficiency.

2.2.2 CPU Idling

To further optimize power consumption, when certain components in the processor or the

SoC are not being used, it is a common strategy to either power down (clock gating) or enter

different levels of sleep modes. Linux calls it cpuidle and different processor manufacturers

provide drivers which implement idling policies. Reference [48] explores (i) the benefits of

the stock cpuidle manager and (ii) the effect of cpuidle on compiler optimizations and CPU

governors. They find that idling helps in saving up to 19% energy when combined with

other mechanisms such as CPU DVFS. CPU idling has been inherited by Android systems

with msm idle as the default driver on Qualcomm chipsets. CHAPTER 3 discusses the

interaction between CPU DVFS and CPU idling.

17

2.2.3 Microarchitecture Optimizations

Moving up the hardware stack, at the architecture and microarchitecture levels, there has

been a clear shift of design goals from being performance-centric to power-aware. Many

designs at these levels target power efficiency of major hardware components such as mem-

ory [89], cache [90], etc. Other methods include clustered DVFS [91], heterogeneous com-

puting that incorporates CPUs and accelerators such as DSPs and GPUs [92], asymmetric

cores such as the big.LITTLE architecture from ARM [93] and many more. For the work

presented in this thesis, a specific microarchitecture is assumed. The control techniques

presented in the subsequent chapters are agnostic to the changes in the microarchitecture.

2.2.4 OS, Compiler Optimizations

Commensurate software improvements have complemented hardware optimizations. An

important problem at the OS level that has been extensively studied is power-aware thread/task

scheduling, not only in a single core [94] but also across cores [95]. [96, 97] schedule

threads (computations) from hot cores to cooler cores in an effort to maintain a balanced

thermal field. More recently, Linaro [98] announced an Energy Aware Scheduler which

aims to improve power management on ARM processors (homogeneous and heteroge-

neous like big.LITTLE). They schedule tasks intelligently on to cores so as to minimize

energy consumption. Above the OS level, compiler optimizations however have focused

on performance improvement [99]. Improved performance generally leads to better en-

ergy efficiency due to shorter execution times as noted in [100]. Furthermore, power-aware

compiler optimizations have also been studied [101]. To truly understand the ramifications,

[102] explores the design space of the embedded gcc compiler to identify the optimization

options that offer maximum reduction in energy. The authors of reference [48] compare the

power, performance and energy trends of different optimization levels of the gcc compiler

on a server system. Multithreaded programs can exploit inherent parallelisms in applica-

tions and [103] compares energy efficiency of two parallelism technologies: parallelization

18

and vectorization. At the programming language level, various aspects for writing energy-

efficient programs including programming framework, language extensions and so on have

seen some research activities [104, 105].

Except for [87, 62, 64], rest of the works listed in this section either implement inde-

pendent strategies for the CPU and memory or control only CPU parameters such as clock

frequency, L1 cache banks, Re-Order Buffer size etc. CPU-only methods do not consider

memory boundedness of applications whereas, memory-only schemes are concerned with

meeting bandwidth or latency requirements. Some DTM schemes consider static power

dissipation as a constant and do not take into account heating from neighboring compo-

nents. Software optimizations at the application layer focus on performance and ignore

power/energy effects in the lower layers of the hardware stack.

2.3 Coordinated Management of Processor and Memory

The idea of controlling multiple components simultaneously has been explored extensively

for embedded systems. In [23] the authors point out that independent control policies may

run into conflicts with each other leading to oscillations, thereby significantly reducing the

effectiveness in achieving energy savings. They demonstrate “CoScale” on a server that

performs coordinated control of CPU and memory, where the goal is to minimize energy

consumption while staying within a user defined performance degradation bound. Us-

ing performance and power models and also aided by hardware counters, CoScale uses a

gradient-descent-like algorithm to select the optimal configuration. For a mobile device

platform, [26] evaluates energy-performance trade-offs when implementing DVFS on the

CPU and the memory bandwidth. They run SPEC CPU2006 benchmarks on a gem5 sim-

ulator and conclude that capturing the complex interplay between the CPU and memory

subsystems is essential and that coordinated strategies can deliver higher energy efficien-

cies. On an Android phone, [27] demonstrates a coordinated control of the CPU and GPU

for saving power. Based on power and performance models generated offline, they design

19

an algorithm to keep the performance within a predefined range while consuming the least

amount of power. They achieve up to 58% power savings by performing CPU-GPU DVFS

simultaneously. The authors in [106, 107] demonstrate heuristic schemes to balance per-

formance and power between the CPU and GPU on AMD’s Accelerated Processing Units.

In [24], the authors propose “Harmonia”, which balances computation and memory power

on a high performance GPGPU. This is a heuristic based algorithm and is designed for

server workloads, which generally tend to be memory intensive. MemScale [108] proposes

applying DVFS to the memory controller and memory channels in order to reduce energy

consumption while staying within performance loss bounds. Finally, the authors in [109]

present a hardware control system implemented on an FPGA for GPUs that manages, (1)

number of streaming multiprocessors (SM), (2) number of warps/wavefronts, (3) frequency

of the SM and, (4) the DRAM frequency.

2.4 Summary

This chapter discussed previous research efforts related to the dynamic management of

power, temperature, energy and performance of a computing system. Most prior research

has focused on processor management. As the memory power consumption started be-

coming comparable to their processor counterparts, multiple techniques were developed

to increase the efficiency of the memory subsystem. However, state-of-the-art proces-

sor and memory power management techniques were, and continue to be, independent

of each other. Coordinated control of multiple components has started receiving interest

only recently. However, the techniques developed thus far are either platform centric or

application-specific. Furthermore, almost all approaches are based on heuristics. Con-

trol theoretic schemes are slowly gaining steam. Additionally, since the industry is mov-

ing towards 3D stacking of silicon die, there is a need to fundamentally understand the

multi-physics interactions between performance, energy and temperature. Heuristics based

methods fail to satisfy all the necessary requirements. This thesis substantiates the lacuna

20

in heuristics-based approaches and develops control theory based solutions to manage pro-

cessors and memories in a coordinated fashion.

21

CHAPTER 3

PERFORMANCE, POWER AND ENERGY CHARACTERIZATION: MOBILE

DEVICES

Energy-efficient high performance mobile computing is receiving increasing attention in

recent years. Mobile device manufacturers are continuously striving to provide the best

user experience at the lowest energy consumption. Multiple, yet independent research ef-

forts, have focused on individual layers of the hardware-software stack (operating systems,

compilers, microarchitecture etc.). While providing better performance individually, en-

ergy/power saving mechanisms may sometimes not lead to complementary benefits when

employed in tandem. A global understanding of interactions between these techniques can

help in developing strategies at different layers that supplement each other. In this chap-

ter, a collection of energy management schemes are evaluated on a Nexus 6 and a Nexus

5X phone at both the hardware and software levels. Their effects on the following three

parameters: 1) Average performance 2) Average power and 3) Total energy, are compared.

The goal is to help designers better understand interactions of these methods for more in-

novative solutions.

3.1 Overview

The performance of smartphones has been constantly improving. However, high perfor-

mance comes at the cost of high power consumption and faster battery discharge, which

can negatively impact user satisfaction. To tackle this issue, numerous studies, on both

the hardware and software sides, have been conducted in an effort to make smart devices

more power/energy efficient. However, research efforts in this direction have more or less

investigated each issue independently. There is rarely a common platform, in either hard-

ware or software, and there is a lack of comparative studies which consider effects of a new

22

technique on existing technologies. The problem of multiple platforms is exacerbated by

the continuously changing landscape in the smartphone industry. Furthermore, there are

variations in the reported results; while some report average power, others report average

energy. Comparing two methods which have the same goal yet very different experimental

platforms is a futile exercise.

To better understand the benefits of a particular power/energy management method,

one must carefully analyze the cross effects between different layers of the stack. A newly

developed method tested in isolation, might offer high power savings but deliver little gain

when working on a full system with other kinds of mechanisms. This type of survey has

been performed on a server [48], where the authors put the system under a series of rig-

orous tests to determine which mechanisms work well while some schemes fail. Drawing

inspiration from their work, the work presented in this chapter performs extensive testing

of a collection of energy/power management techniques on a smartphone and compares

the effects on (1) Average Performance (2) Average Power and (3) Total Energy. The goal

is to help a hardware/software designer understand the nature of interactions between dif-

ferent layers of the stack so that they can develop even better energy/power management

strategies.

A set of widely used optimization techniques is tested, some designed explicitly for

energy efficiency while others created mainly to improve performance but with side effects

on energy consumption. Specifically, these include compiler optimizations, multithreading,

CPU idle states, dynamic voltage and frequency scaling (DVFS) on CPU and GPU, and

memory bandwidth scaling. In particular, two scenarios are evaluated that each involve

two optimization techniques to understand their interactions: (1) CPU DVFS and memory

bandwidth scaling and (2) CPU DVFS and CPU idle states. The experiments are performed

on two Android devices: a Nexus 6 and a Nexus 5X, and the test programs include 5 popular

Android apps such as AngryBirds, and 4 prominent Android benchmarking applications

such as AnTuTu. For further insights and to highlight differences from servers, single and

23

multi-threaded benchmarks from SPEC CPU2006, PARSEC, respectively, are also tested.

In total, the test suite includes 367 test cases.

Some of the important findings of this work are listed below:

1. The default DVFS governors can be optimized for better energy efficiency.

(a) CPU governors must include energy consumption and not just performance or

power in their design.

(b) A DVFS mechanism which can adapt to the behavior of individual apps can

possibly provide higher energy efficiency with the same performance.

(c) CPU and memory bandwidth governors working in collaboration can lead to

better energy savings.

2. Smartphone vendors may want to consider customizing certain aspects of power

management.

(a) The performance CPU and GPU governor consumes excessive power and re-

sults in severe thermal throttling. Vendors should carefully decide if it should

be avoided.

(b) CPU idling, at least on the Nexus 5X, does not seem to have much effect on the

power and energy consumption for real-world Android apps.

3. Developers may want to note that increasing the number of threads for a program

while improving performance does not save energy, contrary to the trend on a server.

3.2 Methodology

This section describes the experimental platform, the software benchmarks and the dif-

ferent power/energy management techniques tested. It also explains the rationale for the

benchmarks and options chosen along with the base configurations against which the re-

sults from different options are compared.

24

3.2.1 Experimental Testbed

The experiments are performed on the Motorola Nexus 6 and LG Nexus 5X hereafter re-

ferred to as N6 and N5X respectively. The N6 runs on a Qualcomm Snapdragon 805 chipset

which has a quad-core Krait 450 CPU and Adreno 420 GPU with 3GB of RAM. In all the

experiments conducted, the N6 has Android 6.0 Marshmallow operating system with a

Linux kernel v3.10. N5X comes with a Qualcomm Snapdragon 808 SoC comprising of

a quad-core ARM Cortex-A53 and a dual-core ARM Cortex-A57, Adreno 418 GPU and

2GB of RAM. The N5X runs Android 6.0 Marshmallow operating system with a Linux

kernel v3.10. Section 3.3 describes experiments on the following: CPU governor, memory

bandwidth governor, GPU governor, CPU idle, threads and parallelization and compiler

optimization. The userdebug build on N6 and N5X is required to enable changes to the

cpufreq, devfreq and cpuidle modules in the Linux kernel. The Monsoon Power Monitor

[110] is used which measures power consumption of the whole phone i.e. power values are

inclusive of the CPU and other modules as well. Power samples are collected every 2ms

and to communicate with the phone, Android Debugging Bridge [111] (adb) runs on a host

machine. Since the default setting on the phone is to start charging when connected to a

computer via USB, USB charging is turned OFF to avoid bias in the power measurements.

Table 3.1 lists all the 25 benchmark applications tested in this work. They are into

4 groups: (G1) Android benchmarks (G2) Android apps (G3) PARSEC and (G4) SPEC

CPU2006. Each benchmark in the experimental survey is chosen with a specific intent and

the intention is to touch as many features of the SoC as possible.

First of all, a few commonly used Android benchmark applications are chosen which

test the performance of the entire SoC. The set includes AnTuTu v6 [112], Geekbench3

v3.4.1 [113], Vellamo v3.2 [114], and 3DMark [115]. AnTuTu performs tests on CPU,

GPU, RAM and I/O. GeekBench tests the CPU and RAM. Vellamo offers web browser,

single core and multicore benchmarks. Only the browser feature of this benchmark app is

tested in order to prevent repetitions of single and multicore benchmarks. Finally, 3DMark

25

Table 3.1: List of benchmarks suites.

Benchmark suite Applications/Tests

G1

AnTuTu CPU, GPU, I/O, UX,
Geekbench3 Single and multi-core CPU benchmarks, STREAM mem-

ory benchmarks
Vellamo HTML5 browser benchmarks
3DMark Sling Shot using OpenGL ES 3.1 (Physics and Graphics

tests)
G2 Android Apps Facebook, AngryBirds, Chrome Browser, MX Player, Spo-

tify
G3 PARSEC 3.0 blackscholes, facesim ,ferret,

freqmine, fluidanimate, streamcluster,
swaptions

G4 SPEC CPU2006 bzip2, h264ref, hmmer, mcf, perlbench,
xalancbmk, namd, calculix, sphinx3

is a specialized benchmark that runs physics tests and 3D graphics tests for benchmark-

ing the CPU and GPU respectively. For experimental rigor, each of the benchmark apps

mentioned in this paragraph is run 5 times in every configuration.

Next, there are 5 popular Android applications: Facebook, AngryBirds, MX Player,

Spotify and Chrome browser. The Facebook app is tested with the help of RERAN [116]

for repeatability. Although RERAN is an established record-and-replay tool for Android,

timing issues were observed when changing CPU governors and hence it could only be

used on Facebook. A 30-second sequence of actions like scrolling, changing tabs etc. is

recorded and the same sequence is replayed during experimental runs. AngryBirds is a

video game, and to test it, the game is manually played for a duration of 60 seconds. MX

Player, a video player, is tested by playing a 137-second long HD video. Spotify is a mu-

sic streaming app, and it is tested by playing songs from a playlist for 60 seconds while

changing songs manually every 10 seconds. Finally, the Chrome browser is tested with the

Mobilebench Browser Benchmark (MBB) [117] by loading a series of web pages and per-

forming automatic zooming and scrolling actions to mimic a real user. Every configuration

is tested 5 times for the apps except for Facebook which requires 10 repetitions.

Additionally, programs from the traditional PARSEC [118] and SPEC CPU2006 [119]

26

benchmark suites is also included. While these are not the ideal benchmarks for a mobile

platform, one of the goals with this work is to understand the key differences between SoCs

and servers. Also, these programs have very different characteristics from the Android

programs. Testing them allows the tests presented here to cover a wider range of behaviors

and to gain more insights. The PARSEC suite consists of multithreaded programs, and is a

standard test suite for parallel computing. A subset of the benchmarks is chosen with the

‘simlarge’ input set and each benchmark application is run 10 times in each configuration.

SPEC CPU2006, on the other hand, consists of single-threaded programs. They have been

used to test mobile CPUs as seen in [17] and references therein. A set of 9 benchmarks

are selected of which 6 are integer and 3 are floating point programs. Each of these 9

benchmarks is executed 5 times for every configuration and the input size is set to ‘train’.

The data set sizes are so chosen to reduce duration of each experiment and also to prevent

thermal throttling.

3.2.2 Hardware and Software Testing Options

Table 3.2: Table listing different options tested. 3indicates the tested option for the bench-
mark group. *Except 3DMark.

Testing Options Android
Bench.
(G1)

Android
Apps
(G2)

PARSEC
(G3)

SPEC
(G4)

Compiler Opt. (O0-O3) 3 3

Threads (1,4,16) 3

cpufreq governor 3∗ 3 3 3

devfreq CPU-DDR BW gov. 3∗ 3 3 3

devfreq GPU governor 3DMark
CPU-BW cross effect 3 3 3

cpufreq-cpuidle cross effect 3 3 3

On the Android platform, the software and hardware stack supports various power/energy

management options. Attempting to study the effect of each setting on one another will re-

sult in a large set of combinations and will not be amenable to interpretations. Therefore,

27

the number of tested configurations is reduced by forming 6 groups. Table 3.2 lists the

hardware and software options tested in this survey.

Compiler Optimizations: Both PARSEC and SPEC CPU2006 benchmarks are cross-

compiled for ARM with optimization levels O0-O3.

Threads: Of all the benchmarks, only PARSEC explicitly supports changing the num-

ber of threads. The tests include 1, 4 and 16 threads for the PARSEC benchmarks listed in

Table 3.1.

The only hardware options tested are the ones that are exposed through the software,

i.e., the cpufreq, devfreq, cpuidle modules.

cpufreq: This module in the Linux kernel enables DVFS for the CPU [120]. In the

Linux kernel v3.10, cpufreq supports the following governors:

1. performance: It sets the CPU frequency to the highest supported value.

2. powersave: It sets the CPU frequency to the lowest supported value.

3. ondemand: This cpufreq governor implements DVFS by tracking the CPU load and

ramps up to the maximum frequency when the load crosses a certain threshold.

4. interactive: This governor is similar to ondemand but is designed to be more

aggressive in ramping up the CPU clock frequency to be more responsive. This is

the default CPU governor on both N6 and N5X.

5. userspace: This governor allows the root user to set the CPU clock frequency to

a specific value.

All the above governors are tested except userspace, because performance and

powersave can be considered two special cases of userspace.

devfreq: This kernel module enables DVFS in devices other than the CPU. For example:

In N6, devfreq supports GPU clock frequency scaling and CPU-DDR bandwidth scaling.

The devfreq governors for the GPU are msm-adreno-tz (the default), performance,

28

powersave and userspace. The msm-adreno-tz governor is very similar to the

ondemandCPU governor but is tuned towards performance. Experiments with the performance

governor resulted in current surges leading to the mobile phone turning OFF. Therefore, re-

sults are presented for only msm adreno tz and powersave.

Memory bandwidth governor: The devfreq module also allows the memory band-

width to be varied and the governors supported are: cpubw hwmon (the default), performance,

powersave and userspace. The cpubw hwmon monitors the hardware counters and

implements an exponential back-off algorithm when the memory activity starts to decrease.

The governors tested here are cpubw hwmon, performance and powersave.

cpuidle: This module manages the CPU idle states or C-states [121]. There can be

multiple idling states which get triggered based on CPU (in)activity. This module is not

supported on the N6 but is available on the N5X. Hence only the results related to cpuidle

on the N5X are presented. The default cpuidle driver is called msm idle. The efficacy of

this driver is evaluated by comparing the results for when it is enabled and disabled.

3.2.3 Other Factors

Background Interference: During the experiments, GPS and screen-rotation are turned

OFF. The phone does not have a SIM card and is laid flat on a table left undisturbed.

This helps in preventing extraneous peripheral devices from drawing power during the

experiments. Benchmark apps and Android apps require a screen touch to begin the test

and hence the screen is left ON throughout the benchmark duration with the lowest (fixed)

brightness setting. Furthermore, some apps require WiFi to be ON and hence WiFi is left

turned ON for all the Android and benchmark apps. For PARSEC and SPEC however, the

screen and WiFi are turned OFF during the experiments.

Performance Metric: The notion of performance varies across the set of benchmarks.

Performance of PARSEC and SPEC is measured in seconds (execution time) whereas per-

formance for each benchmark app is derived from the figures reported on the app.

29

Performance metrics for Android apps are as follows: AngryBirds and Facebook: Seconds-

Per-Frame (SPF, i.e., FPS−1), MX Player: seconds (execution time), Spotify: (Giga-Instructions-

Per-Second)−1 i.e. GIPS−1, Chrome: seconds (warm page load time).

3.3 Results

The results are divided into different categories and the trends of performance, power and

energy for each benchmark group are explained. For all the plots, lower the value, better is

the performance, power and energy.

The N5X is used only during CPUIdle experiments whereas N6 is used for the rest. The

results presented are in general normalized. The averages are therefore simply arithmetic

means of the normalized values.

3.3.1 Compiler Optimizations and Thread Level Parallelism

Reference [48] presents a detailed study of compiler optimization options in relation to

energy consumption on a server. In this work, the effect of compiler optimizations on pro-

gram performance, power, and energy on a smartphone is examined. Using PARSEC and

SPEC benchmarks, the gcc compiler’s optimization levels O0 through O3 is tested with

all the other system settings such as CPU governor set to the default. PARSEC benchmarks

are run with 4 threads. Figure 3.1 shows the performance, power and energy numbers ob-

tained for different optimization levels for PARSEC and SPEC. All results are normalized

with respect to O3.

As expected, there is a big performance difference between O0 and O1. Compared with

O0, O1 produces an average performance (execution time) improvement of 1.5× and 2.2×

for PARSEC and SPEC respectively. However, beyond O1, the performance difference is

very small for both multithreaded PARSEC and single-threaded SPEC.

The second observation is that optimization levels make very little difference in power

consumption. Although O0 generally leads to the highest power consumption, the aver-

30

age difference between O0 and O3 is only 0.039× and −0.03× for PARSEC and SPEC

respectively. As a result, the energy difference as shown in Figure 3.1 is mostly due to the

performance difference. These trends are very similar to those found on servers as reported

in [48].

O0 O1 O2 O3

R
e

la
ti
v
e

 E
x
e

c
u

ti
o

n
 T

im
e

,
P

o
w

e
r,

 E
n

e
rg

y

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
Compiler Optimization: PARSEC

Relative Execution Time

Relative Power

Relative Energy

O0 O1 O2 O3
0.8

1

1.2

1.4

1.6

1.8

2

2.2
Compiler Optimization: SPEC CPU2006

Figure 3.1: Effect of compiler optimization on performance, power, and energy on N6.
Normalized w.r.t O3.

In the domain of mobile devices, 4, 6 and 8-core SoCs are becoming the norm. While

parallelization improves performance, due to increased CPU activity, the side effects on

power and energy have to be analyzed carefully.

Figure 3.2 shows the results obtained when the effects of parallelization is evaluated by

varying the number of threads from 1 to 4 to 16 for 7 PARSEC benchmarks as listed in

Table 3.1. Results are normalized to 4 threads.

When the number of threads is increased from 1 to 4, five of the benchmarks show an

average speedup of 3.62, while freqmine, a memory-intensive benchmark, has a speedup

of 1.71, and ferret has a speedup of 1.99 due to small-sized L2 cache. Increasing the

number of threads from 4 to 16, however, does not improve the speedup by a large margin

because the N6 has a quad core processor.

In [48], increasing the level of parallelization from 1→ 4→ 16 threads reduces energy

consumption by 45% and 59% respectively, because the magnitude of reduction in runtime

31

1 4 16 1 4 16 1 4 16

Threads

0

1

2

3

4

5
N

o
rm

a
liz

e
d

 P
e

rf
,

P
o

w
e

r
a

n
d

 E
n

e
rg

y

blackscholes facesim ferret fluidanimate freqmine streamcluster swaptions

Power Energy

Performance

Figure 3.2: PARSEC Threads: Performance, Power and Energy on N6. Normalized w.r.t 4
threads.

surpasses increase in power. Experiments here show that the trends on mobile devices are

quite different. The results reveal that increasing although the number of threads from

1→ 4→ 16 threads, energy remains almost constant. The only exception is the 16-thread

streamcluster, which has a 53% increase in energy, mainly due to the significant

drop in performance (85%). As shown in [122], Android applications in general have

relatively low TLP (< 3). However since Android 7.0 multi-window support allows for

displaying more than one app on the screen. Through the experiments it is observed that

programs which contain highly parallelizable CPU intensive code when allowed to run for

long duration, can cause thermal throttling, which reduces performance significantly. If

high CPU activity persists, it eventually leads to device shutdown. In conclusion,

OBSERVATION 1: It appears that, on both servers and Android mobile devices, the op-

timizations implemented by gcc have little impact on a program’s power consumption.

Unlike on servers, multithreading on smartphones does not reduce energy consumption.

Additionally, quad-core Android mobile devices are not designed to run applications with

high thread-level parallelism (TLP), and developers should avoid writing such applica-

32

tions.

3.3.2 CPU Governors

CPU DVFS is one of the most important power management techniques on smartphones.

Four CPU governors shipped with the phone: interactive, ondemand, powersave,

and performance are evaluated in this study. Due to thermal throttling issues, the

performance governor is only tested on the Android apps. Results shown in Figures

3.3 (a), (b) and (c) are all normalized to interactive.

For PARSEC and SPEC, as expected, the powersave governor has the lowest per-

formance – on average, the performance is more than 7× worse than interactive.

However, it is interesting to note the very different energy results with the two benchmark

sets. In every single case of the multithreaded PARSEC programs, powersave results in

net energy savings compared with interactive, ranging 15.2% - 35.3% with an aver-

age of 28.5%. SPEC programs show opposite results. In every single case, powersave

consumes more energy than interactive – 59.6% more on average. The ondemand

governor, on the other hand, has almost identical behavior as interactive in terms of

performance, power, or energy.

For the Android benchmarks, AnTuTu, GeekBench and Vellamo, the performance

degradation of powersave is less marked than PARSEC and SPEC, but is still significant

– 4.46× on average. Energy consumption results are mixed. With AnTuTu, powersave

consumes about 40.7% less energy, while with GeekBench and Vellamo, it consumes

49.1% and 17.2% more compared with interactive. The ondemand governor pro-

duces mixed results compared with interactive. For example, under ondemand,

while the performance of AnTuTu is 24% worse, that of Vellamo is about 20% better.

Neither of the two governors shows a clear advantage over the other.

Finally, for the Android apps, powersave also has the lowest performance, about

2.51× lower than interactive. However, its power reduction is significant, resulting

33

Fi
gu

re
3.

3:
C

PU
G

ov
er

no
rs

:(
a)

Pe
rf

or
m

an
ce

(b
)P

ow
er

an
d

(c
)E

ne
rg

y
on

N
6.

N
or

m
al

iz
ed

w
.r.

ti
n
t
e
r
a
c
t
i
v
e

go
ve

rn
or

.

34

in net energy savings in 3 out of the 5 cases. The performance governor, as mentioned in

Section 3.2, fixes the CPU frequency to its maximum value. Consequently, in all 5 cases, it

causes the most power consumption. However, with MX Player, it does not produce better

performance than interactive. In the case of Spotify, the performance is about the

same, but the power consumption is 31% more. These are typical cases where the higher

CPU frequencies are not required, and, if used, simply waste energy.

With the tested Android apps, the ondemand governor generally has similar perfor-

mance compared with interactive. However, its power consumption is more in all 5

cases. In terms of energy, the default interactive appears to be a better choice, with

ondemand consuming on average 9% more energy.

Two conclusions can be drawn from this part of the tests. First, given that the CPU

utilization by Android apps is relatively low, and that sustained use of the highest CPU fre-

quency can cause thermal throttling, the usage of the performance governor should be

carefully evaluated to decide if it should be supported. Second, the energy results indicate

that the low end of the CPU frequencies can produce net energy savings compared with

interactive. This seems to suggest that interactive and ondemand may be too

aggressive in ramping up the CPU frequency, leaving room for improvements. In addition,

since different apps show different requirements, the following observation can be made

for balancing energy and performance:

OBSERVATION 2: A DVFS mechanism which can adapt itself to the behavior of individual

apps can provide higher energy efficiency without sacrificing performance.

3.3.3 Memory Bandwidth Governors

The performance of processors does not entirely depend on the CPU clock frequency. The

memory subsystem also plays a key part. Data transfer between the last level cache and the

DRAM takes place over a dedicated bus. To improve power efficiency, hardware manufac-

turers have introduced flexible memory bandwidth and the devfreq subsystem in the Linux

35

kernel enables the control of this bandwidth. Nevertheless, reference [123] reports that the

memory bus takes up a significant share (about 23%) of the total system power in servers.

It is therefore important to understand the behavior of the memory bandwidth governors on

current mobile devices.

The N6, which supports 13 memory bandwidths (BW) between 762 and 16250MBps,

comes with 4 BW governors (Section 3.2). The powersave and performance gov-

ernors are compared against the default cpubw hwmon, while keeping the CPU governor

fixed (interactive). The results are shown in Figures 3.4 (a), (b) and (c). Overall,

the default governor performs rather well. However, the difference from the other two

governors is in general relatively small, although there are noticeable exception cases.

Excluding 3 exception cases (mcf, GeekBench, Spotify), powersave has, on aver-

age, almost identical performance, power, and energy as the default governor. This suggests

that the default governor mostly uses the lower end of the bandwidths which is verified by

observing the histogram of the memory BWs chosen. This behavior is in-fact consistent

with the findings in [37] which suggest using the lowest BW is often sufficient. For Spotify

in 3.4 (b), power consumption for the powersave BW governor is higher than the default.

On closer examination of the power trace, it is observed that for each of the governors, peak

power during the data download is the same. But lowering the memory BW increases the

download time thereby increasing the net power (and also energy) consumed.

The performance governor does have the best performance in almost all cases.

However, its performance advantage over the default governor is very limited – less than

4% on average. Only mcf and Facebook show notably better performance – by 17 and 13%

respectively. In terms of energy, the averaged result of PARSEC and SPEC combined is

6% more than the default governor, while the Android benchmarks and apps shows bigger

difference – about 13% more compared with the default.

OBSERVATION 3: Compared with the CPU governor, the memory bandwidth governor’s

impact on performance, power, and energy is limited but not negligible. Compared with

36

Fi
gu

re
3.

4:
M

em
or

y
B

W
G

ov
er

no
rs

:(
a)

Pe
rf

or
m

an
ce

(b
)P

ow
er

an
d

(c
)E

ne
rg

y
on

N
6.

N
or

m
al

iz
ed

w
.r.

tc
p
u
b
w
h
w
m
o
n

B
W

go
ve

rn
or

.

37

the static governors, the default cpubw hwmon is probably the best. This is particularly

true energy-wise with the Android benchmarks and apps.

Although the observations 2 and 3 show that default governors perform quite well,

it is shown in the sequel that there is significant room for improvement when governors

coordinate rather than operate independently.

3.3.4 GPU Governors

Like the CPU, GPU too supports DVFS and the devfreq module in the Linux kernel pro-

vides a means to change the clock frequencies.

Table 3.3: 3DMark score for different GPU governors on N6. CPU governor fixed to
interactive.

Default Powersave Difference
Overall Score 1339 643 −2.082×

Graphics Score 1338 560 −2.388×
Physics Score 1394 1347 −1.035×
Graphics FPS 8.3 3.5 −2.371×
Physics FPS 29.4 30.2 1.027×

On the N6, the GPU has 5 frequencies: 600, 500, 389, 300, 240MHz and the de-

vfreq module supports 4 GPU governors. The default governor msm adreno tz and

the powersave governors are evaluated. 3DMark benchmark which uses OpenGL 3.1

are run with the CPU governor set to interactive. Table 3.3 compares the perfor-

mance and FPS of the two GPU governors as reported by the app. In the graphics test,

the powersave governor shows a significant reduction in performance (2.38×) and FPS

(2.37×). The physics tests involve CPU activity as well and since the CPU governor is

the same, it is seen that the two governors produce close performance and FPS results. On

the other hand, the powersave GPU governor produces significant reductions in power

and energy when compared to the default configuration, 1.71× and 1.69× respectively. It

is also noted that the default GPU governor is aggressive and chooses the highest GPU

frequency most of the time. Furthermore, reference [27] presents a control strategy which

38

performs DVFS for the CPU and GPU simultaneously, to achieve up to 26% reduction in

power consumption for comparable performance. During the runtime of an application, the

CPU and GPU get stressed dynamically. Hence independent DVFS governors for CPU and

GPU tend to be energy inefficient.

OBSERVATION 4: Coordinated control of the CPU and GPU DVFS states can lead to

better power/energy efficiency.

3.3.5 Cross Effects

With several power/energy management methods implemented at various levels of the

stack, it is not unexpected to observe one technique working against another. While refer-

ence [48] reports such a phenomenon on server machines, in the experiments performed in

this study however, it is observed that the different governors do not seem to work against

each other. Nevertheless, a few scenarios are observed where the default governors do not

contribute to their intended purpose and can be designed in a much better way.

CPU Governor vs BW Governor

The interactions of CPU governors and memory bandwidth governors are tested on all

the 5 Android apps, as well as 3 PARSEC benchmarks, blackscholes, facesim,

freqmine, and 3 SPEC benchmarks, bzip2, mcf, perlbench. The subset of PAR-

SEC and SPEC benchmarks were chosen so as to stress the CPU and memory BW. The

performance results are listed in Tables 3.4 and 3.5 and power results are listed in Tables

3.6 and 3.7.

Table 3.4 shows the performance loss data when the CPU governor is changed from

interactive to powersave, while the BW governor is fixed. It is clear that, in this

interaction scenario, the CPU governor is the determining factor for performance. The data

are average numbers among each groups of benchmarks. It can be seen that changing the

CPU governor from interactive to powersave has a big impact on performance,

39

regardless of the BW governor. The Android apps see the least amount of performance

change, but the loss is still significant: 124% to 151% or 2.2 - 2.5× slowdown.

Table 3.4: Performance difference when changing CPU governor from interactive to
powersave, with fixed BW governor. All numbers compared against intCPU-defBW on
N6.

BW Gov Apps PARSEC SPEC
Default -151.4% -634.4% -513.3%

Powersave -125.6% -642.9% -468.4%
Performance -124.1% -650.7% -557.2%

Baseline InteractiveCPU-DefBW

On the other hand, when the CPU governor is fixed, changing the BW governor pro-

duces much smaller performance changes. Table 3.5 shows the performance variation when

the BW governor is changed from the default to powersave and performance, with

the CPU governor fixed. Data for interactive and powersave CPU governors are

relative to intCPU-defBW and pwrCPU-defBW respectively. The results for individual An-

droid apps are listed, but only the average for the PARSEC and SPEC programs for brevity.

The difference in general is less than 15% with a few exceptions, and the maximum is

41.8% difference as seen with AngryBirds. However, with powersave CPU governor

the game-play is no longer smooth. Similarly for MXPlayer with the powersave CPU

governor, the 137s video takes over 300s to complete regardless of the memory BW gover-

nor.

As for power, the behavior is a little more complex. Although the CPU governor still

has greater impact, across the board, the effect of the BW governor increases, particularly

when the CPU runs at low frequencies. Table 3.6 shows the change in power consumption

when the CPU governor changes from interactive to powersave with fixed BW

governors. The data are average numbers for each benchmark groups. The CPU governor’s

impact on power is obviously very significant, although much less so with the Android

apps. Table 3.7 shows the change in power when the CPU governor is fixed, and the BW

governor is changed from the default to powersave and performance.

40

Table 3.5: Performance difference when changing BW governor from default to
powersave or performance, with fixed CPU governor. Numbers compared against
intCPU-defBW and powsavCPU-defBW, respectively, on N6.

InteractiveCPU PowersaveCPU
pwrsavBW perfBW pwrsavBW perfBW

AngryBirds -1.4% 7.8% 27.8% 41.8%
Facebook 0.0% 13.5% 4.8% 8.5%
Chrome -4.9% 1.0% -2.6% 8.2%

MXPlayer 0.0% 0.0% 0.0% 1.3%
Spotify 17.5% 14.5% -19.0% -19.7%

PARSEC avg. 1.7% 3.0% 0.5% 1.0%
SPEC avg. -9.3% 12.4% 0.2% 5.2%
Baseline InteractiveCPU-DefBW PowersaveCPU-DefBW

Table 3.6: Power difference when changing CPU governor from interactive to
powersave, with fixed BW governor. All numbers compared against intCPU-defBW
on N6.

BW Gov Apps PARSEC SPEC
Default -28.6% -89.1% -75.5%

Powersave -38.1% -89.3% -74.8%
Performance -23.3% -84.6% -66.1%

Baseline InteractiveCPU-DefBW

Table 3.7: Power difference caused by changing BW governor from default to powersave
or performance, with fixed CPU governors. Numbers compared against intCPU-defBW
and pwrsavCPU-defBW, respectively, on N6.

InteractiveCPU PowersaveCPU
pwrsavBW perfBW pwrsavBW perfBW

AngryBirds 2.0% 12.0% -2.7% 25.0%
Facebook -0.2% 13.3% 0.0% 27.6%
Chrome 0.3% 5.8% -2.1% 21.4%

MXPlayer 2.2% 13.1% -0.5% 15.3%
Spotify 6.1% 13.1% -0.5% 19.7%

PARSEC avg. 0.5% 5.7% -1.4% 47.6%
SPEC avg. -6.3% 15.0% -4.2% 59.6%
Baseline InteractiveCPU-DefBW PowersaveCPU-DefBW

Two observations can be made from Table 3.7. First, the powersave BW governor,

i.e., setting the bandwidth to its lowest, generally has limited effect on power under either

CPU governors. The SPEC program mcf is the only exception with a 17% difference

41

under the interactive CPU governor. This again indicates that the bandwidth is not

saturated, and most of the time lower bandwidths are used, as pointed out in Sec. 3.3.3.

Second, the performance BW governor, i.e., setting the bandwidth to its largest, has

a big impact on power consumption. This is particularly noticeable when the powersave

CPU governor is used, which fixes the CPU frequency at its lowest. This behavior is ex-

pected – when running at a low frequency, the CPU’s contribution to the overall power is

lower, and correspondingly, the BW’s portion increases. However, it is noted that, as far as

the Android apps are concerned, under the interactive CPU governor, the BW gov-

ernor’s impact on performance and power does not show a clear trend, and appears to be

dependent on the individual apps. To test this hypothesis further, the Android apps are run

at different fixed CPU frequencies and memory BWs, and found that performance similar

to the default governors can be obtained at much lower energies. For example, running An-

gryBirds at CPU frequency of 0.729GHz and memory BW of 762MBps consumes 12.11%

lesser power for the same performance(See Fig. 3.5a). It is also noted that for apps like

MX Player which use dedicated hardware codecs, tuning CPU frequency and memory BW

doesn’t show significant energy reduction 5% as compared to default governors (See Fig-

ure 3.5b). On current Android mobile devices, the cpufreq and devfreq subsystems work

independently of each other. This issue is addressed in the next chapter where a feedback

controller minimizes energy consumption of an SoC by performing DVFS of both the CPU

and the memory bandwidth simultaneously.

OBSERVATION 5: A more global and coordinated control of multiple components (CPU,

GPU and memory BW) should be further investigated for better energy efficiency.

CPU Governor vs CPU Idle

The interactions of CPU governors and cpuidle is evaluated by changing the CPU gover-

nors between interactive and powersave for cpuidle turned ON and OFF. This is

performed on the N5X with all 5 Android apps and a subset of benchmarks from PARSEC

42

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

(0.3, 762) (0.4224, 1525) (0.3, 16250) (0.4224, 10101) (0.8832, 762) (0.7296, 7091)

N
o

rm
a
liz

e
d
 P

e
rfo

rm
a
n
c
e

P
o
w

e
r

(W
)

Configuration (CPU Freq in GHz, Mem BW in MBps)

Power (W)

Performance

Default Governor Performance = 1.6

Default Governor Power = 2.4W

Better configurations

(0.7296, 762)

(a)

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

(0.6528,
762)

(0.960,
762)

(0.6528,
16250)

(1.2672,
762)

(1.5744,
762)

(0.960,
16250)

(1.036,
16250)

1.2672,
16250)

N
o

rm
a
liz

e
d
 P

e
rfo

rm
a
n
c
e

P
o
w

e
r

(W
)

Configuration (CPU Freq in GHz, Mem BW in MBps)

Performance

Power (W)

Default Governor Power = 2.14W

Better configuration

Default Governor Performance = 2.7

(b)

Figure 3.5: (a)AngryBirds and (b)MXPlayer: Performance and Power trends on N6 for
different CPU frequencies and mem BW combinations. Performance normalized to con-
figuration (0.3GHz, 762MBps).

43

and SPEC CPU2006. The PARSEC benchmarks are run with 4 threads. Table 3.8 lists the

performance, power and energy difference as compared to the default setting on the N5X.

Table 3.8: Performance, Power and Energy difference of different CPU and idle configura-
tions as compared to default intCPU-idleON on N5X.

InteractiveCPU PowerSaveCPU
Perf. intCPU-idleOFF pwrCPU-idleON pwrCPU-idleOFF

PARSEC -1.00% -357.2% -356.7%
SPEC -0.06% -450.3% -447.9%
Apps -6.37% -116.00% -132.9%

Power intCPU-idleOFF pwrCPU-idleON pwrCPU-idleOFF
PARSEC 1.2% -88.7% -85.4%

SPEC 21.7% -85.1% -76.8%
Apps 3.8% -15.9% -15.6%

Energy intCPU-idleOFF pwrCPU-idleON pwrCPU-idleOFF
PARSEC 1.9% -48.4% -34.1%

SPEC 21.8% -21.2% 23.2%
Apps 3.5% -5.6% -4.4%

The results when CPU governor is fixed to interactive is discussed first. The

data show that cpuidle has virtually no impact on program performance for PARSEC and

SPEC. The 6% difference seen in the apps is dominated by AngryBirds (discussed below).

In terms of power and energy, it is seen that cpuidle has very limited effect with PARSEC

and the apps. This is because (1) All 6 cores of the N5X are used when running the PARSEC

programs, regardless of cpuidle and (2) For Android apps, the screen dominates the power

consumption and hence masks any gains from the idling of unused cores. When cpuidle

is OFF, only state C0 (highest power state) is used on the 6 cores. However, turning ON

cpuidle shows that the 6 cores continue to be in the C0 state most of the time as well.

The only application that appears to not conform to this trend is AngryBirds. Analyzing

the raw data, it is observed that the median SPF is 7.7ms for interactiveCPU-idleON and

9.3ms with interactiveCPU-idleOFF, both well below the 16ms-per-frame threshold which

is recommended for a smooth user experience. Since the end user cannot perceive this

minor change, the following observation is arrived at:

44

OBSERVATION 6: cpuidle does not improve performance for real world apps at least on

Nexus 5X.

SPEC benchmarks, on the other hand, consume an average of 21.7% more power when

cpuidle is turned OFF. This is because these are single threaded programs and only one

core is used. With the screen and WiFi being turned OFF, extraneous power consumption

is eliminated. If cpuidle is OFF, the otherwise idle cores are prevented from going to sleep,

thus causing a significant power increase.

The data trends are similar when the CPU governor is changed to powersave. How-

ever, the degree of impact of cpuidle shows some difference. In terms of performance,

cpuidle still has almost no effect on PARSEC and SPEC. Apps, however, have greater

performance difference. Power- and energy-wise, for PARSEC and SPEC, it is seen that,

under the powersave governor, turning cpuidle OFF makes much greater difference than

under interactive, suggesting an influence of CPU frequency on cpuidle. The trend

for apps, however, is quite different. Under powersave, the average power and energy

differences are 0.4% and 1.3%, respectively, when cpuidle is turned OFF. With the CPU

frequency at its lowest, the power drawn by the screen overshadows CPU power even more,

thus concealing any positive effects due to idling.

OBSERVATION 7: The data trend indicates that cpuidle is effective only when the CPU is

the dominant power consumer in the mobile device. Coordination between CPU idling and

CPU governors can conserve more power and hence more energy.

3.4 Summary

In this work a characterization of performance, power and energy of various energy man-

agement schemes on Android smartphones is performed. A total of 367 tests is conducted

which include 5 popular Android apps, 4 prominent Android benchmarking apps, and

benchmarks from PARSEC and SPEC CPU2006. While the analysis is certainly not ex-

haustive, the findings are presented with the intention of helping software and hardware

45

developers better understand the interactions between different layers of the stack so as

to design effective algorithms for mobile platforms. To conclude this chapter, Table 3.9

summarizes all the tested options and the main findings.

Table 3.9: Summary of tests and findings.

• Compiler optimizations Compiler optimizations of gcc have little impact on power
or energy.

•Multithreading 1) Unlike on servers, multithreading does not save energy.
2) Current mobile devices are not designed to run applica-
tions with high TLP.

• CPU governors 1) CPU governor can achieve higher energy efficiency by
adapting to behavior of individual apps. 2) Vendors should
carefully evaluate the performance governor.

• BW governors 1) Compared with CPU governors, BW governor’s impact
on performance, power, and energy is limited but not negli-
gible. 2) Lower bandwidths are often sufficient for perfor-
mance.

• GPU governors Default GPU governor is aggressive and must coordinate
with CPU governor.

• CPU-BW cross effect Coordinated control of multiple components (CPU, BW,
GPU) may lead to better performance-power balance.

• CPU DVFS-Idle cross effect 1) CPUIdle does not seem to be very effective on N5X for
Android apps. 2) Coordination of DVFS and CPUIdle may
be a better solution.

46

CHAPTER 4

COORDINATED CONTROL: MOBILE DEVICES

Energy management is a key issue for mobile devices. As observed in CHAPTER 3, power

management for various hardware components relies heavily on OS modules known as

governors. The governors implement algorithms that attempt to balance performance and

power consumption. This chapter establishes that the existing governors are: (1) general-

purpose by nature, (2) focused on power reduction, and (3) not energy-optimal for many

applications. The need for an application-specific approach is established that could over-

come these drawbacks and provide higher energy efficiency for a class of applications. It

is also shown that existing methods manage power and performance in an independent and

isolated fashion, and that, coordinated control of multiple components is more energy ef-

ficient. In addition, it is also noted that on mobile devices, energy savings at the expense

of performance is not desirable. Consequently, a solution is proposed that minimizes en-

ergy consumption of specific applications while maintaining a user-specified performance

target. The solution consists of two stages: (1) offline profiling and (2) online controlling.

Utilizing the offline profiling data of the target application, the control theory based online

controller dynamically selects the optimal system configuration (in this work, a combina-

tion of CPU frequency and memory bandwidth) for the application, while it is running. The

energy management solution is tested on a Nexus 6 smartphone with 6 real-world applica-

tions. Energy savings in the range of 4−31% is achieved as compared to default governors

with a worst case performance loss of < 1%.

4.1 Overview

System-on-Chips (SoC) for mobile devices have seen continued improvements in perfor-

mance due to diversified functionalities provided by GPUs, DSPs etc. The processor per-

47

formance has experienced a boost over the last few generations due to commensurate ad-

vancements in memory technologies. On the software end, the emergence of a variety of

applications utilizing the hardware diversity has increased the popularity of mobile devices.

Battery technology however, has not kept pace, thereby making battery life one of the top

concerns of end users.

In the interest of prolonging battery life, modules in the latest SoCs are equipped with

power/energy management solutions. Greedily entering low power states and Dynamic

Voltage and Frequency Scaling (DVFS) are the most commonly used techniques. For ex-

ample, the Linux kernel on Android devices has subsystems called cpufreq and devfreq to

manage power consumption of CPU and other DVFS-capable components, respectively.

To further improve performance, the Linux kernel for Android supports a “touch boost”

feature to ramp up the CPU frequency when required. Within these subsystems, modules

known as governors implement algorithms that determine clock frequencies to be used un-

der different conditions. The governors attempt to strike a balance between performance

and power dissipation. For instance, the interactive governor, the current default CPU gov-

ernor on Android devices, will quickly ramp up the frequency when user interactions are

detected and will reduce the frequency when there are no interactions.

The stock governors are designed for general purpose usage. Consequently the key ob-

servation is that, in the process of improving performance, stock governors result in higher

energies for some applications, including popular ones like AngryBirds. This suggests

the relevance of application-specific controllers in such scenarios. Additionally, current

state-of-the-art governors on Android mobile devices are tailored for power optimization.

However, as observed in [26], governors for mobile devices must be designed for mini-

mizing energy with performance constraints and not power because energy consumption is

strongly correlated with battery life. Correspondingly, the problem statement addressed in

this chapter is the following:

48

Problem: Choose the minimum energy system configuration while maintaining the perfor-

mance target.

Maintaining performance while minimizing energy under dynamic run-time conditions

is a complex problem. However, as is elaborated in the later sections, the problem statement

can be divided into two parts: (P1) Maintain the performance target and (P2) Minimize the

energy consumption. The solution adopted is implemented in two stages. The application

is profiled offline (Stage 1) and the feedback controller is implemented on-line (Stage 2)

utilizing the profiled data to minimize energy while maintaining performance. In Stage 2,

1) To maintain performance (P1), a performance regulator is used. The regulator com-

putes a signal based on the measured and target performance.

2) To minimize energy (P2), an optimizer uses the output from the regulator and chooses

a hardware system configuration from the offline profiled data in order to minimize

the energy.

An important observation to be made at this juncture is that the software governors work

independently of each other. A few studies ([23, 24, 25]) have shown that independent

power/performance control strategies can lead to conflicting policies causing performance

and/or power losses. Addressing this problem, researchers have investigated the coordi-

nated control of different hardware subsystems on servers [23], SoCs [26] and embedded

systems ([29] and references therein).

Proposals which offer energy minimization with performance maintenance by the con-

trol of multiple subsystems simultaneously, are either implemented on (1) simulators de-

signed for servers [23] or (2) real physical devices with CPU-only DVFS [38]. Reference

[26] discusses CPU and memory DVFS trade-offs for mobile devices using a Gem5 simu-

lator and SPEC CPU2006 benchmarks as their test cases.

The highlights of the work reported in this chapter are the following:

49

1. For some popular applications, the stock power manager causes excessive energy

consumption on a modern Android mobile device.

2. A software controller is implemented to minimize the energy consumption of such

applications while maintaining a user-specified performance target.

3. The controller achieves 4 − 31% energy savings on 6 real-world applications with a

worst case performance loss of less than 1%.

4. Unlike default governors that are independent for each subsystem, the control strat-

egy adopted in this chapter is the coordinated control of CPU frequencies and mem-

ory bandwidth. Compared to a CPU-only energy minimization scheme, energy sav-

ings improves by 53%.

5. The control strategy can be readily extended to include GPU frequencies, GPU mem-

ory bandwidth, network packet rate, etc. Furthermore, it can be implemented on any

mobile device capable of DVFS.

4.2 Motivation

This section is an extension to the observations made in Section 3.3.5. The crucial point

is the coordination among different components for the purposes of power management.

The drawbacks of the existing DVFS governors are evident from previous studies as well

as experiments performed in CHAPTER 3. This provides the motivation for the work in

the present chapter.

A potential source of ineffectiveness for the existing governors is the lack of coordina-

tion among different components. Take the ondemand CPU governor mentioned in 3.2.2

as an example. Its actions are solely based on the CPU load and is oblivious to the state

of other components such as the memory. In [23] the authors point out that independent

control policies could lead to conflicts and, subsequently, to oscillations, thereby greatly

50

reducing the effectiveness in achieving energy savings. They further demonstrate that co-

ordinated control of CPU and memory DVFS is a better strategy.

The current cpufreq and devfreq governors work well in some cases. However, they do

have their limitations.

In [124] the authors compare power consumption of a mobile platform at a set of fixed

CPU frequencies and when using two different governors. Four typical usage scenarios are

tested: 3G, WiFi, voice call, and ebook reading. They find that the optimal CPU frequency

in terms of power consumption is dependent on the use case. In addition, in two of the four

cases, the ondemand governor consumes more power than most of the fixed frequencies.

This suggests that for some applications at least, an application-specific DVFS strategy

may be a better solution.

CPU Frequency

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

%
 o

f
to

ta
l

ru
n

ti
m

e

0

10

20

30

40

50

60

Figure 4.1: Histogram of CPU frequencies for eBook application. The numerals indicated
on the x-axis stand for the choice of 18 discrete frequencies (in the range 0.3− 2.65GHz).
See Table 4.2 for details.

This study too evaluates the behavior of the default governors for some applications.

Fig. 4.1 shows the histogram of CPU frequencies chosen by the default CPU governor on a

Nexus 6 smartphone for an e-book reader application when there is no user interaction such

as scrolling or zooming, i.e., when the user is just reading the page. The screen brightness

is fixed at the lowest level, WiFi is turned ON and there are no applications running in

the background. The x-axis of the figure shows the CPU frequencies from low to high

and the y-axis indicates the percentage of time spent in a given frequency during the test

period. It can be seen that, even though there are no user interactions, the CPUs, under the

51

control of the governor, spend over 10% of the time in the highest frequency, and about

15% of time in a middle frequency (No. 10), as highlighted in the figure. Running at a

higher-than-necessary clock frequency results in energy wastage. It is clearly seen that the

default DVFS governors on the current Android devices, in the process of providing better

performance, are not energy-optimal for many applications. Thus it becomes necessary

to investigate whether an application-specific approach that can set system configurations,

e.g., DVFS, based on the characteristics of specific applications, can lead to higher energy

efficiency. In the course of searching for a better solution however, one must keep in mind

that performance is a top priority for end users. As a general principle, energy savings

should not be achieved at the expense of performance degradation.

This work exploits the ineffectiveness of default governors and presents a strategy mo-

tivated by (1) energy minimization in contrast to power minimization, (2) meeting perfor-

mance requirements and (3) coordinated control of multiple components.

4.3 Controller Design

This section presents the design of the application-specific performance-aware energy opti-

mization solution. As mentioned in Section 4.1, the solution consists of two stages: offline

profiling and online controlling. Both stages are discussed in detail below.

4.3.1 Offline Profiling

The application-specific aspect of the solution relies primarily on the run-time utilization

of offline profiled data of the target application. Prior to online controlling, in the offline

profiling stage, the performance and power of a target application is measured under dif-

ferent system configurations. For each such configuration, the power and performance data

are averaged over three runs for every application tested.

The term system configuration means hardware or software settings and combinations

thereof, that could impact the performance of applications. Examples include CPU fre-

52

quency, memory bandwidth, storage parameters, network packet transfer rate, thread schedul-

ing policy and so on. In the context of the present chapter, system configuration is used

to mean the combination of CPU frequency and memory bandwidth. It must be empha-

sized that the solution is not limited to controlling this particular configuration and can be

extended to include other configurations mentioned above.

Profiling data of an application are organized in a table, an example of which is shown

in Table 4.1. The performance data are normalized with respect to the value corresponding

to the lowest system configuration and is termed speedup. The lowest system configuration

in this work refers to the lowest CPU frequency and lowest memory bandwidth of the

SoC. Power data, obtained with a Monsoon power monitor [110], are the average power

consumption of the entire device during the test period.

There are two issues associated with offline profiling:

1. The number of configurations that require profiling could be rather large in practice.

2. There could be discrepancy between the controller’s runtime environment and the

profiling environment.

Since the tuple (CPU frequency, memory bandwidth) is considered as the system con-

figuration, exhaustive offline profiling involves running the application for every combi-

nation of supported CPU frequency and memory bandwidth. On a Nexus 6 smartphone

for example, there are 18 × 13 = 234 combinations (18 CPU frequencies and 13 memory

bandwidths). While a large number of system configurations profiled gives fine-grained

data, it also increases the profiling time-span as well as the online controller’s run-time

overhead due to the larger search space. Addressing the issue of space explosion, a maxi-

mum of 9× 2 = 18 configurations are chosen, i.e., for each alternate CPU frequency with

the lowest and the highest memory bandwidths. For each profiled CPU frequency, linear

interpolation is used to get the intermediate data for the rest of the memory bandwidths. In-

terpolations are not performed along the CPU frequency dimension because it is observed

53

that in general, performance and power do not change by a large margin for neighboring

CPU frequencies. Although this approach introduces quantization and modeling errors,

practical results show that the controller is robust enough to handle it.

Table 4.1: Sample table with performance and power data profiled offline for AngryBirds
application

Config (GHz,MBps) Speedup, S Power, P (mW)
1 (0.3, 762) 1.0 1623.57
2 (0.3, 1525) 1.0038 1682.83
3 (0.3, 3051) 1.0077 1742.09
...

...
...

...
31 (0.8832, 762) 1.837 2219.22

On mobile devices at any given point in time, many applications run in the background

albeit most of them are in the “sleep-state”. Applications such as e-mail clients perform

synchronizations periodically while some applications like Spotify or similar music play-

ers continue to run even when they are minimized. Offline data collected for an application

under a given background load can be rendered unusable at run-time when the load condi-

tions differ by a large margin. A straightforward method is to profile the application under

different background loads. However, the drawback of such an approach is that the profil-

ing overhead increases significantly. The approach used to tackling this issue is to profile

the application with a background load, i.e., WiFi ON, e-mail synchronization enabled and

Spotify running in the background. The controller performance is then tested for heavier

and lower background load conditions. The results show that while there is input data de-

pendence, this issue is mitigated in part by the feedback controller. Overall, the approach

performs rather well for a range of typical load conditions.

Furthermore, the performance (Rdef), running time (Tdef) and average power (Pdef) of

the application is measured under the default governors. The default energy consumption

(Edef) of the device while the application is running is simply Pdef × Tdef . The default

performance, Rdef , serves as the basis for the target performance, which is an input to

the online controller. The energy consumption of the device under the proposed control

54

scheme is compared with the default energy Edef .

4.3.2 Online Controller

The offline profiled data are used by the online controller to run the application in an

energy-efficient fashion while at the same time meeting a user-specified performance tar-

get. The online controller is based on the work presented in [38] and is a feedback control

loop as shown in Fig. 4.2. In accordance with splitting the problem statement into two parts

P1 and P2 as described in Section 4.1, the online controllerK has two parts: a performance

regulator and an energy optimizer.

Controller Plant

Optimizer

+
-

r en sn

c

yn

Offline Data

Figure 4.2: Block diagram of feedback controller

Let C = {c1, c2, . . . , cN} be the set of N system configurations. Each ci ∈ C is an

ordered pair {f(CPU,i), f(BW,i)} where i = {1, 2, . . . , N}. The term coordinated control

in this context refers to the ordered pair ci. Instead of choosing f(CPU,i) and f(BW,i) inde-

pendently of each other, augmenting f(BW,i) with f(CPU,i) is the meaning of coordination.

Choosing the best values for f(BW,i) and f(CPU,i) depends on the performance and energy

implications of the whole system and not just the individual components. With reference

to Fig. 4.2, the feedback controller is implemented as follows:

1. Given a target performance of the application r ∈ R and the measured performance

of the system yn ∈ R, the error is computed as en = r − yn. The subscript ‘n’

represents the control cycle index.

55

2. Based on en, the controller computes sn ∈ R to meet the performance target r. The

control cycle duration is T seconds.

3. The optimizer then applies the system configurations ci to the phone for an appro-

priate duration of time represented by the vector un ∈ RN so as to minimize energy

consumed while meeting the performance target.

4. The performance yn is measured at the end of the control cycle.

Performance Metric

Performance of an application can be quantified in many ways. Execution time is perhaps

the most commonly used metric. Frames per second can be used for video playing applica-

tions. Other metrics include number of jobs completed per unit time, task latency, and so

on. Android applications are distributed in a compressed format (apk) which contains par-

tially to completely obfuscated code. Requiring the developer to implement modifications

in the source code so as to report application performance periodically is in-feasible. In

this work, the objective is to obtain information about the progress of the application with-

out any source code modifications. Fortunately, modern micro-processors, including SoCs

used in Android mobile devices, generally possess a performance monitoring unit (PMU).

In this work, Giga-Instructions-Per-Second (GIPS) obtained from the PMU is used as the

performance metric. GIPS is considered as a good metric because it is highly correlated

with the execution time. It is also to be noted that GIPS has been used as a performance

metric in earlier works as well (see [125]).

Controller

The controller, also referred to as the performance regulator, computes a required speedup

sn so as to track the performance target r. Specifically, the goal of a performance regulator

is to reduce the error between the target performance and the measured performance to

56

zero, i.e., en = (r − yn)→ 0 . The performance of the system is modeled as

yn = sn−1 · bn−1 (4.1)

where bn is the base speed of the application and sn is the speedup with respect to bn.

Base speed bn is defined as the speed of the application when the least amount of system

resources are consumed. Feedback controllers can be designed with fixed gains or adaptive

gains. This work chooses an adaptive gain integral controller in order to accommodate

run-time variations, inaccuracies in measurement, modeling errors etc. References [33,

39, 126] have shown the practical feasibility of using adaptive gain integral controllers in

a variety of computing environments. Equation 4.3 describes the performance regulator

mathematically.

Optimizer

The optimizer computes a system configuration ci ∈ C and applies it to the plant i.e. the

phone. Specifically, it computes a vector uTn = [τc1 , τc2 , . . . , τcN] where τci represents the

time duration for which configuration ci is applied. Let S,P ∈ RN denote the average

speedup and power vectors generated via offline profiling (See Table 4.1). The ith element

in S and P denote the average speedup and power of configuration ci.

Encoding the actions of the performance regulator and the optimizer mathematically,

57

un is generated by the following equations invoked at the end of every control cycle:

en = r − yn (4.2)

sn = sn−1 +
en−1

bn−1

(4.3)

min
un

un
T · P (4.4)

s.t. ST · un = sn · T (4.5)

1T · un = T (4.6)

0 � un � T (4.7)

Eqn. (4.3), as mentioned earlier, represents the performance regulator. The adaptive gain

is encoded by the term 1/bn−1. The required speedup sn is computed based on the his-

tory of en which is why Eqn. (4.3) is called an “integrator”. One may refer to [32] for

details on derivation and stability proofs. Different applications can have different base

speeds. For example, on the Nexus 6 smartphone whose lowest possible configuration is

(300MHz, 762MBps), the base speed of AngryBirds is 0.129GIPS whereas for a Video

Converter application the base speed is 0.471GIPS. To ensure that the controller can track

these changes automatically, based on the work in [38], a Kalman filter [127] is used to

continuously estimate the application base speed bn.

Equations (4.4) - (4.7) represent the energy optimizer which is a linear program. Here

Eqn. (4.4) encodes the energy minimization objective, Eqn. (4.5) is the performance con-

straint and Eqns. (4.6) and (4.7) are timing constraints. The solution to the linear program

generates the vector un. It can be shown that an optimal solution exists with at most two

non-zero values for τci . The energy optimizer therefore selects at most 2 configurations cl

and ch such that S(l) ≤ sn < S(h) and τcl + τch = T. The subscripts l and h represent

“lower than” and “higher than” the required speedup respectively. This is pictorially de-

scribed in Fig. 4.3. Since there are at most N configurations, the run-time complexity of

58

the energy minimization is O(N2).

ch

cl

τh τl

sn

S
p
ee
d
u
p

⌧cl⌧ch

Figure 4.3: Pictorial representation of the energy optimization

cl, ch ∈ C are applied on the phone for a duration τcl and τch . Note that since τci = 0 for

i 6= l, h, those system configurations are not applied on the phone.

Table 4.2: List of CPU frequencies and memory bandwidths on Nexus 6

CPU Frequency (GHz) Mem Bandwidth (MBps)
1 0.3000 10 1.4976 1 762 10 8056
2 0.4224 11 1.5744 2 1144 11 10101
3 0.6528 12 1.7280 3 1525 12 12145
4 0.7296 13 1.9584 4 2288 13 16250
5 0.8832 14 2.2656 5 3051
6 0.9600 15 2.4576 6 3952
7 1.0368 16 2.4960 7 4684
8 1.1904 17 2.5728 8 5996
9 1.2672 18 2.6496 9 7019

4.3.3 Implementation Challenges

In contrast to previous works, this work evaluates the controller on a physical device with

real applications and run-time conditions. A list of challenges faced during the course of

this work and the subsequent solutions adopted is described next.

Previous work ([38]) required source code modifications to enable the controller to

monitor the application performance. Specifically, the “application being controlled” re-

59

ports its performance periodically to the controller. This work uses GIPS derived from a

PMU counter as mentioned above which does not require application developers to modify

their code.

However, a commercial phone does not come pre-loaded with the perf tool, neither

does it provide root access to the Linux kernel. Therefore, the userdebug version of Android

Marshmallow 6.0 is built along with perf. This enables (1) measuring performance at run-

time and (2) changing CPU frequency and memory bandwidth. The perf tool on the N6

has the lowest sampling period of 100ms. Furthermore, the computation overhead at this

sampling period is 40%. Therefore, a control cycle duration of 2 seconds is chosen for all

the experiments, i.e., with reference to Eqn. (4.4), T = 2. The overhead of perf and the

controller is discussed in Section 4.4.1.

Unlike commercial Intel and AMD processors, the Snapdragon 805 SoC does not sup-

port hardware power and energy counters. Moreover, the setup used for this work allows

recording the power consumption of the entire device only. Although the control algorithm

ideally requires only the power consumed by the CPU and the memory, the robustness of

the controller is shown to be able to handle these modeling inaccuracies.

A typical desktop/server class processor supports multiple processes running in parallel.

While ARM based SoCs do support the same, the process consuming most of the resources

in an Android device corresponds to the application being currently displayed on the screen.

Background application threads are in the “sleep state” in general, woken up periodically

depending on the nature of the application. Following suit, the strategy is to control the

application only while it is running in the foreground.

4.3.4 Applications

A set of 6 real world applications is chosen where each application demonstrates unique

characteristics. The applications are individually described below.

VidCon is a video converter application which uses the FFmpeg library [128] to convert

60

videos to different formats. For the experiments in this work, a fixed size mp4 HD video is

chosen and the default conversion settings are used.

MobileBench [117] is an established browser benchmark based on BBench [129]. The

benchmark loads a collection of websites whose content is available in the phone memory.

It offers automatic horizontal and vertical zooming and scrolling as well. The Chrome

browser application on the phone is used for running the tests.

AngryBirds is a gaming application with over 100 million downloads on Android alone.

This is chosen as a representative gaming application to test the controller performance.

The game is manually played for 200 seconds during the experiments.

WeChat is an Internet based text messaging, voice communication and video conferencing

application. With over 700 million active users, it is among the most downloaded appli-

cations in the communication application segment. The video conferencing feature of this

application is chosen and a 100-second long video call is initiated for the experiments.

MX Player is a video player application which can play videos encoded in a variety of

formats and has over 100 million downloads. It also supports hardware accelerated de-

coding and high speed rendering for ARM NEON compliant processors. The controller

performance is tested when playing a 137-second long HD video.

Spotify is an audio, podcast and video streaming application with over 100 million sub-

scribers. Using a premium version of the application which avoids advertisements between

songs, this application is tested for 100 seconds with songs being changed every 20 sec-

onds.

4.4 Evaluation

This section presents test results of the energy management scheme described in Section

4.3 against the default settings on the N6. A detailed analysis of the results is provided

with a discussion on few important issues, including (1) application scope, (2) the effect of

varying background application loads on the controller performance, and (3) comparison

61

with a CPU-only DVFS strategy.

4.4.1 Results and Analysis

Table 4.3: Summary of performance difference and energy savings obtained by the con-
troller

Application Name Performance Energy
VidCon −0.4% 25.3%
MobileBench 4.1% 15.3%
AngryBirds 0.6% 14.9%
WeChat Video Call −0.4% 27.2%
MX Player 0.0% 4.2%
Spotify 9.3% 31.6%

Table 4.3 summarizes the performance and energy savings achieved by the controller as

compared with the default governors. Each number is the average of three runs. The back-

ground load used for the results in Table 4.3 is the same as discussed in Section 4.3.1. In

what follows, this background load is referred to as baseline load. VidCon, MobileBench

browser benchmark and MX player are deadline critical. Even though the controller mea-

sures performance for these applications in GIPS, performance numbers in Table 4.3 are

based on execution time. For the rest of the applications, performance in Table 4.3 is mea-

sured in GIPS.

It can be seen that for all the applications tested, the controller is able to save energy

while meeting the performance target. A worst case performance degradation of 0.4% is ob-

served with this control technique. At the same time, compared to the default, 14.9−31.6%

of energy is saved with 5 out of the 6 applications and 4.2% with MX Player. The results

in Table 4.3 clearly demonstrate the effectiveness of the application-specific approach in

achieving substantial energy savings while maintaining performance.

To a large extent, the effectiveness of this approach is due to the coordinated control

strategy. The default CPU governor interactive, changes the CPU frequency based

on the CPU load. The default memory bandwidth governor cpubw hwmon, on the other

62

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

0

2
0

4
0

V
id

C
o
n

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1
5

1
6

1
7

1
8

0

2
0

4
0

M
o
b

il
e
B

e
n

c
h

 B
r
o

w
se

r

1
2

3
4

5
6

7
8

9
1

0
1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

0

2
0

4
0

A
n

g
r
y
B

ir
d

s

C
o
n

tr
o
ll

er
 D

at
a

D
ef

au
lt

 G
o
v
er

n
o

r
D

at
a

1
2

3
4

5
6

7
8

9
1

0
1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

0

2
0

4
0

W
e
C

h
a
t

V
id

e
o

 C
a

ll

1
2

3
4

5
6

7
8

9
1

0
1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

0

2
0

4
0

6
0

8
0

1
0

0
M

X
 P

la
y
e
r

1
2

3
4

5
6

7
8

9
1

0
1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

0

2
0

4
0

S
p

o
ti

fy

(a
)

(b
)

(c
) (f

)
(e

)
(d

)
x
-a

x
is

:
C

P
U

 F
re

q
u

en
cy

y
-a

x
is

:
%

 o
f

to
ta

l
ru

n
ti

m
e

Fi
gu

re
4.

4:
H

is
to

gr
am

of
C

PU
fr

eq
ue

nc
ie

s:
co

nt
ro

lle
rv

s.
de

fa
ul

t

63

1
2

3
4

5
6

7
8

9
1

0
1

1
1
2

1
3

0

2
0

4
0

V
id

C
o
n

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

0

2
0

4
0

M
o
b

il
e
B

e
n

c
h

 B
r
o

w
se

r

1
2

3
4

5
6

7
8

9
1

0
1
1

1
2

1
3

0

2
0

4
0

A
n

g
r
y
B

ir
d

s

C
o
n

tr
o

ll
er

 D
at

a

D
ef

au
lt

 G
o
v

er
n

o
r

D
at

a

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

0

2
0

4
0

W
e
C

h
a
t

V
id

e
o

 C
a

ll

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1
3

0

2
0

4
0

M
X

 P
la

y
e
r

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

0

2
0

4
0

S
p

o
ti

fy

(a
)

(b
)

(c
) (f

)
(e

)
(d

)
x
-a

x
is

:
C

P
U

 F
re

q
u

en
cy

y
-a

x
is

:
%

 o
f

to
ta

l
ru

n
ti

m
e

Fi
gu

re
4.

5:
H

is
to

gr
am

of
m

em
or

y
ba

nd
w

id
th

s:
co

nt
ro

lle
rv

s.
de

fa
ul

t

64

0
4

0
8

0
1

2
0

1
6

0
2

0
0

0

2
0

0

4
0

0

6
0

0
A

n
g

ry
B

ir
d

s

0
4

0
8

0
1

2
0

1
6

0
2

0
0

2
2

0
0

2
0

0

4
0

0

6
0

0
M

o
b

il
e
B

e
n

c
h

 B
ro

w
s
e
r

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

3
7

0

1
0

0

2
0

0

3
0

0

4
0

0
M

X
P

la
y
e
r

D
e

fa
u

lt
 E

n
e

rg
y

C
o

n
tr

o
lle

r
E

n
e

rg
y

0
1

0
2

0
3

0
4

0
5

0
6

0
0

1
0

0

2
0

0

3
0

0
V

id
C

o
n

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
0

1
0

0

2
0

0

3
0

0

4
0

0
W

e
C

h
a
t

V
id

e
o

0
2

0
4

0
6

0
8

0
1

0
0

0

5
0

1
0

0

1
5

0

2
0

0
S

p
o

ti
fy

P
e

rf
o

rm
a

n
c
e

 i
m

p
ro

v
e

m
e

n
t

o
f

4
.1

%
P

e
rf

o
rm

a
n

c
e

 l
o

s
s
 o

f
0

.4
%

x
-a

x
is

:
T

im
e

 i
n

 s
e

c
o

n
d

s
y
-a

x
is

:
E

n
e

rg
y
 i
n

 J
o

u
le

s

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

Fi
gu

re
4.

6:
E

ne
rg

y
C

on
su

m
pt

io
n:

co
nt

ro
lle

rv
s.

de
fa

ul
t

65

hand, monitors the L2 cache read and write events to decide the required bandwidth. Both

governors work independently and the results we obtain demonstrate the drawbacks of such

an approach.

To help analyze and understand the experimental results, in Figs. 4.4 and 4.5 the per-

centage of time spent in each of the 18 CPU frequencies and 13 memory bandwidths during

the application execution is computed. The choices made by the default governor and the

proposed controller is compared as well. Fig. 4.4 shows some of the key characteristics of

the default CPU governor. Firstly, in all 6 cases, it spends a considerable amount of time

(12.7 − 27.9%) at CPU frequency 10 (1.4976 GHz). Fig. 4.5 illustrates the characteris-

tic behavior of the default bandwidth governor which implements an exponential back-off

algorithm while reducing the bandwidth. The offline profiled performance data for An-

gryBirds, MX Player and Spotify show an improvement of less than 5% for frequencies

between 5 and 10 whereas power increases by more than 36%. Secondly, in 3 out of the 6

cases, the highest frequency is used for a significant amount of time (9.7 − 57.3%). With

the approach proposed by this work, in 5 out of the 6 cases, the high frequencies are not

included in the profiling table supplied to the controller, based on the performance/power

characteristics of the profiled data.

It is observed that in Fig. 4.4 (b), (c), and (e), with the default governor, the CPUs are at

frequency 1 for the largest amount of time, whereas the proposed controller selects higher

frequencies. Intuitively, this should lead to higher energy consumption by this controller.

But the results in Table 4.3 show that energy consumption with the controller is lower than

default in all 3 cases for the same performance. This phenomenon is a result of the fol-

lowing: (1) The controller is designed to maintain a performance target (2) The controller

trades higher CPU frequencies against increasing the bandwidth (see Fig. 4.5) and (3) In

the solution proposed, the smallest duration for the CPUs to stay at any given frequency is

200ms. Choosing frequency No. 1 even for a duration of 200ms impacts the performance

heavily. In fact, for MobileBench and MX Player, the lower frequencies are not even in-

66

cluded in profiling data provided to the controller. In Fig. 4.4 (b), (c), and (e), even though

it appears that with the default governor the CPUs spend most of the time in the lowest

frequency, it should be noted that this is an accumulated time. The CPUs spend short du-

rations (of the order of 10s of milli-seconds) in this frequency before moving on to higher

frequencies. The conclusion that can be drawn is that lower CPU frequencies may reduce

power consumption but it does not translate to lower energy. Similar or better performance

with lower energy can be attained by choosing higher CPU frequencies. To understand

this better, Fig.4.6 shows the running energy consumption for each of the benchmarks.

The slope of the curve for the controller is smaller than the default governor which clearly

shows that choosing CPU frequency and memory bandwidth in a coordinated fashion does

lead to better overall energy. Now the 6 applications are discussed individually.

VidCon has a uniform power and performance profile during its execution. Fig. 4.4 (a)

shows that the default governor spends nearly 60% of the time in the highest CPU frequency

and takes 59 seconds to convert a sample video. The controller, however, chooses a much

lower frequency (No. 13) for 80% of the time and is able to convert the same video with

25.3% less energy. The time it takes to convert the video is only 0.4% or about 0.24s

longer, hardly noticeable by a human user. For this application CPU frequencies 7-18 are

used because frequencies below No. 7 resulted in a performance drop of over 50%.

MobileBench browser benchmark, unlike VidCon, has a varying power and execution

profile. For a fixed CPU frequency, an average increase of 7% in the relative speedup

is noticed between the lowest and highest memory bandwidths. Due to the zooming and

scrolling actions, the performance in GIPS too shows a steady increase as CPU frequencies

are increased. However, the data used by the online optimizer is restricted between CPU

frequency 7 and 18 (See Fig. 4.4). The justification is similar to VidCon in that, when

the CPU frequency is fixed at No. 7, the performance is 30% worse than the default. Any

lower frequency would incur a larger performance loss resulting in a lower user experience.

The controller chooses CPU frequency 18 for a duration longer than the default governor,

67

yet achieves a 15.3% improvement in energy. Although this seems counter-intuitive, the

reason for this phenomenon is that the objectives of the default governor and the controller

proposed in this chapter are orthogonal. While the default governor tries to maximize per-

formance whenever possible, the aim of the proposed controller is to maintain a fixed per-

formance. The default governor chooses to assign a higher CPU frequency when it senses

a load increase whereas the controller only assigns a higher frequency when it senses a

performance drop. As shown in Fig. 4.6 (b), the energy time-line graphs for the default

governor and the proposed controller are very similar. But the energy savings are achieved

on account of a shorter run-time.

With AngryBirds, the controller is provided with a smaller CPU frequency range be-

cause the offline profiling data shows that performance (in GIPS) does not improve beyond

CPU frequency No. 5 but power consumption increases steadily for higher frequencies.

Compared with the default governor, which spends nearly 20% of the time in frequency

No. 10 and some amount of time in the highest frequency, the controller selects frequen-

cies 3 and 5, as shown in Fig. 4.4 (c). The end result is a performance (in GIPS) that

is slightly (0.6%) better with an energy saving of 19.3%. AngryBirds involves the GPU

for image rendering, but, despite the fact that GPU frequency is not part of the controlled

system configuration, no change in the game experience is observed when the controller is

deployed. Moreover, the default governor chooses a higher frequency when advertisements

get loaded between individual levels, resulting in higher power consumption1.

When profiling WeChat video call, it is found that for CPU frequencies 1 and 2, the

camera fails to record and transmit video reliably and hence they are excluded from the

power and speedup table. Additionally, the performance (in GIPS and subsequently video

quality) does not show significant improvement beyond CPU frequency 7. However Fig.

4.4 (d) shows that frequencies 10 and 18 get chosen for close to 40% of the time by the

default governor. The controller is able to provide comparable performance by choosing

1Advertisements consume close to 0.5W of power and an application with several ads will result in rapid
battery discharge.

68

lower CPU frequencies (3, 5, and 7) with No. 3 being used for over 50% of the time. This

results in a significant energy saving of 27.2% compared with the default governor.

MX Player is not CPU intensive because it performs video decoding using a hardware

decoder and bypasses the GPU to render the image on the screen. MX player has a per-

formance vs. CPU frequency profile similar to WeChat in that, beyond frequency 5, the

performance varies very little (0.4%). Furthermore for frequencies between 1 and 4, the

video does not play smoothly regardless of the memory bandwidth chosen. Hence CPU

frequencies 1 - 4 are not included in the offline profiling table. Due to the nature of the

application and the fact that the controller can only manipulate CPU and memory band-

widths, only 5% energy can be saved. The implication is that the default governor indeed

does a good job for this application.

Spotify is another case where a limited range of CPU frequencies is included in the

profiling table. In fact, only 3 frequencies on the low end are used: frequencies 1, 3, and

5. It is to be noted that even when the CPU frequency is fixed at the lowest, the audio

quality does not degrade. However, the default governor, as shown in Fig. 4.4 (f), spends

a considerable amount time in the much higher frequencies 10 (27%) and 18 (4.6%). In

contrast, the controller spends 64.5% of time in the lowest frequency and 32% in frequency

No. 3. Compared with the default governors, the controller saves 31.6% energy with a

minor performance loss in GIPS of 0.4%.

Controller Overhead

As mentioned in Section 4.3 the controller consists of three parts: (1) measurement (2)

performance regulation and energy optimization and finally (3) actuation. Accordingly

presented are the overheads for each part of the controller. The controller measures perfor-

mance twice in each control cycle. On an average, the measurement is done every 1s when

the control cycle duration is 2s. The perf tool takes 1.04s on average, i.e., a 4% compu-

tation overhead, to report the measurement. The power consumption overhead for perf

69

at a sampling period of 1s is 15mW, a relatively negligible number. The execution time

of the performance regulator and the energy optimizer together is less than 10ms per con-

trol cycle with an average power consumption of 25mW. Changing the CPU frequency and

memory bandwidth requires writing into the appropriate sysfs files. The CPU frequency

transition latency is of the order of micro-seconds whereas the shortest duration between

frequency changes in the controller is 200ms. Finally, the power overhead for changing

CPU frequencies is 14mW. In summary, the implementation overhead for the controller is

negligible even when the number of system configurations is large.

4.4.2 Application Scope

Not all applications are amenable to the solution in its current form. Two types of applica-

tions are identified that are not well suited for the current strategy.

The first type includes applications for which the default CPU governor either selects

the lowest frequency most of the time due to low CPU requirements or the highest fre-

quency most of the time due to CPU-intensive computations. For the former case it is hard

to obtain additional energy savings through CPU DVFS and for the latter it is hard to save

more energy without performance degradation. For such applications, other components of

the system such as network packet transfer rate etc. should be explored to save energy. The

controller framework, as mentioned in Section 4.3, is generic enough to be able to control

other parameters.

The second type includes applications with multiple rapidly varying phases (e.g. Mo-

bileBench browser benchmark), i.e., the application has very different CPU, memory, or

I/O characteristics at different points in time. These applications pose a few very chal-

lenging problems. Firstly, how should application phases be defined and identified? This

problem has been studied earlier on desktops/servers [130] and for simulators [131]. For

example, in [130] six phases were defined based on the ratio of “memory access / uop”. A

study investigating whether this kind of metric can be used to classify application phases on

70

the target platform is yet to be done. A practical concern is the lack of OS and/or hardware

support for PMU counters. More serious problems are caused by the fact that the dura-

tion of phases could be very short. In such situations, experiments show that PMU-based

performance measurements could have large variations, which in turn could misguide the

controller. Furthermore, the shorter the duration, the more difficult it is for the controller

to catch up. Phase prediction, as proposed in [130], might help, but is only a small step

towards addressing these problems.

4.4.3 Effect of Different Background Loads

Section 4.3.1 discusses the issue of discrepancy between controller run-time environment

and the profiling environment. In what follows, the controller performance is evaluated

under different loading scenarios. The controller is tested under two different run-time

conditions: (1) No-Load (NL) and (2) Heavier-Load (HL) while utilizing the offline profil-

ing data and target performance obtained under the baseline load (BL).

Table 4.4: Summary of performance difference and energy savings obtained for the tested
applications under Baseline Load (BL), No Load (NL), Heavier Load (HL) conditions

App Name
Performance (%) Energy (%)
BL NL HL BL NL HL

VidCon 0.8 0.2 -8.0 25.3 28.0 11.4
MobileBench 4.0 -3.5 -2.0 15.3 -4.9 4.6
AngryBirds 0.6 1.0 -2.0 14.9 12.8 10.0
WeChat
Video Call

-0.4 2.0 3.6 27.2 19.4 27.0

MX Player 0.0 0.0 0.0 5.0 2.9 5.0
Spotify 9.3 -1.7 -1.3 31.6 7.2 6.0

In the NL condition only the application being controlled runs on the phone. In HL,

a few more applications as compared to BL are opened but minimized. The background

applications are: Gallery, eBook Reader, Chrome browser, FaceBook, e-Mail client, MX

player and Spotify. WiFi is turned ON for both loading scenarios. It is noted that the most

significant difference among the different loads is the memory usage. The amount of free

71

memory is 500 MB, 1 GB, and 134 MB, for BL, NL and HL respectively. In contrast, the

corresponding CPU loads as indicated by the file /proc/loadavg are similar: 6.3, 6.7,

and 6.6 respectively.

Table 4.4 shows the controller’s performance and energy results in the three different

loading conditions. In 4 cases, i.e., VidCon, AngryBirds, WeChat, MX Player, the con-

troller performs relatively well in terms of energy savings when running under an environ-

ment different from the profiled environment. VidCon under HL test condition experiences

a performance loss of 8% but still achieves 11.4% energy savings. The controller performs

the best for WeChat in NL and HL, saving 19% and 27% energy respectively.

Spotify displays a significant decrease in energy savings in both NL and HL. On further

analysis, it is found that in NL and HL, the default governor uses CPU frequency No. 10

less than 10% of the run-time as compared to 25% with the baseline load. This directly

translates to lower overall power consumption of 1.43W in NL and HL, versus 1.7W with

the baseline load. The average power consumed by Spotify with the controller is 1.3W for

all the loading cases which results in the varying energy savings shown in Table 4.4.

MobileBench browser has rapidly varying GIPS and power data on account of multiple

websites being loaded in quick succession. Due to the lower bound on the time taken

to measure application performance (200ms), the controller is unable to respond to these

rapid variations. While the average power in the NL case is similar to the average power

consumed by the default governor, the performance loss of 3.5% leads to the excessive

energy consumption by the controller.

Although in a majority of cases the profiling data obtained under baseline load can be

used to achieve good results in different load conditions, it is observed that better results

can be achieved if the profiling condition closely matches the run-time environment. As an

example, MobileBench was re-profiled for the NL case and the controller is re-tested, this

time with a new target performance obtained from the offline data. The controller now saves

11.1% energy with no performance loss. A possible approach is to profile the application

72

under a few different background loads and let the controller select the appropriate offline

data by measuring the background load at run-time.

Note that the performance and power data for NL has the same trend as that for BL but

with a small increase in the absolute value. A new method is envisioned which involves

a power and performance model which uses the system load as the variable parameter.

At run-time, the controller can track the background load and, using the models, generate

power and performance data for different configurations. Such an approach would not

require additional profiling thereby expanding the scope of the proposed method. These

topics are elaborated on in the next chapter.

4.4.4 Comparison with CPU-only DVFS

To evaluate the effectiveness of coordinated control of CPU frequency and memory band-

width, another version of the application-specific controller is created which controls only

the CPU frequencies and allows the memory bandwidth to be controlled by the default gov-

ernor, i.e., cpubw hwmon. The controller does not communicate with the default memory

bandwidth governor and hence takes decisions in an independent and isolated manner.

For this controller, the applications are re-profiled with CPU frequency set to fixed

values while memory bandwidth is left in the control of the default governor. For each ap-

plication, the same set of CPU frequencies as in the coordinated controller case is selected.

Table 4.5 lists the energy savings and performance of the 6 tested applications when only

Table 4.5: Summary of performance difference and energy savings obtained by the CPU-
only DVFS controller

Application Name Performance Energy
VidCon 2.8% 13.1%
MobileBench −2.9% 7.6%
AngryBirds −2.6% 9.6%
WeChat Video Call 4.7% 22.3%
MX Player 0.0% 0.4%
Spotify 3.3% 33.3%

73

the CPU frequencies are controlled. Excluding MX Player which practically does not save

energy, on an average, a 53% increase in energy consumption is observed as compared

to the coordinated control of CPU frequency and memory bandwidth. For WeChat and

Spotify, the CPU frequencies chosen and their durations are similar. For other applica-

tions however, the default bandwidth governor selects a higher-than-necessary bandwidth

for over 60% of the application run-time thus resulting in a higher power consumption. In

AngryBirds, for example, the bandwidth governor increases the bandwidth to the highest

whenever advertisements are loaded between game levels, which results in a peak power of

6W. In general, it is observed that CPU-BW DVFS controller trades higher CPU frequency

over higher bandwidth at the same CPU frequency which is a direct consequence of the

profiling table (see Fig.4.5). For example with Mobilebench, the average power and per-

formance for the pair of CPU frequency and memory bandwidth (7, 13) is (2.128, 2.687)

while the same parameters for the pair (11, 1) are (2.125, 2.9705). The controller chooses

(11,1) rather than (7,13) because for the same power consumption the performance of (11,1)

is much higher. This is exactly why the controller chooses the bandwidth No. 1 for over

60% in all 6 test cases.

4.5 Summary

In this chapter a key observation is that the default DVFS governors on current Android

mobile devices are designed for general-purpose usage, focus on power savings, and are in

general not energy-optimal for many applications. The need for investigating an application-

specific energy optimization strategy is established and it is stressed that any energy opti-

mizer should be mindful of performance impacts. Furthermore, the advantage of a coordi-

nated control of different components such as CPU and memory is highlighted. A detailed

description of the application-specific, performance-aware energy optimization solution

targeting Android devices is then presented. The solution is implemented on a Nexus 6

smartphone and tested with 6 real-world applications, including highly popular ones. En-

74

ergy savings in the range of 4−31% is achieved with a worst-case performance loss of less

than 1%.

75

CHAPTER 5

COORDINATED CONTROL: GENERALIZATION TO MULTI-CORE

MULTI-MEMORY-CONTROLLER SYSTEMS

The feedback control framework described in CHAPTER 4 has its limitations. The gamut

of potential applications is reduced due to the dependence on application-specific perfor-

mance and power models. An ideal scenario is one where performance and power can be

derived or estimated via online measurements. Working towards this goal, in this chapter,

an improved feedback controller is developed. Starting from a simple single-core single-

memory-controller architecture, models for performance and power are arrived at through

regression. A software controller implementing DVFS on the core and the memory con-

troller is tested on a cycle-level simulator. EDP for all possible combinations of core and

memory controller frequencies is obtained offline. Results show that the coordinated con-

troller chooses a voltage-frequency combination for the core and the memory controller

that compares favorably against EDP values obtained offline.

The second half of this chapter deals with further extending the application agnos-

tic feedback controller to a more generic multi-core multi-memory-controller architecture.

Following the exploration algorithm (Fig. 1.1), a microbenchmark characterization of a

two-core two-memory-controller system is conducted. This exploration reveals the depen-

dence of performance, measured as MIPS, on: (1) the distribution of memory requests from

a core, and (2) distance between a core and a memory controller. A per-core feedback con-

troller minimizing EDP is tested on a cycle level simulator. Analogous to the evaluation

method for the single-core single-memory-controller system, the coordinated controller

compares well against EDP obtained offline. Finally, implementation of such a technique

on a real physical system with several cores and memory controllers is discussed.

76

5.1 Overview

Although processors have historically dominated power consumption, the portion of total

power that can be attributed to the memory system has gradually been increasing. In 2010,

for a high performance server system, main memory accounted for 40% of the total con-

sumed power [132]. To utilize idle low power modes, past research has explored energy

minimization by creating idle periods via intelligent scheduling and batching of memory

requests, layout transformation etc. [133, 134, 135, 136, 137, 138]. Apart from the self

refresh, dynamic power is dissipated in the DRAM only when it is accessed. Therefore, re-

ducing the total number of DRAM accesses itself, has also been explored [139, 140]. Some

others have explored modifying the DRAM microarchitecture itself [141, 2]. DVFS based

techniques, similar to algorithms implemented on a processor have also been explored. For

example, [108] proposes a heuristic DVFS based scheme to minimize energy consumed by

the memory controller, memory bus and the DRAM. The authors of this work allow the

end user to set the performance penalty. Lower the penalty, higher is the energy saved.

Another promising approach is to enter low power modes actively by trading performance

[123]. A common thread for all the works listed here is that they focus only on DRAM

power management.

The focus is slowly shifting towards cooperative or coordinated management of the

processor, memory and other related components. The work in [23] utilizes ideas devel-

oped in [108] and demonstrates a heuristic approach to minimize energy consumed under

performance constraints. A notable feature of the work in [23] is that the controller is

centralized.

Processors have evolved from single core to multi-core. Similarly, computers of to-

day have multiple memory controllers to manage memory requests from a large number

of cores. The problem to be solved remains the same; minimizing energy subject to per-

formance constraints or minimizing EDP. Working towards this goal, the work in [142]

77

proposes a technique that implements per-memory-controller DVFS. By monitoring per

application traffic across different memory controllers and estimating the bandwidth re-

quirements, a linear program based approach is used to minimize memory system energy.

Once again, this work focuses only on the memory system.

The goal of this chapter is to go two steps further than the state-of-the-art adopting the

following two steps:

1. Make the controller distributed.

2. Control the processor and memory simultaneously.

Throughout this chapter, changing memory controller frequency implies changing the

frequency of the memory controller, memory bus and the DRAM internal timings. Further-

more, memory frequency and memory controller frequency are used interchangeably. This

chapter first develops a performance and power model for a single-core single-memory-

controller system and then details the design of a feedback controller to minimize EDP

for the same. Next, a microbenchmark characterization of performance of a two-core two-

memory-controller system is discussed. This characterization helps the development of a

simple per-core performance model. A distributed controller implemented on a cycle level

simulator for a four-core two-memory-controller system is subsequently presented.

5.2 Memory Controller Configurations

A typical DRAM datasheet shows the different speed grades for a DRAM DIMM (Dual-

Inline-Memory-Module). For example, DDR3 DIMMs can be operated at 400MHz, 533MHz,

667MHz and 800MHz. A higher speed grade DRAM can be operated at a lower speed

grade i.e. a DIMM rated for 800MHz can be operated at 400MHz. For each operating

frequency, the internal timing is very well defined. Table 5.1 lists all the relevant timing in-

formation for the 4 different DRAM frequencies. Changing the memory frequency linearly

scales the available bandwidth and the power consumed by the DRAM [143]. Although

78

the RAS, CAS delays etc. change for different memory frequencies, the wall-clock latency

for a given request remains the same. The reader is referred to Section 2 in reference [108],

for a detailed explanation of memory system performance and power consumption.

Table 5.1: DDR3 Timing parameters for different speed grades.

Parameter 800MHz 667MHz 533MHz 400MHz Units
tCK 1.25 1.5 1.87 2.5 ns
CL 11 10 8 6 CLK

tRAS 28 24 20 15 CLK
tRCD 11 10 8 6 CLK
tRRD 5 5 5 5 CLK
tRC 39 34 28 21 CLK
tRP 11 10 8 6 CLK

tCCD 4 4 4 4 CLK
tRTP 6 5 5 4 CLK
tWTR 6 5 5 4 CLK
tWR 12 10 9 6 CLK

tRTRS 1 1 1 1 CLK
tRFC 88 74 59 44 CLK
tFAW 24 20 20 16 CLK
tCKE 4 4 3 3 CLK
tXP 5 4 3 3 CLK

5.3 Performance and Power Model for a Single-Core Single-Memory-Controller Sys-

tem

Figure 5.1 shows the variation of performance of a core (measured in MIPS) as a function

of core frequency. Performance of compute intensive application scale almost linearly with

core frequency where as memory bound workloads saturate. There are also applications

that are a mix of compute and memory.

To show the effect of memory frequency variation on performance, a memory bound

benchmark is run at 800MHz and 400MHz (See Figure 5.2). As much as 30% reduc-

tion in performance can be observed when changing memory frequency from 800MHz to

400MHz. Clearly, performance of a core is a function of the core clock frequency and

79

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0.5 1 1.5 2 2.5 3 3.5

Pe
rf

or
m

an
ce

 (M
IP

S)

Core Frequency (GHz)

Core Performance vs. Core Frequency Compute

Mix

Memory

Figure 5.1: Performance model for a single-core single-memory-controller system.

the memory frequency. This aspect lays the groundwork for defining coordinated control.

Using the Curve-Fitting toolbox in MATLAB, a regression based model for performance χ

is derived and is described below:

χ(fcore, fmem) = αfβcore + γfmem (5.1)

where α, β and γ are positive constants, fcore and fmem are core and memory frequen-

cies, respectively. As seen in Fig. 5.1, applications or regions within an application can

have varied characteristics that are called “phases”. For example, a compute bound phase

demands greater compute resources (higher clock frequency) whereas a memory bound

phase demands greater memory resources (larger memory bandwidth). Performance of the

application improves if the demand is satisfied appropriately. Application phases vary at

run-time and prior research ([130] and references there-in) have investigated methods to

track application phase change. Following the work in [130], this thesis classifies applica-

tion phases into three categories at run-time using the ratio of number of retired instructions

to the bytes of data transferred between the last level cache and main memory, also referred

to as ops/byte. Therefore, three equations for performance are obtained, one for each cate-

80

0

100

200

300

400

500

600

700

800

900

1000

0.5 1 1.5 2 2.5 3

Pe
rf

or
m

an
ce

 (M
IP

S)

Core Frequency (GHz)

Effect of Memory Frequency Variation

Mem=0.8GHz

Mem=0.4GHz

Figure 5.2: Performance of a memory bound workload for different memory controller
frequencies.

gory. The parameters α, β and γ for the three categories are shown in Table 5.2. The range

of ops/Byte used to classify the application phase is as follows: (i) (.) ≤ 1 for Memory, (ii)

1 < (.) < 3 for Mix and (iii) 3 < (.) for Compute.

Table 5.2: Performance model parameters

Parameter Compute Mix Memory
α 1388 1005 422.3
β 0.85 0.52 0.34
γ 84.01 514.40 418.67

The model for power is split into two parts: (i) Core and (ii) Memory. The core power

model follows the well known cubic relation P ∝ C(V 2f) and is given by

Pcore(fcore) = α1f
3
core + β1fcore + γ1Nreqs + δ1 (5.2)

where Nreqs is the number of requests from the last level cache to the memory and α1, β1,

γ1 and δ1 are positive constants. The L2 cache power is also considered as part of the core.

Hence Nreqs is included in the core power model. The memory power model is proposed

81

as follows

Pmem(fmem) = α2fmemNreqs + β2 (5.3)

where α2 and β2 are positive constants. It is to be noted that in both Eqns. 5.2 and 5.3, all

the constants are obtained by offline characterization whereas fcore, fmem and Nreqs can be

obtained at run-time, thus making the optimization technique described in the next section,

application-agnostic.

5.4 Optimization Problem: Single-Core Single-Memory-Controller

The metric chosen for optimization is Energy-Delay-Product (EDP). The objective is to

minimize EDP by choosing a combination (fcore, fmem) at run-time. Similar to the opti-

mization problem in CHAPTER 4, coordinated control in this context refers to augmenting

fmem with fcore. When performance is measured in MIPS, minimizing EDP is equivalent

to minimizing the ratio Power / Performance2 i.e.

min
(fcore,fmem)

Pcore(fcore) + Pmem(fmem)

χ2(fcore, fmem)
(5.4)

subj. to f
core
≤ fcore ≤ f core

f
mem
≤ fmem ≤ fmem

The underline and the bar indicate minimum and maximum values, respectively. The nu-

merator and denominator are always positive and monotonically increasing with respect

to both fcore and fmem. Therefore, the cost is convex and the optimization problem is

well posed. Various constraints on power, performance and temperature can very well be

included but for the purposes of this thesis, only a simplified problem is considered.

82

5.5 Solution Strategy

The solution approach is described in Figure 5.3. Periodically 1, at application run-time,

fcore, fmem, χ and ops/Byte are measured. Based on the ops/Byte range, the application

phase and therefore the appropriate performance equation is selected. Coupled with the

power models, the cost can now be minimized. The EDP is evaluated for every possible

combination of fcore and fmem. On real physical systems since the domain of fcore and

fmem is discretized, this approach is feasible. The combination that gives the least EDP is

then applied. It is noted that such a strategy becomes intractable if the number of combina-

tions is too large.

In contrast, the authors in [130] compute the ideal system configuration for each ap-

plication phase apriori. At run-time, depending on the phase detected, the appropriate

configuration is applied. This process is repeated every 100 million instructions.

Classify

Compute
Bound

Mix

Memory
Bound

Ops/Byte

Perf Model 1

Perf Model 2

Perf Model 3

Core Power Model

Mem Power Model

Power

Perf^2

(𝑓#$%&∗ , 𝑓)&)∗)

Figure 5.3: Solution strategy for optimizing EDP in a Single-Core Single-Memory-
Controller system.

1For the experiments in this chapter, the period or control cycle is set to 1ms.

83

5.6 Results

A cycle level simulator is configured to simulate a single Out-of-Order with two level cache

hierarchy connected to a 4GB DRAM DIMM via a single network router. DRAMSim2

[144] is modified to support multiple DRAM frequencies at run-time and also report power

consumed in each rank. The DRAM uses an open-page policy and is configured to operate

at 4 different frequencies. The core on the other hand is capable of operating in a frequency

range of 0.5GHz to 3GHz, each frequency separated by 50MHz. Six benchmarks from the

PARSEC, Splash2x and GraphBig [118], [145] are used for the experiments. To show that

the controller indeed selects the core and memory frequency combination that minimizes

EDP, each benchmark is executed at a fixed configuration and the corresponding EDP is

calculated. The EDP obtained by the controller is compared with the values generated

offline. The results are shown in Figure 5.4.

EDP is represented on the y-axis and the configuration (fcore, fmem) in GHz is on the

x-axis. EDP obtained by the controller is shown in red. The first observation is that every

benchmark has a unique EDP signature. While blackscholes and streamcluster

have the least EDP close to the configuration (3.0, 0.4)GHz, kcore has the least EDP close

to (1.5, 0.8)GHz. The lowest configuration (0.5, 0.4)GHz gives the worst EDP for all the

applications. Operating at a lower clock frequency definitely saves a lot of power but does

so at the cost of performance. Applications running longer at low power result in higher

EDP. In contrast, for all applications except blackscholes and streamcluster, the

highest configuration (3.0, 0.8)GHz is also not ideal. In this case, although the application

run-time is the shortest, the amount of work done is the same but at a much higher power

consumption. Most of the power is lost in leakage therefore leading to a higher EDP.

Through the performance and power models, the controller, cognizant of the application

phases, tunes the core and memory clock frequencies appropriately and achieves up to

7% better EDP than a statically determined configuration. On an average, compared to

84

0
0.

00
02

0.
00

04
0.

00
06

0.
00

08
0.

00
1

0.
00

12

(0.5,0.8)

(1.0,0.8)

(1.5,0.8)

(2.0,0.8)

(2.5,0.8)

(3.0,0.8)

(0.5,0.4)

(1.0,0.4)

(1.5,0.4)

(2.0,0.4)

(2.5,0.4)

(3.0,0.4)

Ctrl

bl
ac

ks
ch

ol
es

0
0.

00
02

0.
00

04
0.

00
06

0.
00

08
0.

00
1

0.
00

12
0.

00
14

0.
00

16
0.

00
18

(0.5,0.8)

(1.0,0.8)

(1.5,0.8)

(2.0,0.8)

(2.5,0.8)

(3.0,0.8)

(0.5,0.4)

(1.0,0.4)

(1.5,0.4)

(2.0,0.4)

(2.5,0.4)

(3.0,0.4)

Ctrl

ba
rn

es

0

0.
00

05

0.
00

1

0.
00

15

0.
00

2

(0.5,0.8)

(1.0,0.8)

(1.5,0.8)

(2.0,0.8)

(2.5,0.8)

(3.0,0.8)

(0.5,0.4)

(1.0,0.4)

(1.5,0.4)

(2.0,0.4)

(2.5,0.4)

(3.0,0.4)

Ctrl

str
ea

m
cl

us
te

r

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

(0.5,0.8)

(1.0,0.8)

(1.5,0.8)

(2.0,0.8)

(2.5,0.8)

(3.0,0.8)

(0.5,0.4)

(1.0,0.4)

(1.5,0.4)

(2.0,0.4)

(2.5,0.4)

(3.0,0.4)

Ctrl

tc

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0.

01
2

(0.5,0.8)

(1.0,0.8)

(1.5,0.8)

(2.0,0.8)

(2.5,0.8)

(3.0,0.8)

(0.5,0.4)

(1.0,0.4)

(1.5,0.4)

(2.0,0.4)

(2.5,0.4)

(3.0,0.4)

Ctrl

pa
ge

ra
nk

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0.

01
2

0.
01

4

(0.5,0.8)

(1.0,0.8)

(1.5,0.8)

(2.0,0.8)

(2.5,0.8)

(3.0,0.8)

(0.5,0.4)

(1.0,0.4)

(1.5,0.4)

(2.0,0.4)

(2.5,0.4)

(3.0,0.4)

Ctrl

kc
or

e

Fi
gu

re
5.

4:
E

D
P

C
om

pa
ri

so
n:

Si
ng

le
-C

or
e

Si
ng

le
-M

em
or

y-
C

on
tr

ol
le

r

85

Core0 +
Cache

Core1 +
Cache

R0

MC0 MC1

Active CoreIdle Core

R1

Figure 5.5: Two-core two-memory-controller system for microbenchmark characterization.

the highest configuration (3.0, 0.8)GHz, the controller performance is 13% lower. This,

however, is not a limitation of the controller. It should be noted that since the objective is

minimizing EDP, it comes almost always at the cost of reduced performance.

5.7 Microbenchmark Characterization: Two-Cores Two-Memory Controllers

Most prior works consider a single memory interface and consequently, all their approaches

are aimed towards a single memory controller. However, as recent trends suggest, hardware

manufacturers are moving towards Chip Multi Processors with multiple on-die memory

controllers [146, 147, 148]. Furthermore, traffic patterns going to individual memory con-

trollers are expected to be skewed with configurations such as multi-socket processors, het-

erogeneous architectures with multiple OoO cores and in-order cores alongside GPUs etc.

These trends call for architecture-aware distributed energy/power management solutions.

As a first step in that direction, this section characterizes the performance of an ap-

plication thread running on a two-core two-memory-controller system using targeted mi-

crobenchmarks (See Figure 5.5). The microbenchmark runs on Core1 addressing memory

86

controllers MC0 and MC1. Any memory request coming from Core1 addressing MC0 goes

through the following path R1 → R0 → MC0. The microbenchmark parameters varied

are (i) ops/Byte and (ii) percentage of requests going to MC0 and MC1. The results are

shown in Figure 5.6.

The y-axis in Fig. 5.6 represent performance measured in MIPS and the x-axis is

grouped into different memory addressing patterns (MC0 : MC1). For example, Div 30:60

implies 30% of the requests from Core1 are addressed to MC0 and 60% are addressed to

MC1. The different colors of the bars represent different memory controller frequencies in

GHz. For the results shown in Fig. 5.6, the Core1 clock frequency is fixed at 3GHz. For

memory intensive workloads, the effect of memory frequency variation on performance is

more pronounced than for a compute intensive benchmark. Furthermore, the degree of per-

formance variation increases as more requests are addressed to MC1 as opposed to MC0.

The reason for this phenomenon may be traced to increased network delays. As mentioned

earlier, requests from Core1 to MC0 have to travel through 2 network routers. To under-

stand this better, Figure 5.7 plots the sensitivity i.e.
dMIPS

dfmem
as a function of ops/Byte and

memory access patterns.

The x-axis is first grouped into different memory addressing patterns (MC0 : MC1).

Each color in Fig. 5.7 represents a different ops/Byte ratio. The left y-axis is the following

difference: Performance(fmem = 800MHz) - Performance(fmem = 400MHz). The right

y-axis represents the standard deviation of these differences for each memory addressing

pattern group. The important observations from this graph are the following:

1. Performance sensitivity to memory frequency reduces as distance between core and

memory controller increases.

2. Performance sensitivity variation increases as a greater percentage of memory re-

quests are addressed to a local memory controller.

Accordingly, the equation for performance of a Corei, i ∈ {0, 1} as a function of

87

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Div 50:50 Div 0:100 Div 60:30 Div 100:0 Div 30:60

M
IP

S

0.8 0.667 0.533 0.4

Memory Intensive

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Div 50:50 Div 0:100 Div 60:30 Div 100:0 Div 30:60

M
IP

S

0.8 0.667 0.533 0.4

Mix = Compute + Memory

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Div 50:50 Div 0:100 Div 60:30 Div 100:0 Div 30:60

M
IP

S

0.8 0.667 0.533 0.4
Compute Intensive

Figure 5.6: Performance of a microbenchmark for different ops/Byte and memory address-
ing patterns.

88

0

100

200

300

400

500

600

700

0

500

1000

1500

2000

2500

3000

Div 100:0 Div 50:50 Div 30:60 Div 60:30 Div 0:100

Std. D
eviation

dM
IP

S/
df

_m
em

(Ops/Byte) vs (dMIPS/df_mem)

0.8 1.2 12 Mean Stdev

Figure 5.7: Performance sensitivity graph

memory controller frequencies is modified as follows:

χi(fcorei , fmem0 , fmem1) = α1if
β1i
corei + w0iΓ0iN0ifmem0 + w1iΓ1iN1ifmem1 (5.5)

fmem0 and fmem1 are the memory frequencies of MC0 and MC1, respectively. w0i and w1i

are parameters related to the number of network hops needed to reach a memory controller.

For example, w01 = 0.5 and w11 = 1. This parameter captures point (1). N0i and N1i are

simply the percentage of memory requests from Corei to MC0 and MC1 respectively. Note

thatN0i +N1i = 1 for i ∈ {0, 1}. This parameter captures point (2). The last parameter Γ0i

is a curve fitting parameter. It is easily observed that Equation 5.5 is similar to Equation

5.4. The α1 and β1 parameters are sub-indexed with i because the ops/Byte of the each

application thread can vary.

Thus, the per-core performance and power model and the power model for the memory

controller are completely determined by parameters measured at run-time and parameters

calculated by offline regression.

89

5.8 Optimization Problem: Four-Cores Two-Memory-Controllers

The two-core two-memory-controller microbenchmark analysis provides important obser-

vations that help in the development of a per-core performance model. Taking the opti-

mization approach from Section 5.4 forward, a four-core two-memory-controller system is

configured as shown in Figure 5.8.

Core1 +
Cache

Core2 +
Cache

R1

MC0 MC1

R2

Core0 +
Cache

Core3 +
Cache

R0 R3

Figure 5.8: Four-core two-memory-controller system.

The objective is to minimize EDP for the entire system i.e. min
∑3

i=0 EDPi where

i ∈ {0, 1, 2, 3} indexes the number of cores. Solving the optimization in a centralized

fashion would result in an optimal configuration of core and memory controller frequen-

cies. However, such a scheme will not scale. Therefore, a per-core EDP minimization is

chosen. This could potentially be a sub-optimal approach but it is practically viable. The

optimization problem for each Corei is defined as follows:

90

min
(fcorei ,fmem0 ,fmem1)

Pcorei(fcorei) + Pmem0(fmem0) + Pmem1(fmem1)

χ2(fcorei , fmem0 , fmem1)
(5.6)

subj. to f
core
≤ fcorei ≤ f core

f
mem
≤ fmem0 ≤ fmem

f
mem
≤ fmem1 ≤ fmem

5.9 Solution Strategy

Each core solves the optimization problem in Equation 5.6 and arrives at the configuration

(f ∗corei , f
∗
mem0

, f ∗mem1
). Coordination in this context refers to augmenting f ∗mem0

and f ∗mem1

with f ∗corei . While f ∗corei is unique to the core, f ∗mem0
and f ∗mem1

is not. For this particu-

lar system with 4 cores and 2 memory controllers, each memory controller has to make a

choice between the different frequencies demanded by each core. Each memory controller

computes a weighted average of the memory frequencies demanded using the weight pa-

rameters w0i and w1i . The resulting weighted average is the clock frequency applied to the

corresponding memory controller. The algorithm is described in Figure 5.9.

𝑓"#"$
∗ =

∑ ($)*{,-,,)}$
∗0

)1$ 	
∑ ($)
0
)1$

𝑓{"#",2}$
∗

MC0

𝑓{"#",3}$
∗ 𝑓{"#",4}$

∗ 𝑓{"#",5}$
∗ 𝑓{"#",678##}:;#

∗

Figure 5.9: Memory controller arbitration algorithm.

91

5.10 Results

A cycle level simulator is configured to simulate a system as shown in Figure 5.8 with 2

DRAM DIMMs of 2GB each. The same benchmarks mentioned in Section 5.6 are used

here as well2. Each application is run with 4 threads, equal to the number of cores. It is

observed that the memory traffic is equally spread out between MC0 and MC1 for all the

benchmarks i.e. N0i = 0.5 and N1i = 0.5 for i ∈ {0, 1, 2, 3}. Nevertheless, the effect

of w0i and w1i is observed distinctly. Performance of Cores 1 and 2 is up to 15% greater

than Core 0 and 3 for memory intensive workloads. For compute intensive benchmarks

however, this difference is within ±5% which is an expected behavior. Along the lines of

the analysis conducted for a single-core single-memory-controller system, each benchmark

is run at fixed core and memory frequencies and system wide EDP is calculated. The results

obtained with the controller are compared against the fixed configuration EDP values in

Figure 5.10.

0

0.1

0.2

0.3

0.4

0.5

0.6

(1
.0

,0
.8

)
(1

.0
,0

.4
)

(2
.0

,0
.8

)
(2

.0
,0

.4
)

(3
.0

,0
.8

)
(3

.0
,0

.4
)

Ct
rl

(1
.0

,0
.8

)
(1

.0
,0

.4
)

(2
.0

,0
.8

)
(2

.0
,0

.4
)

(3
.0

,0
.8

)
(3

.0
,0

.4
)

Ct
rl

(1
.0

,0
.8

)
(1

.0
,0

.4
)

(2
.0

,0
.8

)
(2

.0
,0

.4
)

(3
.0

,0
.8

)
(3

.0
,0

.4
)

Ct
rl

(1
.0

,0
.8

)
(1

.0
,0

.4
)

(2
.0

,0
.8

)
(2

.0
,0

.4
)

(3
.0

,0
.8

)
(3

.0
,0

.4
)

Ct
rl

(1
.0

,0
.8

)
(1

.0
,0

.4
)

(2
.0

,0
.8

)
(2

.0
,0

.4
)

(3
.0

,0
.8

)
(3

.0
,0

.4
)

Ct
rl

bs sc kc pr tc

ED
P

Figure 5.10: EDP Comparison: Four-Cores Two-Memory-Controller.

The EDP results are similar to what was observed in Section 5.6. For the set of bench-

marks chosen, the arbitration at the memory controller turns out to be straightforward, in

that, the per-core optimization demand the same memory frequency for both MC0 and

2barnes is excluded here due to inconsistent simulation behavior.

92

MC1.

5.11 Discussion

Consider the performance model for the core as described in Equation 5.1. At run-time,

α1, β1 and γ1 have to be selected based on the application phase which is parameterized

by ops/Byte. Depending on the granularity required, more than 3 application phases can

be chosen. Doing so would require more detailed offline characterization. Instead, a pos-

sible approach is to consider α1, β1 and γ1 as functions of ops/Byte. This would make

the online implementation simpler. The only values to be measured would be number of

retired instructions and number of bytes transferred between the last level cache and the

main memory. Remaining parameters can in-turn be inferred. This approach can also be

extended to performance, as described in Eqn. 5.5.

There are many ways to solve the optimization problem described in Eqn. 5.4. Besides

the approach explained in Section 5.4, the other possible options are

1. Gradient descent: This, however, involves many computations and could potentially

take a long time to converge.

2. Pre-compute (f ∗core, f
∗
mem) for each application phase and apply the appropriate com-

bination at run-time. This approach is the fastest in terms of practical implementation

since it is similar to a look-up table. Most of the computational burden is taken care

of during the controller design phase.

Implementing the feedback controller on firmware requires further optimization of the

controller code. For example, if the application phase does not change frequently, invoking

the controller every X milliseconds or every Y million instructions will be redundant. In-

stead, determining the optimal DVFS states at the phase change boundaries is one option.

Another approach is reducing the control cycle duration when application phases change

rapidly and increasing the control cycle duration when the application resides in a phase

93

for longer period of time. The former is ‘event-based’ control while the latter is a modi-

fied version of the traditional ’sample-based’ control. On low power mobile devices, such

approaches certainly promise a reduction in the power consumed by the always ON micro-

controller running the firmware. Detecting phase changes requires sampling performance

counters at a high frequency. It follows from the Nyquist sampling criterion that there will

always be some information that is missed between two successive sampling intervals. Fur-

thermore, there is also a lower limit on how fast the controller can be invoked. This lower

limit is decided by data acquisition delays, controller computation delays and DVFS actu-

ation delays. Designing feedback controllers under such circumstances is a hard problem.

The controllers described in this chapter are implemented considering the aforementioned

practical constraints. For instance, at the beginning of each control cycle, if the applica-

tion phase has not changed, the controller skips implementing the optimization algorithm

thus saving both computation time and power. Dynamically expanding and contracting the

control cycle duration will be considered in future work.

Next, consider the memory controller arbitration algorithm (Fig. 5.9). This algorithm

does not scale well when the number of cores increase. The memory controller will have

to wait to receive communication from each of the per-core controllers and then make a

decision for itself. To tackle this issue, consider Fig. 5.7, where the influence of memory

frequency on core performance is seen to be waning as the distance between said core and

memory controller increases. Consequently, one possible solution is to consider only the

group of cores within a 1-hop neighborhood of the memory controller. Using the insights

from Fig. 5.7, hardware-software optimizations such as architecture and application phase

aware thread migration can be considered for EDP minimization.

5.12 Summary

This chapter develops an application-agnostic EDP minimization technique. Regression

based models for performance and power for a single-core single-memory controller sys-

94

tem are constructed. Using parameters measured online such as ops/Byte, EDP for the

whole system is minimized by selecting a combination of core and memory controller fre-

quencies. Before extending the coordinated feedback controller to a multi-core multiple-

memory-controller system, a microbenchmark characterization of performance is conducted.

These experiments reveal the dependence of performance of a core on the (i) memory ad-

dressing patterns and (ii) distance between the core and memory controller. Per-core EDP

minimization on a four-core two-memory-controller system shows that the controller is

able to choose a combination of core and memory controller frequencies which gives the

lowest EDP. A discussion on improving the performance model and memory controller

arbitration is presented as well.

95

CHAPTER 6

THERMAL MANAGEMENT: 2D ARCHITECTURES

The previous two chapters analyzed the performance, power and energy consumption of

a multi-core processor. Furthermore, CHAPTER 3 briefly mentions the problem of fre-

quency throttling also referred to as ‘Thermal Throttling’ due to higher core temperatures.

The end of Dennard scaling has led to increasing power densities on the processor die and

consequently higher chip temperatures [149, 150]. Emerging and future processors are

bound to be thermally limited and must operate within the cooling capacity of the chip

package, which is typically represented by the maximum operating temperature. Dynamic

Thermal Management (DTM) techniques have emerged to manage thermal behaviors but

are challenged by a number of issues. In particular, the exponential dependence of static

power on temperature limits the effectiveness of many existing DTM techniques. This cou-

pling can also lead to thermal runaway that must be prevented by DTM to avoid damaging

the chip. Furthermore, spatial and temporal variations in the thermal field degrade device

reliability and accelerate chip failures. Similarly, rapid fluctuations in the thermal field re-

ferred to as thermal cycling, also cause thermal stresses that degrade device and hence chip

reliability.

This chapter considers the problem of temperature regulation in multi-core processors

via DVFS. A feedback law is proposed, that is based on an integral controller with ad-

justable gain, designed for fast tracking convergence in the face of model uncertainties,

time-varying plants, and tight computing-time constraints. Moreover, unlike prior works,

a nonlinear, time-varying plant model is considered that trades off precision for simple

and efficient on-line computations. Cycle-level, full system simulator implementation and

evaluation illustrates fast and accurate tracking of given temperature reference values, and

compares favorably with fixed-gain controllers.

96

6.1 Overview

During early 2000s, as transistor count on microprocessors started to approach a billion, in-

creased power densities started to push the thermal packaging limits. Higher performance

was now achievable only with advanced cooling which further increased the total cost of

the processor. To reign in the ‘temperature-problem’ a specific class of thermal regula-

tion techniques were introduced. Activity management like instruction fetch throttling and

clock gating [31, 30], thread migration (computations’ rescheduling) [96, 97], and core

frequency scaling [151] were the initial efforts. In references [31, 30], PI and PID con-

trollers have been proposed to slow down the rate of the instruction-fetch unit whenever

the temperature exceeds a given upper bound, while in [96, 97], threads (computations)

are scheduled from hot cores to cooler cores in an effort to maintain a balanced thermal

field. Initial heuristic approaches started giving way to control-theoretic formalisms, with

the aforementioned references [31, 30] providing the earliest examples. Subsequently, ref-

erence [74] considered a similar upper-bound regulation problem but used DVFS for tem-

perature control. More recently [152] described a controller for regulating the fluid flow

rates in a microfluidic heat sink based on the measured temperature as well as predicted

temperature estimated from the projected power profile. Other works have investigated

DTM under soft and hard real-time constraints [76, 77] seeking to satisfy thermal upper

bounds while operating under scheduling constraints.

More recently, there emerged a number of new approaches, based on optimal control

and optimization have been developed. Reference [35] minimizes a least-square differ-

ence between the working frequency and the frequency mandated by the operating system,

subject to thermal and frequency constraints, by using model-predictive control (MPC).

Reference [34] uses similar techniques to minimize the least-square difference between set

power levels and actual power levels in a core. Reference [36] uses a combination of off-

line convex optimization and on-line control to obtain uniform spatial temperature gradient

97

across several cores in a processor. It is to be noted at this juncture that these references

assume linear and time-invariant plant-models for their respective control systems; [34]

updates the model on-line while [35, 36] do not. Finally, reference [75] minimizes energy

consumption while preserving performance levels within a tolerable limit by employing

separate Model Predictive Controllers for each core to ensure thermal safety, and updates,

in real-time, the power-temperature model for the cores.

Besides the need to limit core and chip temperatures, there is a pressure to maintain

temperatures close to package thermal capacity in order to maintain high levels of perfor-

mance1. This is typically achieved by adjusting the rates of the processor cores as, for

example, in Intel processors [51] and AMD processors [54]. Moreover, spatio-temporal

variations in the thermal field generally impact device degradation and energy efficiency.

For example, thermal gradients between adjacent cores on a die increase leakage power

in the cooler cores, thereby increasing its temperature and reducing its energy efficiency

(ops/joule) [106]. Further, the stresses introduced by the gradients reduce lifetime relia-

bility by accelerating device degradation [153]. These affects are exacerbated in heteroge-

neous multi-core processors where cores of different complexities (and therefore thermal

properties) are utilized to improve overall energy efficiency. Consequently, it has become

necessary to be able to allocate and control the usage of thermal headroom in different re-

gions of the die. Core-temperature regulation (and not only optimization) can provide an

important means to this end.

The work in this chapter proposes an approach for regulating core temperatures by

DVFS so as to track given reference temperature values (set points). The frequency is ad-

justed by an integral controller with adjustable gain, designed for fast tracking-convergence

under changing program loads. Unlike the aforementioned references that are based on op-

timal control and optimization, this work considers a nonlinear, time-varying plant model

that captures the exponential dependence of temperature on static power. The basic idea

1This aspect is challenged in the next chapter.

98

is to have the on-line computations of the integrator’s gain be as simple and efficient as

possible even at the expense of precision. This is made possible by a great degree of ro-

bustness of the tracking performance of the controller with respect to variations from the

designed integrator’s gain, which is observed from extensive simulations (see [32] for anal-

ysis and discussion). The efficacy of the proposed technique is verified by simulations on a

full system, cycle level simulator executing industry standard benchmark programs. Rapid

convergence is demonstrated despite the modeling errors and changing program loads.

The first application of the proposed approach was done in [32] for controlling the

dynamic core power via DVFS. The problem considered here is more challenging for the

following two reasons.

1. The underlying model required for this work is much more complicated. The au-

thors in [32] considered static power as a constant which allowed them to use an

established third-order polynomial formula for the dynamic power as a function of

frequency. In contrast, the temperature’s dependence on frequency has no explicit

formula, but rather is described implicitly by a differential equation that models the

heat flow. Furthermore, the temperature depends on the total power (sum of static

and dynamic) while the static power depends on the temperature (and voltage). This

nonlinear dependence was avoided in [32] by ignoring the static power.2 For rea-

sons discussed later, the duration of the control cycle is about 10ms, which requires

fast computations in the loop. The main challenge in this regard is to find an ap-

proximate model yielding simple computations while preserving the aforementioned

convergence properties of the control algorithm.

2. The temperature levels in different cores on a chip are inter-related due to the heat

transfer between them, while their dissipated dynamic powers are not directly related

to each other by such physical laws. Therefore it is natural for the dynamic-power

2In present-day technologies and applications the static power can be as high as the dynamic power and
can no-longer be ignored.

99

control law in [32] to be distributed among the cores, while in this work the temper-

ature control appears to have to be centralized. Nonetheless a distributed control law

is argued for and its use is justified via analysis and simulation.

6.2 Regulation Technique

Consider the discrete-time, Single-Input-Single-Output (SISO) feedback system shown in

Figure 6.1, whose input is a constant reference r, its output is denoted by yn, the input to

its controller is the error signal en, and the input to the plant is un ∈ R. Suppose that the

plant is a time-varying nonlinear system described via the relation

yn = gn(un−1), (6.1)

where the function gn : R→ R is called the plant function.

Controller Plantr en un yn

Figure 6.1: Control System Block Diagram

If the controller is an integrator having the transfer function Gc(z) = Az−1/(1− z−1),

for a constant A > 0, then in the time domain it is defined by the relation un = un−1 +

Aen−1. However, an adjustable (controlled) gain is considered, and hence the controller

equation has the form

un = un−1 + Anen−1, (6.2)

where the gain An is computed in a manner described below. The error signal has the form

en = r − yn. (6.3)

Suppose that the plant functions gn(u) are differentiable, and let “prime” denote their

100

derivatives with respect to u. The gain An is defined as

An =
1

g′n(un−1)
. (6.4)

The systems considered in the sequel have the following structure. Consider a SISO

dynamical system having an input {u(t)} and output {y(t)}, t ≥ 0. Partition the time-

horizon {t ≥ 0} into consecutive time-slots [τn−1, τn), n = 1, 2, . . ., with τ0 := 0 and

τn+1 > τn ∀ n = 1, . . .; define Cn := [τn−1, τn) and call it the nth control cycle. Suppose

that the value of the input is changed only at the boundary points τn, and denote the value

of the input u(t) during Cn by un−1. Let yn be a quantity of interest that is generated

by the system during Cn from un−1, such as y(τ−n) or
∫
Cn
y(t)dt. yn also depends on the

initial condition y(τn−1), but this is reflected in Equation 6.1 by the system’s definition as

time varying. Thus, 6.1 represents certain input-output properties of dynamical systems

while hiding the details of the dynamics and appearing to have the form of a memoryless

nonlinearity. Regarding the feedback system, it is assumed that un−1, yn−1, and en−1 are

available to it at time τn−1, and it generates yn by 6.1 and computes An during Cn via 6.4.

The closed-loop system is defined by repeated applications of Equations 6.1 → 6.4 →

6.2→ 6.3.

To see the rationale behind the definition of the gain An in 6.4 consider the case where

the plant is time invariant, namely gn(u) = g(u) for a function g : R→ R. Then this con-

trol law amounts to a realization of the Newton-Raphson method for solving the equation

g(u) = r, whose convergence means that limn→∞ en = 0. Furthermore, if the derivative

g′(un−1) cannot be computed exactly, convergence also is ensured under broad assump-

tions. For instance, suppose that Equation (6.4) is replaced by

An =
1

g′(un−1) + ξn−1

, (6.5)

where the error term ξn−1 is due to modeling uncertainties, noise, or computational errors.

101

If the function g(u) is globally monotone increasing or monotone decreasing, and convex

or concave throughout R, and if the relative error term |ξn|/|g′(un)| is upper-bounded by a

constant α ∈ (0, 1) for all n = 1, 2, . . ., then convergence (in the sense that limn→∞ en =

0) is guaranteed for every starting point e0 as long as g−1(r) 6= ∅. If g(u) is piecewise

monotone and piecewise convex/concave then convergence is guaranteed for a local domain

of attraction; namely, for every point û ∈ R such that g(û) = r and g′(û) 6= 0, there exists

an open interval I containing û such that, for every u0 ∈ I , un → û and hence en → 0 as

n→∞. More specifically, there exists γ ∈ (0, 1) and N ≥ 0 such that, for every n ≥ N ,

|en| ≤ γ|en−1|. (6.6)

These, and more extensive results concerning convergence of Newton-Raphson method for

finding the zeros of a function can be found in [154].

In the general time-varying case where the plant function gn is n-dependent (as in 6.1),

it cannot be expected to have en → 0. However, the term lim supn→∞ |en| has been shown

to be bounded by quantified measures of the system’s time-variability. For instance, [32]

derived the following result under conditions of monotonicity and strict convexity of the

functions gn: For every ε > 0 there exist δ > 0 such that, if |gn−1(un−1) − gn(un−1)| < δ

∀n = 1, 2, . . ., then lim supn→∞ |en| < ε. Moreover, there exist η > 0 and N ≥ 0 such

that, for every n ≥ N , Equation 6.6 holds true as long as |en−1| > η.

These results have had extensions to the multivariable case arising in Multi-Input-Multi-

Output (MIMO) systems with the same number of outputs as inputs (e.g., [154, 155]).

Accordingly, for a given M ≥ 1, let u ∈ RM and y ∈ RM denote the input and output of

the plant, respectively. Define the plant function by Equation 6.1 except that gn is a function

from RM to RM , the feedback equation by 6.2 except that An is an M ×M matrix, the

error term via Equation 6.3, and the gain matrix An by the following extension of Equation

102

6.4,

An =
(∂gn
∂u

(un−1)
)−1

. (6.7)

In the time-invariant case where g := gn is independent of n, the system consisting of

repetitive applications of Equations 6.1→ 6.7→ 6.2→ 6.3 comprises an implementation

of Newton-Raphson method for solving the equation g(u) = r.

This work is concerned with the time-varying case where the plant function depends

on n as in 6.1, and the Jacobian matrix ∂gn
∂u

(un−1) is approximated rather than computed

exactly. In this case Equation 6.7 is replaced by the following extension of 6.5,

An =
(∂gn
∂u

(un−1) + ξn−1

)−1

, (6.8)

where the error term ξn−1 is anM×M matrix. Define the relative error at the nth step of the

control algorithm by En := ||ξn−1||
(
||∂gn
∂u

(un−1)||
)−1. Various general results concerning

the Newton-Raphson method guarantee local convergence of the control algorithm under

the condition that En ≤ α for some α < 1, for all n = 1, 2, . . .; see, e.g., [154]. They

typically state that limn→∞ en = 0 in the time-invariant case, and show upper bounds on

lim supn→∞ ||en|| in the case of time-varying systems.

The control law defined by Equations 6.8 and 6.2 updates all of the M components

of un simultaneously and hence can be viewed as centralized. However, by ignoring the

off-diagonal terms of ∂gn
∂u

(un−1) a distributed controller is effectively obtained. Formally,

define Dn to be the matrix comprised of the diagonal elements of ∂gn
∂u

(un−1), and define

ξn−1 := Dn − ∂gn
∂u

(un−1). Then Equation 6.8 can be computed in parallel by Equation 6.5

for each input-output coordinate. Thus the system comprised of repeated applications of

Equations 6.1 → 6.8 → 6.2 → 6.3 can be viewed as a distributed system consisting of

repeated runs of 6.1→ 6.5→ 6.2→ 6.3.

103

6.3 Temperature Control in Multi-Core Processors

This section describes an application of the control technique described in Section 6.2 to

temperature regulation in computer cores by adjusting their frequencies. Unlike the case

of regulating the dynamic power, described in [32], the frequency-to-temperature relation-

ships are highly dynamic and complex, and moreover, the temperatures at various cores on

a chip are inter-related. Nevertheless the objective here is to have a distributed controller

whose required calculations are as simple as possible since, among other reasons, their

complexity poses a lower bound on the duration of the control cycles.

To this end, approximations are considered that trade off precision with low computa-

tional complexity by leveraging the convergence robustness reflected in Equations 6.5 and

6.6. Therefore much of the developments in this section concern modeling approximations

that yield simple computations. The resultant control law is tested in the next section.

The first part of the investigation concerns the frequency-to-temperature relations in a

single core, formalized via the scalar-version of Equation 6.1. Suppose that the frequency

applied to the core has a constant value during each control cycle and it is changed only at

the cycle boundaries. Let φ denote the frequency applied to the core during a typical control

cycle, and let P := P (t) and T := T (t) denote the resulting dissipated power and spatial

average temperature during the cycle. The power has two main components: static power

and dynamic power, respectively denoted by Ps and Pd. The static power is dissipated

due to leakage currents in the transistors, and the dynamic power is dissipated when the

transistors are switched between the on and off states. Figure 6.2 depicts the functional

relations between these quantities, and it is to be noted that the dynamic power depends on

the frequency, the temperature depends on the total power, and the static power depends

on the frequency and temperature. The relationships between these quantities are indicated

in the figure by the system-notation S1, S2, and S3, and their models are described next in

detail.

104

Á
S3

P T

Ps

Pd

+

S1

S2

Figure 6.2: System Model

The core frequency is typically controlled by an applied voltage V , not shown in Fig.

6.2. The relationship between frequency and voltage can be modeled by the affine equation

V = mφ+ V0, (6.9)

[156, 157] whose slope m often can be obtained from the manufacturer.

As mentioned earlier, the total power is given by

P = Ps + Pd. (6.10)

The system S1 (Figure 6.2): An established physical model for the static power is described

in [158], and it is given by the equation

Ps = V NkdesignI
′
soe
−(Voff)q/(ηkT)

×10−(VT)q/(2.303ηkT), (6.11)

where V is the applied voltage, N is the number of transistors in the core, kdesign is

a positive valued parameter depending on the core design, I ′so is a constant related to

the subthreshold drain current, Voff is an empirically determined model parameter, q =

1.6× 10−19C is the electron’s charge, η is a technology-dependent parameter, k = 1.38×

10−23m2kgs−2K−1 is the Bolzmann’s constant, T is the core temperature in Kelvin, and

105

VT is the threshold voltage of the transistor. Grouping terms and defining

β = NkdesignI
′
so

and

γ = q(Voff + VT)/(2.303ηk),

the following equation is obtained

Ps = V β × 10−γ/T , (6.12)

where note that β > 0 and γ > 0. Observe that Ps depends on V (and hence on φ via (9))

as well as on T .

The system S2: An established model for the dynamic power [159] is described by the

following equation,

Pd = α(t)CV 2φ, (6.13)

where C is the lumped capacitance of the core, and α(t), called the activity factor, is a

time-varying parameter related to the amount of switching activity of the logic gates at

the core. Note that α(t) cannot be effectively computed or predicted in real time, but its

evaluation is not needed for the control algorithm.

The system S3: A detailed physical model for the power-to-temperature relationship is

quite complex. However, the analysis is greatly simplified by treating the derivative term

dT
dP

as approximately a constant that can be computed offline. In making this approximation,

this work leverages the robustness of the tracking algorithm with respect to errors in the

computation of g′n(un−1) (see 6.5,6.6), as discussed in Section 6.2.

The power-to-temperature relationship in a core has had an effective model in [160],

that is based on a linear and time-invariant system, and hence yields fast simulation-

response as compared to physics-based models. The dimension of the system is the number

106

of functional units in the core, typically in the 50 - 100 range. If the input u represents the

vector of the dissipated power at each functional unit, and the state variable x is the tem-

perature at each functional unit, then the state equation may be written as

ẋ = Ax+Bu, (6.14)

where the matrices A and B can be estimated off line. At each time t, the total dissipated

power at the core, P := P (t), and the spatially averaged core temperature, T := T (t), are

a linear combinations of u and x, respectively. Therefore the P − T relationship can be

described via the scalar differential equation

Ṫ = aT + bP. (6.15)

Consequently, the derivative term dT
dP

satisfies the equation

d

dt

(dT
dP

)
= a
(dT
dP

)
+ b. (6.16)

The constants a and b can be estimated off line via simulation and used to solve the latter

equation. Moreover, if the settling time of this equation is shorter than the control cycles

then the steady-state value of Equation 6.16 can be used, which is − b
a
. This additional

approximation simplifies the control algorithm without significantly degrading its tracking

performance. Details of the computation of this term will be presented in the next section,

where its effectiveness in temperature control will be demonstrated.

Using the above models for the systems S1, S2, and S3, the derivative term dT
dφ

can be

approximated that is required by the regulation law via Equation 6.5. In fact, combining

Equations (6.9), (6.10), (6.12), and (6.13), and taking derivatives, after some algebra, the

107

following equation is obtained:

dT

dφ
=

(
dT
dP

)(
mPs

V
+ (P − Ps)

(
1
φ

+ 2m
V

))
1−

(
dT
dP

)
Ps(log 10)

(
−γ
T 2

) . (6.17)

An important point to be noted here is that all of the terms in the RHS of this equation

except for Ps and dT
dP

can be obtained from real-time measurements of a core, Ps can be

calculated online using Equation (6.12), and dT
dP

can be estimated off-line by its steady-state

value, − b
a
, obtained from 6.16.

Consider now the case of multiple cores on a chip, where the problem is to regulate

their temperatures to given (not-necessary identical) setpoints by adjusting their respective

frequencies. Due to the thermal gradients between the cores, it appears that their temper-

atures have to be regulated jointly. However, extensive simulations, described in the next

section, reveal that the Jacobian matrix of the function relating the cores’ frequency vector

to the temperature vector is diagonally dominant and this justifies the use of a distributed

control where each core runs an adjustable-gain integrator as described in Section 6.2. The

details of this control law will be presented in the next section.

6.4 Results

The proposed controller is tested on Manifold [161], a cycle-level, full-system processor

simulation environment with a suitable interface for injecting the thermal controller. The

Manifold framework simulates the architecture-level execution of applications based on

state-of-the-art physical models [162]. A functional emulator front-end [163] boots a Linux

kernel and executes compiled binaries from an established suite of benchmarks [118].

The processor that is simulated consists of four out-of-order execution cores, a two-

level cache hierarchy, and a memory controller, and its architecture is shown in Figure 6.3.

The centralized (joint) control consists of repeated applications of Equations 6.1→ 6.8→

108

Core 1 Core 2

Core 3 Core 4

L2 Cache &

Memory Controller
3.055mm

5mm

2.5mm

3.415mm

Figure 6.3: Floor Plan of the 4 Core Processor

6.2 → 6.3, where un−1 = φn−1 ∈ R4 is the vector of core frequencies during the nth

cycle and yn = Tn ∈ R4 is the vector of core temperatures at the end of the nth cycle.

Recall that Equation 6.8 denotes the controller’s gain, and since it is diagonal, the control

is implemented by the cores in a distributed fashion. In contrast Equation 6.1 represents

the processor system and hence must be simulated jointly. This is done on Manifold in the

following way.

Equation 6.1 can be written as Tn = gn(φn−1), where φn−1 := (φn−1,1, . . . , φn−1,4)> ∈

R4 and Tn := (Tn,1, . . . , Tn,4)> ∈ R4 according to their respective co-ordinates, with the

second subscript j = 1, . . . , 4 corresponding to the index of the core in Figure 6.3. In

Equation 6.8 the 4× 4 Jacobian matrix dTn
dφn−1

is approximated. Its diagonal terms, ∂Tn,j

∂φn−1,j
,

j = 1, . . . , 4, are just the terms dT
dφ

in the Left-Hand Side (LHS) of Equation 6.17 with

the subscripts n, j indicating core j at the nth control cycle. As mentioned earlier all the

terms in the RHS of 6.17 can be obtained from real-time measurements and computation

except for dT
dP

, now referred to as dTn,j

dPn−1,j
. For estimating this term Eqn. 6.16 is used in

the steady state. To this end extensive cycle level simulations the processors are run in

open loop with various input frequencies. Each simulation is run for successive cycles

of 10ms, long enough for the temperature to reach its steady state, and it yields traces of

power and its corresponding temperature at each cycle. The traces, providing over 4, 000

data pairs per core, indicate a nearly-affine power-to-temperature relation for each core

109

regardless of the physical state (frequencies and temperatures) at the other three cores. The

MATLAB Curve-Fitting Toolbox is used to approximate these power-temperature relations

by respective curves, whose slopes serve to estimate the terms ∂Tn,j

∂Pn−1,j
. Since the P -T traces

are generated across the entire spectrum of frequencies at all four cores, the slopes of the

approximating curves do not depend on n, although they may depend on j = 1, . . . , 4

according to the processor’s floor plan. Thus, the steady-state solution of Equation 6.16 in

the case of this work has the following approximation,

∂Tn,j
∂Pn−1,j

∼= −
bj
aj
, j = 1, . . . , 4, (6.18)

whose right-hand side is the slope of the curve associated with core j. The MATLAB

Curve-Fitting Toolbox yields the following values, 3.97, 5.242, 3.877, 4.055 for cores 1−4,

respectively, with an R-Square confidence metric> 0.97. As a further approximation, these

four numbers are averaged and thus used − bj
aj
∼= 4.286 for j = 1, . . . , 4. This, in conjunc-

tion with 6.17 yields the terms ∂Tn,j

∂φn−1,j
. It is to be noted that while this approximation

of ∂Tn,j

∂Pn−1,j
is independent of n or j, the partial derivative ∂Tn,j

∂φn−1,j
does depend on n and j

through the other terms in the RHS of 6.17.

For the off-diagonal terms of dTn
dφn−1

it is observed (by the chain rule) that for i, j =

1, . . . , 4,
∂Tn,i
∂φn−1,j

=
∂Tn,i
∂Tn,j

.
∂Tn,j
∂φn−1,j

. (6.19)

The second multiplicative term in the RHS of 6.19 was discussed in the previous paragraph.

As for the first term, it is estimated by finite-difference approximations from the traces of

simulation outputs. To this end, HotSpot, an established simulation platform designed to

assess the thermal behavior of digital designs [164] is used. The thermal model generated

by HotSpot consists of a linear, time-invariant circuit comprising resistors and capacitors,

where potentials and currents represent temperature and power, respectively. The input to

the circuit consists of current sources and the outputs are node voltages, and hence HotSpot

110

is a suitable tool for modeling the thermal behavior of the core.

Varying the input power to the cores one-at-a-time, the temperature variations are ob-

tained from which the finite-difference approximations for ∂Tn,i

∂Tn,j
are derived. These approx-

imating terms also are independent of n and hence denoted by ∂Ti
∂Tj

, but ∂Tn,j

∂φn−1,j
certainly

depends on n through the second term in the RHS of 6.19.3

The matrix ∂Ti
∂Tj

, i, j = 1, . . . , 4, thus obtained from HotSpot, is

∂Ti
∂Tj

=



1× 106 0.0439 0.003378 0.003378

0.0439 1× 106 0.003378 0.003378

0.003378 0.003378 1× 106 0.0439

0.003378 0.003378 0.0439 1× 106


×10−6.

This is clearly diagonally dominant, and hence the Jacobian matrix dTn
dφn−1

is expected to be

diagonally dominant as well. This is indeed observed at each value of n, as the following

randomly-chosen example from the Manifold runs shows,

dTn
dφn−1

=



23800 1109 73.78 72.73

1045 25270 73.78 72.73

80.405 85.37 21870 945

80.405 85.37 958 21530


× 10−6.

Therefore, the off-diagonal terms of the Jacobian matrix are neglected, thereby replacing

the joint core-temperature control based on Equation 6.8 by four parallel one-dimensional

controllers, one for each core, based on Equation 6.5.

The distributed controller is implemented in conjunction with processor timing simula-

3Manifold has the core frequencies as input but it does not permit varying the core powers one-at-a-time,
while HotSpot allows us to do just that. This is the reason why both simulation environments are used in the
manner described above.

111

10 50 100 150 200 250 300 350 400
320

325

330

335

340

345

350
Core1: blackscholes

Time in ms

T
e
m

p
e
ra

tu
re

 i
n

 K
e

lv
in

10 100 200 300 400 500 600 700
320

325

330

335

340

345

350
Core2: swaptions

Time in ms

T
e
m

p
e
ra

tu
re

 i
n

 K
e

lv
in

10 100 200 300 400 500 600 700
310

320

330

340

350
Core3: facesim

Time in ms

T
e
m

p
e

ra
tu

re
 i
n

 K
e

lv
in

10 100 200 300 400 500 600 700
310

320

330

340

350

360

370
Core4: fluidanimate

Time in ms

T
e
m

p
e

ra
tu

re
 i
n

 K
e

lv
in

Set Temperature

Core Temperature

Figure 6.4: Tracking results with Continuous Frequencies

10 50 100 150 200 250 300 350 400
320

325

330

335

340

345

350
Core1: blackscholes

Time in ms

T
e
m

p
e

ra
tu

re
 i
n
 K

e
lv

in

10 100 200 300 400 500 600 700
320

325

330

335

340

345

350
Core2: swaptions

Time in ms

T
e
m

p
e

ra
tu

re
 i
n
 K

e
lv

in

10 100 200 300 400 500 600 700
310

320

330

340

350
Core3: facesim

Time in ms

T
e
m

p
e
ra

tu
re

 i
n
 K

e
lv

in

10 100 200 300 400 500 600 700
310

320

330

340

350

360

370

380
Core4: fluidanimate

Time in ms

T
e
m

p
e
ra

tu
re

 i
n
 K

e
lv

in

Set Temperature

Core Temperature

Figure 6.5: Tracking results with Discrete Frequencies

tion by Manifold. Each one of the cores executed a different benchmark program from the

parsec suite of benchmarks [118]: blackscholes, swaptions, facesim, and

fluidanimate are executed by Core 1, Core 2, Core 3, and Core 4 (see Figure 6.3),

respectively. The target temperature of all cores is set to 340K, a typical value, and the

112

range of frequencies is 1GHz to 4.7GHz. The control cycles at each one of the controllers

are 10ms. blackscholes running on Core 1 lasts 400ms and hence the control is run

for 40 cycles, while the rest of the benchmarks take longer than 700ms but the results are

graphed only for the first 70 control cycles. The results are shown in the four graphs in

Figure 6.4, and for each core the average temperature is computed from the end of the first

overshoot to the cycle ending at the final time shown in the graph (400 ms for Core 1, 700

ms for the other cores).

In Core 1, convergence at 5 iterations (control cycles) is observed following a fast rise

and a 5-degree overshoot. The average temperature (from the end of the first overshoot

to iteration 40) is 339.995K. In Core 2 a similar rise and overshoot is seen as in Core 1,

but then an oscillatory behavior and a not-so-smooth tracking is noted. The reason is that

the benchmark swaptions has large and rapid variations in its activity factor (α(t)) and

hence in the dissipated dynamic power, causing ripples in the temperature profile. However,

the computed average temperature is 339.96K - remarkably close to the target setpoint of

340K.

Core 3 shows no tracking until 250ms, then an overshoot followed by a 130-ms smooth

tracking, and a period of minor ripples. The reason for the delayed tracking is that during

the first 250ms the benchmark facesim is in a data-fetch (memory bound) phase when

most of the computation units within the core are idle. Therefore there is no significant

dynamic power dissipation and the core temperature does not rise. During that phase the

core frequency first climbs to its maximum value (4.7Ghz) and then stays there until time

250ms4. Once the program enters the computation phase (time > 250ms), the dynamic

power rises which causes the core temperature to increase and the controller is now able

to track the set temperature of 340K. The average temperature, computed as before, is

340.204K.

In Core 4 the benchmark program has two data-fetch periods and also periods of wide-

4This particular behavior is inefficient in terms of leakage energy and is highlighted in the next chapter.

113

range power dissipation during its execution. A similar delayed tracking is discerned as is

observed with Core 3 but for a shorter duration, ending at t = 80ms. Later the program en-

ters another data-fetch phase in the time range of 400 - 500ms, causing the core temperature

to drop while the frequency rises to its maximum value. In both cases the data-fetch phase

is followed by a computation phase which results in a temperature overshoot followed by a

period of tracking except for ripples that are due to large variability in the dynamic power.

The average temperature from the end of the first overshoot to the last control cycle shown

in the graph is 339.565K.

In the previous simulation experiments, the frequency is allowed to take any value in

the range 1GHz to 4.7GHz. However, in a typical processor only a finite set of frequencies

can be applied to a core. Therefore, the simulation of the control technique is repeated

for the following set of allowed frequencies, {1, 1.5, 1.8, 3.4, 3.7, 3.9, 4.0, 4.1, 4.2, 4.4, 4.7}

GHz. The only difference from the previous simulation is that in Equation 6.2 the control

un is selected to be the nearest element in this set to the computed term un−1 + Anen−1.

The results are shown in Figure 6.5, and they are similar to those in Figure 6.4 except that

slightly larger ripples and minor steady-state errors are discerned. These are expected, and

are due to the quantization errors in the selection of frequencies. However, the average

temperatures at the cores, from the end of the first overshoot to the final time, are quite

close to the setpoint reference: 340.482K, 339.986K, 340.623K, and 339.392K at Cores

1− 4, respectively.

This section is completed by comparing the tracking performance of the adaptive-gain

controller with those using fixed gains. The need for an adaptive-gain control arises from

unpredictable program activity factors (α(t)), which may vary widely during the program.

The same four-core system is simulated but the controllers are applied only to core 4 run-

ning the fluidanimate benchmark. The frequency range is continuous. A low gain of

10 and a high gain of 120 are chosen. The graphs of the temperature traces obtained from

these two gains as well as the variable-gain control are shown in Figure 6.6. It is readily

114

seen that the low gain results in the longest settling times, while the high gain yields larger

oscillations. Not surprisingly, the tracking performance of the variable-gain controller is

better than those of the two fixed-gain controls.

10 100 200 300 400 500 600 700
310

320

330

340

350

360

370

380
Core4: fluidanimate

Time in ms

T
e

m
p

e
ra

tu
re

 i
n

 K
e

lv
in

Set Temperature
Adaptive Gain
Low Gain = 10
High Gain = 120

Figure 6.6: Tracking results with fixed gains and variable gains

6.5 Summary

Temperature regulation has emerged as a fundamental requirement of modern and future

computing systems. The state of the practice to date has been dominated by ad-hoc adaptive

heuristics. More recent attempts have begun to apply the rich landscape of control theory

to this problem. However, these techniques have primarily dealt with temperature as a

constraint while controlling power dissipation.

This work makes a subtle yet important observation - temperature ought to be directly

regulated to track a target value while power should be managed to maximize performance.

Regulating chip-wide temperature to a balanced thermal field is necessary while preventing

transitions across a maximum temperature, since the latter can produce thermal fields that

adversely affect reliability and performance. Furthermore, unlike prior works a nonlinear,

time-varying plant model for a core is considered that explicitly captures the exponential

dependence of temperature and static power, and a distributed control technique is devised

115

that trades off precision with simplicity of real-time computations. Simulation results us-

ing a full system, cycle level simulator executing industry standard benchmark programs

indicate convergence of the regulation technique despite the modeling approximations.

116

CHAPTER 7

CHARACTERIZATION OF A 3D PROCESSOR-MEMORY ARCHITECTURE

The performance of data intensive computing systems that process terabytes of data is in-

creasingly limited by data movement and corresponding energy overheads. 3D packaging

technologies enabled by advances such as, Through-Silicon-Via (TSV) technology [4], has

led to stacking of silicon dice, thereby enabling the integration of memory and logic in a

small footprint with significant reductions in data movement latency and energy. Stacking

memory dice on top of compute dice exacerbates thermal issues, which if left unchecked,

will preclude any performance gains from co-locating compute and memory. In particu-

lar, the exponential relationship between temperature and leakage current diminishes the

performance that can be achieved for the rated heat capacity of the package. This limits

the opportunity to exploit the order of magnitude increase in available memory bandwidth

[165, 166].

The goal of this chapter is to understand the multi-physics interactions between temper-

ature, application characteristics and the microarchitecture. Targeted microbenchmarks are

run on a cycle-level simulator coupled with power and thermal calculations. An important

concept called ‘effective heat capacity’ is introduced in this chapter. This is the heat gen-

erated beyond which further gains in performance are in-feasible with further increases in

voltage-frequency of the compute logic. Among other results, this chapter makes the claim

that temperature ought to be used as a resource like compute or memory cycles and not

as a constraint to be met. Detailed microbenchmark characterization results are discussed

and the chapter concludes with a summary of the insights which lead to the development

of TRINITY.

117

7.1 Overview

3D packaging of silicon dice has been enabled by advances such as Through-Silicon-Via

(TSV) technology [4]. Consequently, memory and logic can now be integrated into a single

package. Reducing the physical distance between the components (i) reduces access laten-

cies (ii) reduces energy per bit of data accessed and (iii) increases bandwidth by an order

of magnitude. Compared to commercial standards like DDR3-1333 [5] and DDR4-2667

[6] whose bandwidths are 10.66 GB/s and 21.34 GB/s, respectively, 3D stacked memory

technologies like HBM2 [7] and HMC2 [8] provide 256 GB/s and 320 GB/s, respectively.

In order to effectively exploit the high bandwidth provided by 3D die stacked DRAM, mul-

tiple research efforts such as [9, 10, 11, 12, 13, 14, 15], are starting to explore moving

compute logic inside the package as part of the die stack, revisiting the early efforts at

architecting Processing-In-Memory (PIM) designs.

The compute logic layer in the 3D stack can range from simple atomic operations to

multiple Out-of-Order (OoO) cores to general purpose low power GPUs. Stacking multiple

dice on top of each other increases the thermal resistance between the bottom-most layer

and the heat sink. To make matters even worse, silicon is not a good conductor of heat.

Each layer now starts to behave as a ‘thermal shield’ for the layers below thereby causing

higher leakage power and consequently higher temperature in the entire stack. At first

look, the viability of co-locating compute and memory for better performance seems to be

in jeopardy. The exponential dependence of leakage current and temperature can severely

limit the potential of 3D stacked systems.

The early works in [167, 88] focus on architectural modifications such as placing the

hottest layers closest to the heat sink. Placing the compute layer right below the heat sink

allows efficient cooling. However, as noted in [22], manufacturing such a device can be

prohibitively expensive. A typical processor has close to a thousand pins half of which

are dedicated to voltage and ground signals. Therefore, placing the compute layer at the

118

bottom of multiple stacked DRAM dice is practically viable but leads to worse thermal

issues. Fortunately, the work in [165] claims that efficient cooling can alleviate thermal

problems to a great extent.

Although these preliminary studies provide a general direction, they lack a detailed un-

derstanding of multi-physics interactions between microarchitectural parameters such as

ops/byte and memory addressing patterns on temperature. Moving forward, designing and

developing systems that can (i) exploit the large available memory bandwidth and (ii) opti-

mally utilize the compute power without causing thermal violations, necessitates a funda-

mental understanding of the tight coupling between performance, energy and temperature

and how this coupling is modulated by application workloads.

There is a rich body of work on managing thermal effects in processors, part of which

has been discussed in the CHAPTERS 2 and 6, albeit in a 2D architecture. In a traditional

2D architecture where the core and the cache reside on the same die, the effectiveness of the

heat sink in removing heat from the core blocks is much larger. This led some researchers

to ignore thermal leakage between the core blocks entirely. Furthermore, leakage power

was either considered a constant or negligible in comparison to the dynamic power leading

to simplified power and thermal models.

Software-based efforts such as [20, 21, 81, 83, 84], typically seek to redistribute heat

to avoid peak temperature violations. Hardware based efforts employ dynamic voltage fre-

quency scaling (DVFS) to manage the thermal fields [82, 87, 80]. Detailed thermal model-

ing using software packages such as HotSpot [168] and 3D-ICE [169] enable the study of

the role of microarchitectural designs on temperature variation. Although bulk of the work

has been pursued for 2D packages, the understanding is still relevant to 3D packages. For

example, researchers have explored the thermal coupling between cores on the same layer

and between cores on different vertically stacked layers [170]. In general these approaches

have dealt with temperature as a constraint. This thesis argues that temperature may be

treated as a resource to be managed just like memory or compute cycles. This approach is

119

rooted in a different view of the relationship between performance and heat capacity.

The heat capacity of the package is established based on the thermal design power

(TDP) which is set independent of the application characteristics. However, some applica-

tions such as sparse matrix computations have components that are memory bound rather

than compute bound. Temperature-based approaches to improve the performance of such

applications by boosting voltage-frequency in an attempt to utilize the thermal headroom

[51], will invariably increase power consumption with little or no performance gain and

significant reductions in energy efficiency. On the other hand, compute intensive applica-

tions such as dense matrix algebra may extract performance benefits from DVFS schemes

but can exceed the temperature bounds. Furthermore, thermal coupling between adjacent

cores can increase leakage current (and therefore static power) and accelerate temperature

rise leading to premature throttling [106] and, therefore, loss of performance and energy

efficiency.

This thesis develops a strategy to ensure that for the amount of heat generated by the

compute logic for an application, the maximum performance (throughput) is delivered. In

the process, energy efficiency too is improved. A key insight is that, applications, and some

application phases, simply cannot utilize the package thermal headroom even when oper-

ating at the highest voltage-frequency state. This thesis attempts to take advantage of the

said observation by noting that for a specific application or phase there is an effective heat

capacity (EHC) - this is the heat generated beyond which further gains in performance do

not occur with further increases in voltage-frequency of the compute logic. For example,

an application may be operating in a memory bound phase and increases in compute logic

frequency has little effect on performance but may consume the thermal headroom. Ac-

cordingly, it is noted that the EHC is application-specific and time-varying. Consequently,

the goal is to maximize the performance that can be extracted from the time-varying EHC.

The solution must be online, adaptive, and robust to modeling errors. The EHC corre-

sponds to a value of temperature which is referred to as the effective maximum temperature

120

(EMT). Practical implementations will seek to operate at the EMT and minimize thermal

coupling induced leakage power.

This chapter first seeks to investigate the interactions between (a) thermal behaviors,

(b) compute & memory microarchitecture, and (c) application workloads. In particular,

the goal is to understand (i) the influence of workloads on thermal coupling effects be-

tween compute elements as well as between compute and memory elements (ii) thermal

field variation due to memory addressing patterns, and (iii) how the critical performance

relationship between DRAM and compute elements is affected by thermal effects.

The contributions of this chapter are as follows:

1. The introduction of the concept of effective heat capacity as a thermal resource to be

managed.

2. A comprehensive simulation-based characterization of intra- and inter-die thermal

coupling effects demonstrating the need to maximally utilize the effective heat ca-

pacity.

The insights obtained in this chapter form the basis for the controller, TRINITY, de-

scribed in the next chapter.

7.2 Characterization

This section seeks to find answers to the following questions:

(1) What is the thermal impact of a hot core on neighboring cool cores? What are the per-

formance implications for both the hot core and the cool cores?

(2) What is the thermal and performance behavior of a program thread executing at differ-

ent physical locations on the core layer?

(3) How does memory addressing patterns in the L2 Cache layer affect the temperature of

the core layer and vice-versa?

121

First, the details of the 3D stacked processor-memory framework is described. The

characterization of temperature and performance under a variety of microbenchmark work-

loads is subsequently described in detail. Temperature is measured in Kelvin and perfor-

mance in Million-Instructions-Per-Second (MIPS). The temperature numbers reported are

steady state values. The microbenchmarks are designed such that they (i) exhibit variable

ops/byte ratio, (ii) access specific memory locations, and (iii) execute on specific physical

cores.

7.2.1 Experimental Framework

The physical layout is shown in Fig. 7.1 with the dimensions listed in Table 7.1 and Figure

7.2 represents the functional diagram of the 3D stacked architecture. The 3D stacked archi-

tecture consists of 16 Out-of-Order (OoO) cores with two levels of cache hierarchy [171],

interfacing an HMC style [8] 4GB DRAM via an interconnection network. The simulator

is also equipped with power estimation models based on McPat [172] and the thermal cal-

culations are done using 3D-ICE [169], both scaled to 16nm. The front-end for the cycle

level simulator is a multicore emulator called Qsim [163] that boots a Linux kernel and

executes applications of interest. The x86 instruction streams thus generated are fed into

the OoO core timing model. DRAMSim2 [144] is used as the DRAM timing simulator

whose voltage and timing numbers are modified based on the work in [173].

7.2.2 Nomenclature

To better represent the characterization results, a naming convention is described in Fig-

ure 7.3 which is used throughout the characterization section. All the microbenchmarks

are single threaded programs. Most of the results that follow have a single thread run-

ning on a single fixed core (source core) accessing data from a single fixed L2 Cache bank

(source/remote bank). A distinction is made when two cores are running independent mi-

crobenchmark applications as and when required. While a microbenchmark is running on

122

Table 7.1: Simulation framework parameters. Technology node is 16nm.

Component Parameters and Values
Processor Out-of-Order, 6-stage pipeline, 4-wide issue/commit, 0.5−

1.5GHz
L1 Cache per
core (16KB)

Private, 8-way, LRU replacement, 32 MSHRs, 64B lines,
1-cyc hit & lookup time

L2 Cache per
bank (2MB)

16 banks in total, shared, 8-way, LRU replacement, 128
MSHRs, 64B lines, 24-cyc hit & lookup time

Network (1GHz) 4× 4 torus ring, 6 port router, baseline x-y routing
Memory Con-
troller

16 MCs in total, rank then bank round robin, close page,
Addr-map- chan:row:bank:rank:col

DRAM config
per vault

256MB, 1-channel, 4 ranks, 2 banks per rank, 64 bit bus @
1600MHz

Heat Sink Conventional heat sink, Heat transfer co-eff = 2.8 ×
10−8W/µm2K

Per-Layer
TOP LAYER = BEOL: 25µm
SOURCE LAYER = SILICON: 10µm
BOTTOM LAYER = SILICON: 25µm

L2 Cache Layer

Core Layer

Stacked DRAM layers

0 1

2 3

4 5

6 7

8 9 12 13

15141110

Core Layout

8.4mm

8.4mm

MC

Rank 0 (DRAM Layer 0)

Rank 1 (DRAM Layer 1)

Rank 2 (DRAM Layer 2)

Rank 3 (DRAM Layer 3)

Bank 0 Bank 1

Vault

2.1mm

2.1mm

L2CacheBanki

Corei

V oltageIslandi

6 Port Router

L1 $

INT

FPU

F
R
T

S
C
H

Figure 7.1: Physical layout of the 3D stacked architecture.

123

L2 Cache

OoO Cores

Memory

Memory

Memory

Memory

Figure 7.2: Functional description of the 3D stack.

10 11 14 15

8 9 12 13

2 3 6 7

0 1 4 5

Case (a) Case (b) Case (c) Case (d) Case (e)

Source Core
(SC)

Source L2$ Bank
(SB)

Remote Core
(RC)

Remote L2$ Bank
(RB)

Data Access Thermal Coupling

Idle core

Figure 7.3: Microbenchmark characterization nomenclature.

a single core, the rest of the cores are powered up (Vdd and CLK are supplied) but idle.

The 1-hop, 2-hop and diagonal neighbors of the source core are termed SC+1, SC+2 and

SC+d, respectively. Similarly, for the L2 Cache banks there are SB+1, SB+2 and SB+d. In

what follows, a “memory intensive benchmark” continuously performs load operations

on sequential memory locations whereas a “compute intensive benchmark” repeats the fol-

lowing two steps: (i) load a block of data from memory (ii) perform integer and floating

point operations for a fixed number of iterations.

Among the many cases of thermal coupling, 5 types are discussed in detail as shown in

Figure 7.3:

(a) Thermal coupling between adjacent cores.

(b) Thermal coupling between a core and an L2 Cache bank directly on top.

(c) Thermal coupling between an L2 Cache bank and an idle core below it.

124

(d) Same as (c) but with a non-idle core.

(e) Thermal coupling variation when the computation is moved from the package bound-

ary to the center of the die.

7.2.3 Thermal Coupling Analysis

Case (a): In Figure 7.4b, the temperature of the source core SC, average temperature of its

1-hop neighbors and 2-hop neighbors: SC+1, SC+2 and SC+d, respectively is plotted for a

memory bound microbenchmark at three different clock frequencies with the SC accessing

data from SB, SB+1, SB+d and RB. Figure 7.4c is similar to Figure 7.4b except that the

microbenchmark is compute bound. It is noted that regardless of whether the benchmark

running on SC is memory intensive or compute intensive, the steady state temperature of

SC+1 which is idle, can go as high as 325 Kelvin due to thermal coupling. Thermal cou-

pling effects are seen to be negligible beyond a 2-hop neighborhood. This is in concurrence

with earlier works [75] (albeit [75] is for a 2D architecture). The extent of thermal coupling

in a 3D architecture however, is most pronounced within the 1-hop neighborhood due to

heat shielding from upper layers.

Figures 7.5 and 7.6 represent the same set of experiments as described in the previous

paragraph, except that the SC is Core2 and Core3, respectively. While the trends in both

the figures for performance and temperature are similar to the ones observed for Core0,

the magnitude of steady state temperature of the SC and its neighbors are considerably

different. This aspect is analyzed carefully shortly. Nevertheless, the key observation to be

made here is:

Observation 1: A ‘hot’ core reduces the EHC of neighboring ‘cool’ cores by up to 7 Kelvin.

A second more subtle observation is obtained by analyzing the steady state temperature

and performance of the SC when accessing SB and RB (For example, see Figs. 7.4a and

7.4b). By addressing a RB, the SC temperature can be reduced by up to 8 Kelvin. This

however, comes at the price of 30% reduction in performance. Therefore,

125

0

0.2

0.4

0.6

0.8

1

1.2

SB SB+1 RB SB+d SB SB+1 RB SB+d SB SB+1 RB SB+d

0.5GHz 1GHz 1.5GHz

Normalized Performance

Mem Bench CPU Bench

(a) Performance on y-axis is normalized w.r.t SB.

300

305

310

315

320

325

330

335

SB SB+1 RB SB+d SB SB+1 RB SB+d SB SB+1 RB SB+d

0.5GHz 1GHz 1.5GHz

mem bound bench

SC SC+1 SC+d SC+2

(b) Temperature of source core and its neighbors in Kelvin on y-axis.

300

305

310

315

320

325

330

335

340

SB SB+1 RB SB+d SB SB+1 RB SB+d SB SB+1 RB SB+d

0.5GHz 1GHz 1.5GHz

compute bound bench

SC SC+1 SC+d SC+2

(c) Temperature of source core and its neighbors in Kelvin on y-axis.

Figure 7.4: Performance and temperature variation when running mem bound and compute
bound benchmarks on a source core accessing source and remote cache banks at different
core frequencies.

126

0

0.2

0.4

0.6

0.8

1

1.2

SB SB+1 RB SB+d SB SB+1 RB SB+d SB SB+1 RB SB+d

0.5GHz 1GHz 1.5GHz

Normalized Performance

Mem Bench CPU Bench

(a) Performance on y-axis is normalized w.r.t SB.

300

305

310

315

320

325

330

335

SB SB+1 RB SB+d SB SB+1 RB SB+d SB SB+1 RB SB+d

0.5GHz 1GHz 1.5GHz

mem bound bench

SC SC+1 SC+d SC+2

(b) Temperature of source core and its neighbors in Kelvin on y-axis.

300

305

310

315

320

325

330

335

SB SB+1 RB SB+d SB SB+1 RB SB+d SB SB+1 RB SB+d

0.5GHz 1GHz 1.5GHz

compute bound bench

SC SC+1 SC+d SC+2

(c) Temperature of source core and its neighbors in Kelvin on y-axis.

Figure 7.5: Performance and temperature variation when running mem bound and compute
bound benchmarks on a source core accessing source and remote cache banks at different
core frequencies. SC is Core2.

127

0

0.2

0.4

0.6

0.8

1

1.2

SB SB+1 RB SB+d SB SB+1 RB SB+d SB SB+1 RB SB+d

0.5GHz 1GHz 1.5GHz

Normalized Performance

Mem Bench CPU Bench

(a) Performance on y-axis is normalized w.r.t SB.

300

305

310

315

320

325

330

335

SB SB+1 RB SB+d SB SB+1 RB SB+d SB SB+1 RB SB+d

0.5GHz 1GHz 1.5GHz

mem bound bench

SC SC+1 SC+d SC+2

(b) Temperature of source core and its neighbors in Kelvin on y-axis.

300

305

310

315

320

325

330

335

SB SB+1 RB SB+d SB SB+1 RB SB+d SB SB+1 RB SB+d

0.5GHz 1GHz 1.5GHz

compute bound bench

SC SC+1 SC+d SC+2

(c) Temperature of source core and its neighbors in Kelvin on y-axis.

Figure 7.6: Performance and temperature variation when running mem bound and compute
bound benchmarks on a source core accessing source and remote cache banks at different
core frequencies. SC in Core3.

128

Observation 2: Memory address re-mapping has the potential to trade-off performance for

reduction in temperature.

To completely understand the thermal coupling between the compute and memory lay-

ers, the inter-layer thermal coupling is divided into Cases (b), (c) and (d). Figure 7.7

should be referred for Cases (b) and (c) and Figure 7.8 for Case (d). Before proceeding

to the analysis, it is essential to note that for the 3D architecture under consideration, in

steady state, the core layer always has the highest temperature when compared to the upper

layers.

Case (b): The heat flow between the SC and the SB is influenced by whether the SB is

‘active’ or ‘idle’. The temperature trends for the SC and SB are presented in Figure 7.7a.

When the SB is idle, the average SC temperatures are 312.7, 319.3 and 327.1 Kelvin at

0.5, 1.0 and 1.5GHz, respectively. But when the SB is active, the same SC temperatures

increase by about 1, 2 and 4 Kelvin for 0.5, 1.0 and 1.5GHz, respectively. This clearly

demonstrates the influence of memory addressing on the core layer temperatures. Not

only does the average temperature rise with increase in frequency, but also the variance.

At higher clock frequencies, thermal ramifications due to memory addressing patterns are

more pronounced. The performance trend as seen if Fig. 7.7b is in accordance with expec-

tations, in that, instruction throughput increases directly due to clock frequency increase.

Case (c): Moving along the same analysis path as before, for this case of thermal coupling,

the aim is to understand the variations in temperature of an ‘idle’ core directly underneath

an ‘active’ L2 Cache bank. The temperature plots of the remote core (RC) and remote

cache bank (RB) in Figure 7.7a illustrate this situation. Analogous to the previous case,

bulk of the power dissipated by the idle RC underneath the active RB is on account of

static power. Furthermore, as clock frequency increases, idle RC temperature can increase

129

up to 5 Kelvin higher than the lowest temperature on the core layer.

(a) Temperature variation of (i) source core and cache (ii) remote core and cache.

(b) Performance variation of the source core when source bank is ‘idle’ and ‘active’.

Figure 7.7: Thermal coupling Cases (b) and (c). The error bars are variances in temperature
due to different ops/byte and physical locations of the source core.

Case (d): This case is essentially a superposition of Cases (b) and (c). The experiments

here attempt to replicate a scenario where multiple cores can access a single L2 Cache

bank. As described in Fig. 7.3, both the SC and the RC access the RB. Since RC is not

130

idle anymore, an increasing trend is observed in its temperature with clock frequency. The

slope of this increase however, is slightly steeper when compared to SC temperature (SB

active) in Figure 7.7a. Furthermore, the increase in the clock frequency of the {RC - RB}

voltage island causes the performance of RC and SC to improve (See Fig. 7.8b). Due to

difference in network delays however, slope of the performance curve for the SC is much

smaller than that for the RC.

(a) Temperature variation of source core and remote core.

(b) Performance variation of source core and remote core.

Figure 7.8: Thermal coupling Case (d). The error bars are variances in temperature due to
different ops/byte and physical locations of the source core.

131

Case (e): Carrying forward from Case (a), the same set of experiments are repeated as

before but the microbenchmark is run on a SC that is physically located at three specific

locations: (1) Corner (2) Boundary and (3) Center. Using ‘Corner’ as the reference, the dif-

ferences in temperature and performance for the other two locations are calculated. Specif-

ically, the differences are annotated as follows: Corner - Boundary (C-B) and Corner -

Center (C-C). The trend of the data obtained is plotted in Figure 7.9. The difference be-

tween Fig. 7.9a and Fig. 7.9b is only with the memory location addressed, SB and RB,

respectively.

Temperature difference in Kelvin and performance difference in MIPS are plotted on

the y-axis. In general, moving the application thread from the corner to the boundary or

center reduces the temperature of the SC between 1 − 10 Kelvin with negligible loss in

performance. The greatest difference is seen for the C-C case. Not only does the SC

experience reduction in temperature, its neighbors SC+1 too benefit by up to 4 Kelvin due

to the relocation. Note however, that this phenomenon does not nullify Case (a). Only the

magnitude of thermal coupling is mitigated to a small extent.

Observation 3: Package boundaries become increasingly important in 3D stacked environ-

ments. OS level thread scheduling in cooperation with DVFS schemes can lead to better

utilization of the EHC.

7.3 Summary

Microbenchmark characterization of the 3D stack sheds light on subtle yet key insights.

The EHC of an application thread is affected not only by its own phases but also by memory

addressing patterns of neighboring cores. A greedy approach to maximizing performance

can indeed utilize the thermal headroom of the package but may not deliver the best energy

efficiency (ops/Joule). Consequently, the higher temperatures, especially in thermally con-

strained environments such as the one under consideration, can increase thermal stresses

and localized hotspots in turn reducing lifetime reliability of the device. Nevertheless, max-

132

0

2

4

6

8

10

12

C-B C-C C-B C-C C-B C-C C-B C-C

SC SC+1 SC+d SC+2

Te
m

pe
ra

tu
re

 D
iff

er
en

ce

SB

0.5GHz 1.0GHz 1.5GHz

-40

-30

-20

-10

0

10

20

30

40

C-B C-C

Pe
rf

or
m

an
ce

 D
iff

er
en

ce

SB

0.5GHz 1.0GHz

1.5GHz

(a) Source core accessing source bank. Performance and spatial temperature comparison of source
core at Corner vs. Center vs. Boundary.

0
1
2
3
4
5
6
7
8
9

10

C-B C-C C-B C-C C-B C-C C-B C-C

SC SC+1 SC+d SC+2

Te
m

pe
ra

tu
re

 D
iff

er
en

ce

RB

0.5GHz 1.0GHz 1.5GHz

-40

-30

-20

-10

0

10

20

30

40

C-B C-C
Pe

rf
or

m
an

ce
 D

iff
er

en
ce

RB

0.5GHz 1.0GHz

1.5GHz

(b) Source core accessing remote bank. Performance and spatial temperature comparison of source
core at Corner vs. Center vs. Boundary.

0
1
2
3
4
5
6
7
8
9

10

C-B C-C C-B C-C C-B C-C C-B C-C

SC SC+1 SC+d SC+2

Te
m

pe
ra

tu
re

 D
iff

er
en

ce

SB+1

0.5GHz 1.0GHz 1.5GHz

-40

-30

-20

-10

0

10

20

30

40

C-B C-C

Pe
rf

or
m

an
ce

 D
iff

er
en

ce

SB+1

0.5GHz 1.0GHz
1.5GHz

(c) Source core accessing 1-hop neighbor of source bank. Performance and spatial temperature
comparison of source core at Corner vs. Center vs. Boundary.

Figure 7.9: Influence of package boundaries on thermal coupling and performance.

133

imizing performance in the face of unavoidable thermal coupling, necessitates a strategy

that cooperatively balances performance, energy and temperature.

134

CHAPTER 8

COORDINATED MANAGEMENT IN 3D ARCHITECTURES: PERFORMANCE,

ENERGY AND TEMPERATURE

This chapter presents an approach to the coordinated control of performance, energy and

temperature on 3D processor-memory stacks. Using the concept of effective heat capacity

introduced in CHAPTER 7, this chapter presents a technique called TRINITY to man-

age temperature as a resource. TRINITY is a DVFS controller that implements an on-line

optimization technique that continuously balances performance, energy and thermal be-

haviors to fully utilize the effective heat capacity. Unlike prior research efforts which:

(i) consider power, performance and temperature in isolation or in pairs, (ii) do not ex-

plicitly model static power, and (iii) are heuristics based, this work reveals the complex

interplay between performance, energy, temperature, microarchitectural parameters and

package physical constraints. Each voltage island implements an independently operated

TRINITY controller which is: (i) based on numerical optimization, (ii) computationally

inexpensive to implement, (iii) self-tuning, (iv) distributed (per-core), and (iv) application

agnostic. The spatially adjacent controllers are implicitly coupled due to thermal effects.

Thus, a network of interacting controllers seek to locally maximize throughput from the lo-

cally available effective heat capacity. Their coordinated actions indirectly makes the most

efficient use the package heat capacity. The vehicle for exploration and demonstration is

a cache-coherent multi-core processor integrated as the bottom die in a 3D DRAM stack.

An analysis of energy efficiency, temperature and also lifetime reliability is presented. In

cycle-level simulations of a 16 core architecture, for up to 11% increase in EDP, TRINITY

keeps the temperature lower by up to 6 K as compared to a heuristics method similar to

the ondemand Linux CPU governor. An added benefit of the reduced temperature is the

increase in lifetime reliability of the 3D stack by up to 26%.

135

8.1 Overview

CHAPTERS 6 and 7 a few state-of-the-art DTM techniques were presented. CHAPTER 6

essentially extends the scope of adaptive gain integral feedback controllers from power and

throughput regulation to a more complex problem of temperature regulation. Dynamically

managing temperature in a 2D architecture is relatively easier when compared to a 3D ar-

chitecture. The dimensionality of the system model is considerably larger and the coupling

between temperature and performance is expected to be more complex. The characteri-

zation in CHAPTER 7 seeks to fundamentally understand the nature of this coupling. In

conjunction with the detailed characterization of CHAPTER 7, few more examples are de-

scribed here to substantiate the concept of effective heat capacity and the need to consider

temperature as a resource.

Consider the regulator tracking results for facesim shown in Figure 6.4 of CHAPTER

6. For the first 250ms, although the core frequency saturates at the maximum value, the core

temperature remains well below 340K. When the application is in a memory bound phase,

due to the lack of activity on the core, it cannot use all of the package thermal capacity.

Temperature of the core running blackscholes on the other hand, a compute intensive

application, can easily reach the target temperature of 340K. The core running facesim

dissipates energy in the form of heat for those 250ms of operation, without appreciable

increase in performance.

Another related example is shown in [106]. On an AMD Accelerated Processing Unit

(APU) that has a CPU and a GPU on the same die, the authors show that thermal coupling

between the CPU and GPU can lead to premature throttling. While running a 100% CPU

workload, the idle GPU temperatures reach levels close to the sustainable maximum. The

same is observed when 100% GPU workloads are executed. These thermal signatures are

application-specific and time varying. The authors subsequently demonstrate a heuristics

based algorithm to minimize EDP.

136

These two examples clearly demonstrate that even in 2D architectures, temperature and

performance are tightly coupled. Greedy performance maximization policies can and will

lead to thermal throttling significantly reducing performance. Both examples indicate the

existence of an Effective Maximum Temperature (defined in Section 7.1). The next set of

motivational examples show that dynamically managing temperature is even harder in 3D

die stacked architectures.

Figure 8.1: Heat map of the core layer showing reduction in thermal headroom for neigh-
boring cores.

Consider a 3D architecture as illustrated in Figures 7.1 and 7.2, where 16 cores are

integrated at the bottom of a 3D DRAM stack. When only one of the cores is executing

an application thread while the rest are idle, the resulting thermal gradient from the ‘hot’

core to the neighboring ‘cool’ cores is shown in Figure 8.1. It is noted that the program

thread executing on a core can increase the temperature of neighboring cores by as much

as 7 Kelvin. Not shown here, is another observation that on migrating this thread from a

137

location next on the package boundary to a location in the center of the core die decreases

the temperature of the active core by up to 10 Kelvin (these are computed as steady state

temperatures). Ideally, one would like the thermal gradients to be zero, performance to be

maximum, and the temperature to be the local EMT at every core.

Achieving this goal via temperature regulation techniques alone are of limited utility.

For example, consider the use of a temperature regulator [39] at each core (CHAPTER 6).

The objective of the regulator is to maintain a fixed temperature. A graph benchmark is run

and the target temperature is set to 340 Kelvin for each core. In Figure 8.2 it is observed

that none of the cores can reach the target temperature. For cores which are idle i.e. threads

are waiting to be woken up, the controller tries to raise the temperature of the core by in-

creasing the corresponding voltage-frequency but ends up wasting energy due to increase

in leakage power at higher temperatures. There is no improvement in the core performance.

Temperature regulation in this form is therefore inefficient in 3D stacks because, (i) target

tracking temperature (which is the EMT) has to be known apriori, (ii) target temperature

will be different for different cores and will vary at run-time, and (iii) temperature dynamics

is a rather slow process (100s of milli-seconds) in comparison to application characteris-

tics that can vary rapidly (micro-seconds). Therefore, control techniques must be on-line,

adaptive, and application agnostic.

The preceding example with temperature regulation re-emphasizes the important point

made earlier - for certain applications and during certain application phases, package heat

capacity is not utilized completely. This points to the existence of an EHC which corre-

sponds to the temperature of the cores beyond which there is little increase in performance.

This temperature is the EMT. It also represents an energy efficient (ops/joule) operating

point. Note that the heat capacity of the entire package is established independent of the

specific workload and that effective heat capacity of an application can be time varying. A

thread currently in a memory intensive phase with EMT of X Kelvin, may transition into a

compute intensive phase where its EMT is Y Kelvin (Y > X). Without profiling an appli-

138

cation extensively, tracking the EMT is a challenge. To further illustrate the effect of EHC,

data from two benchmark applications blackscholes (PARSEC [118]) and tc (Graph-

Big [145]) is presented in Table 8.1. The average temperature of the cores in Kelvin and

average performance (Million-Instructions-Per-Second (MIPS)) for the two benchmarks is

listed for three different fixed frequencies.

300

305

310

315

320

325
1 33 65 97 12
9

16
1

19
3

22
5

25
7

28
9

32
1

35
3

38
5

41
7

44
9

48
1

51
3

54
5

57
7

60
9

64
1

67
3

70
5

73
7

76
9

80
1

83
3

86
5

89
7

92
9

96
1

99
3

Te
m

pe
ra

tu
re

 in
 K

elv
in

Time in ms

CORE4 CORE5 CORE6 CORE7

Target Temperature = 340K10 11 14 15

8 9 12 13

2 3 6 7

0 1 4 5

300

305

310

315

320

325

330

1 33 65 97 12
9

16
1

19
3

22
5

25
7

28
9

32
1

35
3

38
5

41
7

44
9

48
1

51
3

54
5

57
7

60
9

64
1

67
3

70
5

73
7

76
9

80
1

83
3

86
5

89
7

92
9

96
1

99
3

Te
m

pe
ra

tu
re

 in
 K

elv
in

Time in ms

CORE9 CORE10 CORE11 CORE14

10 11 14 15

8 9 12 13

2 3 6 7

0 1 4 5

Figure 8.2: Temperature Regulation Inefficiency: Except for Core5 and Core11, rest of the
cores are idle. At 400ms mark Core11 becomes idle as well.

Table 8.1: Table demonstrating variable application heat capacities and room for improving
balance between performance, temperature and energy.

Bench. 0.5GHz 1.0GHz 1.5GHz

Temp. (K)
blacks. 318.18 329.68 340.93

tc 313.91 318.93 323.85

Perf. (MIPS)
blacks. 12378.3 23710.7 33065.6

tc 2741.3 3633.9 4026.7

ED2P
blacks. 0.67 0.33 0.26

tc 0.76 0.58 0.58

Performance and temperature characteristics of both applications vary widely. In order

to demonstrate that there is room to improve performance and reduce energy and tem-

139

perature in these systems, Energy Delay2 Product (ED2P) is also computed at the three

fixed frequencies. For compute intensive applications like blackscholes, best ED2P is

achieved at the highest frequency. But, for memory intensive benchmarks like tc, there is

no appreciable improvement in ED2P beyond 1.0GHz, The goal of a power/energy man-

agement algorithm should be to dynamically track these behaviors with distributed on-line

control.

It is important to make a distinction between peak temperature and effective heat capac-

ity. The former is a constraint that all thermal management schemes seek to observe. Heat

capacity reflects the net amount of heat that can be generated. Observing only the former

will not maximize performance for the corresponding amount of heat. The target should

be to extract as much performance as possible from the heat generated by the application.

Thread scheduling techniques that seek to redistribute heat can be re-purposed towards

this end. In this sense, effective heat capacity is a resource which an on-line distributed

controller network could be designed to exploit efficiently.

8.2 TRINITY

This section details the proposed approach, TRINITY, an online DVFS controller that dy-

namically balances the three parameters: performance, energy and temperature to com-

pletely utilize the EHC in a 3D stack. TRINITY is, (i) application agnostic, (ii) self-tuning,

(iii) distributed (per-core), (iv) based on numerical optimization, and (v) computationally

inexpensive to implement. The TRINITY controllers on each core are implicitly coupled

via temperature. Therefore, the individual actions taken by the network of controllers works

towards making the best use of the EHC. The controller is designed considering practical

implementation challenges such as (i) measurement and actuation delays (ii) computation

delays and (iii) hardware limitations such as having a discrete set of voltage-frequency

states. The following sections present a detailed description of the system models, opti-

mization problem and the solution approach.

140

8.2.1 System Models

The models used by optimization problems can be broadly classified into two types: (a)

detailed, accurate and computationally expensive and (b) approximate, less accurate and

computationally inexpensive. The latter is chosen because the goal is to design a controller

that can be implemented on a physical machine. The loss in model accuracy affects the

controller efficacy as will be highlighted in Section 8.3.

Power Model: The power model in [39] is linearized and a third order polynomial is

arrived at which captures both leakage and dynamic power of the core. The equation is as

follows:

Pk = αf 3
k + βfk + γTk + δfkTk + ε (8.1)

where k represents the sample time instant, fk and Tk are clock frequency and core tem-

perature, respectively. The first term models the dynamic power and the last four terms of

the equation represent leakage power. Since leakage power is strongly correlated with the

technology node and packaging parameters, via non-linear regression, β, γ, δ and ε are cal-

culated offline (See Table 8.2). To enable TRINITY to be application agnostic, the constant

α, which represents the activity factor has to be determined online. Figure 8.3a shows that

the approximation for the leakage power is within ±5mW of the value measured on the

simulator.

Table 8.2: Parameters estimated offline.

β -426.7×10−3 a1 0.9998
γ 0.674×10−3 b1 8.46
δ 1.618×10−3 c1 37
ε -90.38×10−3 ∆t 1ms

Temperature Model: Temperature at any given point in the 3D stack at any given time

t is given by the dynamical equation

Ṫ(t) = AT(t) + BP(t) (8.2)

141

where T(t),P(t) ∈ RM are the temperature and power vectors, respectively and the matri-

ces A and B consist of the thermal resistance and capacitance of the 3D stack [160]. In each

of the 6 layers in the 3D stack, broadly, there are 16 power dissipating elements, therefore,

M = 16 × 6 = 96. The large A and B matrices capture the inter-layer and intra-layer

thermal coupling allowing for an accurate estimation of the temperature trajectory. At this

juncture it is relevant to note that for the 3D stack under consideration, it is observed that

the time constant for the rise in temperature is approximately 40ms, therefore, the settling

time is around 200ms. These numbers are in agreement with practical observations [106].

Solving an optimization problem becomes increasingly computationally intensive as the

dimensionality of the model increases (typically O(M3)). Instead of using Eqn. 8.2 it is

observed that discretizing and linearizing Eqn. 8.2 for a short duration of time ∆t, reduces

the model complexity drastically from O(163) → O(1). The price paid for this reduction

in complexity is the loss of accuracy in predicting future temperature. Nonetheless, the

temperature of a core can now be estimated ∆t seconds into the future using the following

scalar equation:

Tk+1 = a1Tk + ∆t(b1Pk + c1) (8.3)

where it is seen that up to ∆t = 1ms, the simplified temperature model is accurate to within

1 Kelvin as compared with values obtained from the simulator (See Fig. 8.3b). Analogous

to the power model, the constants a1, b1 and c1 are dependent on the technology node and

packaging design choices. Therefore they are estimated offline via non-linear regression

(See Table 8.2). The temperature estimate Tk+1 depends on the measured values at time

sample k and thus does not accumulate modeling errors at each time step.

Performance Model: Instruction throughput i.e. MIPS, is chosen as the metric. Perfor-

mance is related to the clock frequency of the core via the following equation:

χk(fk) = IPCk · fk (8.4)

142

0

0.05

0.1

0.15

0.2

1 16 31 46 61 76 91 10
6

12
1

13
6

15
1

16
6

18
1

19
6

21
1

22
6

24
1

Po
we

r i
n W

Time in ms

Leakage Power Model

P_L (Simulator)
P_L (Model)

(a) Leakage Power Simulator vs. Model.

290
295
300
305
310
315
320
325

1 16 31 46 61 76 91 10
6

12
1

13
6

15
1

16
6

18
1

19
6

21
1

22
6

24
1

Te
m

pe
ra

tu
re

 in
 K

el
vi

n

Time in ms

Temperature Model

T (Simulator)

T (Model)

(b) Temperature Model Simulator vs. Model.

Figure 8.3: Leakage power and temperature model.

where IPCk is Instructions-Per-Cycle and fk is the core clock frequency at sample time k.

As shall be described shortly, this linear approximation counterbalances temperature rise

and is therefore sufficient for the purposes of the optimization problem under consideration.

8.2.2 Solution Strategy

The objective of the problem we wish to solve is encoded mathematically as follows:

max
fk+1

Qz2
k+1 +Rχk(fk+1) (8.5)

subj. to

f ≤fk+1 ≤ f̄ (8.6)

0 <zk+1 (8.7)

where fk+1 is the core frequency which is within the bounds f = 0.5GHz and f̄ = 1.5GHz.

The term zk+1 = TMAX − Tk+1, where Tk+1 is the temperature of the core in Kelvin (Eqn.

8.3) and TMAX is an upper bound for a core’s temperature. The cost function described by

Eqn. 8.5 consists of two parts, the former that penalizes increase in temperature and the

latter that rewards performance. The weights Q and R (Q,R > 0 for problem feasibility)

are tuning parameters that can be modified at run-time to give variable importance to per-

formance and temperature. For the problem under consideration, Q = 1 and R is allowed

to tune itself at run-time. Equations 8.5 - 8.7 are solved periodically after every T seconds

by each core independently to determine f ∗k+1, the clock frequency that maximizes the cost

143

function in Eqn. 8.5.

The intuition behind the problem definition is as follows: Consider an application

whose performance saturates above a particular clock frequency and does not vary with

time. The periodic calculation of f ∗k+1 drives the system eventually towards a point where

the temperature of the core reaches steady state. This steady state temperature is nothing

but the EMT and any further increase in the clock frequency will reduce the cost thereby

satisfying the original goal of maximally utilizing the EHC. For a particular choice of R,

the behavior of the objective function is illustrated in Figure 8.4. The value T, referred

to as the control cycle, is a design parameter which has to be at least greater than (i) mea-

surement, (ii) actuation, and (iii) computation delays. On processors available in the market

currently, measurement and actuation delays are approximately 10s of micro seconds [174].

The control cycle also depends on the model accuracy since, as observed in the previous

section, the simplified temperature model has sufficient accuracy up to a duration of 1ms.

Therefore, T is set to 1ms in the experiments. Clock frequencies are spaced 50MHz apart

between 0.5 − 1.5GHz giving 21 discrete values. To solve the problem described in Eqn.

8.5, the three steps of the algorithm are listed in Fig. 8.5. Since each core solves the

optimization problem independently, computing f ∗k+1 requires finding the maximum in an

array of 21 elements.

Coordination between individual controllers is via the temperature model in Eqn. 8.3.

Temperature measured at time k is a consequence of control inputs at time k − 1. The

decision fk+1 taken by a controller for the upcoming control cycle k + 1 depends on the

control input of the neighboring controller at time k. This ‘augmentation’ of control inputs

is reflected via the temperature measurements.

The tuning parameter R influences all three variables: temperature, performance and

leakage energy. In fact, R ∈ [Rmin, Rmax] such that for R < Rmin, f ∗k+1 = f and for

R > Rmax, f ∗k+1 = f̄ . Emphasizing temperature over performance leads to lower leakage

energy, whereas, greater importance to performance could potentially lead to wasted leak-

144

Figure 8.4: Behavior of the optimization cost.

age energy. Therefore, it is essential to choose an appropriate value in order to extract the

desired behavior. Fixing the value ofR is one approach. However, it is observed that such a

strategy, (i) makes the solution application specific (ii) requires extensive time consuming

offline analysis, and (iii) could easily push the controller into saturation where f ∗k+1 will

be remain at either f or f̄ for prolonged periods of time. In order to adapt to dynamically

varying application phases, R is allowed to re-calibrate itself periodically. This period is

termed TR ≥ T. The pseudo code for the re-calibration is described in Figure 8.6. The

re-calibration step basically determines the bounds for R i.e. [Rmin, Rmax] and calculates

the next value as R = Rmin + η(Rmax − Rmin) where η ∈ [0, 1]. For the OoO core under

consideration, η =
√
IPCk/IPCmax with IPCmax = Issue Width = 4. The IPC ratio

heuristic is a means to obtain information about the compute or memory boundedness of

the application. The square root of the ratio is chosen to push R towards Rmax, and, hence,

towards better performance.

8.3 Results

This section discusses the performance of TRINITY. The simulation environment is as

described in 7.2.1 and the physical layout is as shown in Figures 7.2 and 7.1. The list

145

TMAX, R, fk,
Pk, Tk, 𝜒"

Compute cost for all
feasible fk+1, find f*

and apply for
seconds

Re-calibrate R after
seconds

T

TR

Figure 8.5: TRINITY Algorithm.

of benchmark applications used are detailed here. Next, an evaluation of the proposed

control scheme is presented in detail. A DVFS strategy similar to the ondemand Linux

CPU governor is implemented on the simulator and is compared against TRINITY. We

also present results by fixing the core frequencies to 0.5, 1.0 and 1.5GHz. Since TRINITY

attempts to balance performance, energy and temperature, Energy-Delay-Product (EDP),

along with temperature, is used as the primary comparison metric. In what follows, Energy-

Delay2-Product (ED2P), Energy Efficiency (ops/Joule), performance (MIPS) and lifetime

reliability measured as Mean Time To Failure (MTTF), are used to analyze TRINITY from

different perspectives.

8.3.1 Benchmarks

The optimization technique proposed is evaluated over 6 benchmark applications from the

PARSEC, Splash2x [118] and GraphBig [145] suite. Specifically, blackscholes and

barnes (PARSEC and SPLASH2x) and kcore, pagerank, connectedcomponent

and tc (GraphBig) are chosen. Each of the benchmark applications are executed with 16

threads. The GraphBig applications stress the memory whereas PARSEC and SPLASH2x

stress the compute units thus giving a range of application behavior.

146

𝑅"#"$ = 1×10)*
𝐽(𝑖) = 𝑧012 𝑖 3 + 𝑅"#"$ ∗ 	𝜒012 (𝑖) ; 𝑖 = {0,1,2,… , 20}
Δ𝐽> = 𝐽 1 − 𝐽 0 	, Δ𝐽3> = 𝐽 20 − 𝐽(19)

𝑖𝑓	(Δ𝐽> < 0, Δ𝐽3> < 0)
Increase R	until Δ𝐽> > 0	& Δ𝐽3> < 0	
𝑅EFG = 𝑅	
foo1(𝑅EFG ,1)

𝑖𝑓	(Δ𝐽> > 0, Δ𝐽3> > 0)
Decrease R	until Δ𝐽> > 0	& Δ𝐽3> < 0	
𝑅EHI = 𝑅
foo1(𝑅EHI,0)

foo1(𝑅#JK,flag) {
𝑖𝑓(flag == 1)

Increase 𝑅#JK	until Δ𝐽> > 0	& Δ𝐽3> > 0	
𝑅EHI = 𝑅#JK

𝑖𝑓(flag == 0)
Decrease 𝑅#JK	until Δ𝐽> < 0	& Δ𝐽3> < 0	
𝑅EFG = 𝑅#JK

}

𝑅 = 𝑅"#"$

Figure 8.6: Pseudo code for re-calibrating R.

8.3.2 Analyzing TRINITY Performance

EDP results are plotted in Figure 8.7 comparing TRINITY against the ondemand heuris-

tic. The left y-axis represents EDP and the right y-axis represents the spatially averaged

temperature of the core layer. The control cycle T and TR are set to 1ms. Calibrating R

in the first control cycle requires some computational effort but subsequent re-calibrations

can be optimized so as to allow R to be computed for every control cycle. Nevertheless, an

analysis of controller efficacy with TR = 5ms is also discussed.

The trend of EDP is not the same for every benchmark. Consequently, the strategy to

147

balance performance, energy and temperature should be different. For compute intensive

workloads like blackscholes and barnes, the highest clock frequency (1.5GHz) de-

livers the best performance but also results in the highest temperature. This causes thermal

throttling which significantly reduces performance. TRINITY on the other hand, tries to

trade performance for benefits in temperature, 4 K on average with respect to ondemand.

Energy efficiency results however reveal that TRINITY and ondemand perform equally

well; TRINITY is 6.4% better, arguably within simulation error bounds. The implication

is indeed in line with the definition of EMT. TRINITY chooses the clock frequencies such

that same or better performance can be achieved at a much lower temperature.

Analyzing memory intensive benchmarks (kcore, pagerank, connectedcomponent

and tc), there is no appreciable improvement in performance (MIPS) as core frequencies

are increased. For example, average MIPS for kcore at 0.5, 1.0 and 1.5GHz is 4360.3,

5074.2 and 5265.2, respectively. Possessing apriori knowledge that the application to be

executed is memory intensive, could lead to choosing a lower clock frequency as a pos-

sible strategy. While it certainly keeps the entire 3D stack at a lower temperature, EDP

can suffer considerably. Although the average power is small, the application takes much

longer to complete. In these situations, TRINITY tunes R in such a way that the lower half

of the clock frequencies (0.5 - 1.0GHz) are chosen in the memory intensive phases. Ex-

cept for connectedcomponent, temperature of the core layer for the remaining three

workloads is lower by about 6 K. For connectedcomponent, both ondemand and

TRINITY perform equally well and no appreciable temperature or EDP difference is ob-

served.

To understand the source of temperature reduction, the average power dissipated at

individual layers is plotted in Figure 8.8. The x-axis represents different DVFS options

for each benchmark and the y-axis shows average power in Watts. Total power for each

DVFS setting is broken down into dynamic and leakage power for the core, L2 Cache

and DRAM layers. This distribution of power helps understand the primary source of

148

315

320

325

330

335

340

345

350

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

O
nD

TR
IN
IT
Y

O
nD

TR
IN
IT
Y

O
nD

TR
IN
IT
Y

O
nD

TR
IN
IT
Y

O
nD

TR
IN
IT
Y

O
nD

TR
IN
IT
Y

O
nD

TR
IN
IT
Y

ba bs cc kc pr tc Avg

EDP

Temperature

Figure 8.7: Controller performance compared against the ondemand heuristic. Controller
Parameters: T = 1ms and TR = 1ms. Left y-axis and right y-axis units are EDP and
Kelvin, respectively.

power consumption for each benchmark application. blackscholes and barnes, both

compute intensive, consume majority of the power in the core layer. kcore, pagerank

and tc being memory intensive consume greater power in the L2 Cache layer, specifically

dynamic power. Additionally, DRAM dynamic power is higher as well due to increased L2

Cache misses. connectedcomponent, unlike other memory bound workloads shows

much higher power consumed in the core die. However, power consumed in the L2 Cache

and DRAM is larger as compared to compute intensive benchmarks.

As seen in Fig. 8.8, the bulk of the power reduction (consequently reduction in tem-

perature) comes from reducing dynamic power consumption of the core and cache layers.

This is intuitive since DVFS implemented by TRINITY directly affects only the core and

the corresponding L2 Cache bank. As compared to ondemand, dynamic power of the

core and cache layers reduce by 11.7% and 18%, respectively. Furthermore, with respect to

ondemand, TRINITY is also able to reduce leakage power of the core and cache layers by

15.5% and 16.5%, respectively. The power reduction can be attributed to the on-line adap-

tation of R. In memory intensive parts of the application, η is low (< 1) thus guiding the

controller to choose the lower end of the clock frequencies. In compute intensive regions,

149

0

5

10

15

20

25

30

35

40

O
nD

TR
IN

IT
Y

O
nD

TR
IN

IT
Y

O
nD

TR
IN

IT
Y

O
nD

TR
IN

IT
Y

O
nD

TR
IN

IT
Y

O
nD

TR
IN

IT
Y

O
nD

TR
IN

IT
Y

ba bs cc kc pr tc Avg

Po
w

er
 (W

)

CORE_Dyn CORE_Leak L2CACHE_Dyn L2CACHE_Leak DRAM_Dyn DRAM_Leak

Figure 8.8: Average power consumption by TRINITY compared against the ondemand
heuristic. Controller Parameters: T = 1ms and TR = 1ms.

η is high (> 2) allowing for higher clock frequencies to be chosen.

8.3.3 Impact on Lifetime Reliability

Changes in operating temperatures and voltages lead to significant impacts on reliability.

Two dominant reliability mechanisms, electromigration (EM) and time-dependent dielec-

tric breakdown (TDDB), are used to evaluate the reliability implications of TRINITY, com-

pared to that of other execution modes. The reliability models and parameters are used from

the work in [153] and references therein. Equations 8.8 and 8.9 show the reliability models

of EM and TDDB, expressed as mean-time-to-failure (MTTF).

MTTFEM = AEM ×
1

tact
× V −n × e

Ea
kT (8.8)

MTTFTDDB = ATDDB ×
1

tact
× V −c(a+bT) × e

x+y/T+zT
kT (8.9)

In the reliability equations, V and T are operating voltage and temperature. tact (0 ≤

tact ≤ 1) is active-state residency obtained from the execution time of each workload. For

150

instance, tact = 0.5 means that a workload utilizes the computing system for 50% of time.

It is assumed that the system can be ideally power-gated for the remaining period and thus

has no reliability impact; the system may be used to process other workloads, but resulting

reliability impacts contribute to those workloads. k is Boltzmann’s constant, and other

parameters are model-dependent scaling parameters [153]. As shown in Eqn. 8.8, EM is

primarily accelerated by temperature, and voltage has a secondary effect. In fact, a few

degrees of average temperature change throughout the lifetime can easily produce several

months to years of EM variations. On the other hand, TDDB is more sensitive to voltage

changes, but temperature also has a non-negligible effect. The results show that TRINITY

achieves 26% and 13%, better reliability than the ondemand heuristic, respectively.

8.3.4 Effect of TRINITY Parameter Variations

TRINITY is designed so that it can be implemented on a real physical system. Simplifying

the model and reducing computational complexity reduces the number of parameters that

can be manually tuned. In this section, the sensitivity of TRINITY to variations in T and

TR, which are the only manually tuned parameters, is discussed. Reducing the control

cycle duration and TR has the benefit of capturing rapidly varying application phases. But

it could also increase the amount of controller computations per unit time. Two cases are

compared here: (1) OPT1 (T = 1ms, TR = 1ms) and (2) OPT2 (T = 1ms, TR = 5ms).

The y-axis in Figure 8.9b represents the absolute difference between TRINITY and

ondemand whereas the y-axis in Figures 8.9a, 8.9d and 8.9c represent % difference.

Overall, OPT2 fares slightly worse than OPT1 when using the metrics EDP, ED2P and

ops/Joule. OPT2 keeps the temperature of the cores about a degree cooler than OPT1 by

trading off performance. This aspect is clearly observed in Figures 8.9a and 8.9b.

The notable feature concurs with intuition: Increasing TR implies tuning R less fre-

quently thereby making the controller less responsive to changes in application phases.

This increases the effect of performance mispredictions and thus reduces EDP, ED2P and

151

-1
5

-1
0 -5

 0510
OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

ba
ba

cc
kc

pr
tc

Av
g

on
de

m
an

d v
s.

O
PT

1
vs

. O
PT

2:
 E

D
P

(%
)

Lo
w

er
 is

 B
et

te
r

(a
)

C
om

pa
ri

so
n

of
E

D
P

ag
ai

ns
t
o
n
d
e
m
a
n
d

fo
r

di
ff

er
en

t
T

R
IN

IT
Y

pa
ra

m
et

er
s.

-1
 01234567

OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

ba
ba

cc
kc

pr
tc

Av
g

on
de

m
an

d v
s.

O
PT

1
vs

 O
PT

2:
 T

em
pe

ra
tu

re
 d

iff
er

en
ce

 (K
)

(b
)C

om
pa

ri
so

n
of

Te
m

pe
ra

tu
re

ag
ai

ns
to
n
d
e
m
a
n
d

fo
rd

if
-

fe
re

nt
T

R
IN

IT
Y

pa
ra

m
et

er
s.

-1
5

-1
0 -5

 0510152025

OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

ba
ba

cc
kc

pr
tc

Av
g

on
de

m
an

d v
s.

O
PT

1
vs

. O
PT

2:
 E

D
2P

 (%
)

Lo
w

er
 is

 B
et

te
r

(c
)

C
om

pa
ri

so
n

of
E

D
2P

ag
ai

ns
t
o
n
d
e
m
a
n
d

fo
r

di
ff

er
en

t
T

R
IN

IT
Y

pa
ra

m
et

er
s.

0123456789

OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

OnD

OPT1

OPT2

ba
ba

cc
kc

pr
tc

Av
g

on
de

m
an

d v
s.

O
PT

1
vs

 O
PT

2:
 o

ps
/J

ou
le

 (%
)

H
ig

he
r i

s B
et

te
r

(d
)C

om
pa

ri
so

n
of

op
s/

Jo
ul

e
ag

ai
ns

to
n
d
e
m
a
n
d

fo
rd

iff
er

-
en

tT
R

IN
IT

Y
pa

ra
m

et
er

s.

Fi
gu

re
8.

9:
T

R
IN

IT
Y

Pa
ra

m
et

er
V

ar
ia

tio
n

152

ops/Joule. Consequently, the average temperature for OPT2 is higher than OPT1.

Akin to any practical thermal/power/energy management approach, TRINITY too faces

the challenge of modeling precision vs. controller performance. Applications that would

benefit from TRINITY are those that have a mixture of compute and memory bound phases

because of the ability to adapt itself at run-time to maximally utilize the EHC. However, if

those phases are shorter than the control interval T, they might end up being overlooked.

TRINITY works particularly well for memory intensive applications like GraphBig be-

cause at the same EDP, the average temperature and voltage is lower than ondemand

which improves MTTF by 10%.

8.4 Summary

This chapter presents an approach to the coordinated control of performance, energy and

temperature on 3D processor-memory stacks. It introduces the concept of effective heat

capacity as a thermal resource to be managed. Drawing inspiration from comprehensive

simulation-based characterization of intra- and inter-die thermal coupling effects in CHAP-

TER 7 and examples described in Section 8.1, the ability to maximally utilize the effective

heat capacity is illustrated. An on-line DVFS controller called TRINITY is developed to

this goal. Unlike previous research efforts which (i) consider power, performance and tem-

perature in isolation or in pairs, (ii) do not explicitly model static power, (iii) are heuristics

based, this work acknowledges the complex interplay between performance, energy, tem-

perature, microarchitectural parameters and package physical constraints. An analysis of

EDP, ED2P, energy efficiency, temperature and also lifetime reliability is presented demon-

strating the benefits of intelligently managing temperature as a resource and not just as a

constraint.

153

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

”Die stacking is happening in the mainstream. It is happening now because we need it. It is

going to change who and how we build sockets in the future” - Bryan Black, Keynote MI-

CRO - 2013 [44]. In the post Dennard scaling era, 3D stacking of silicon dice has emerged

as a major contender for sustaining system performance in accordance with Moore’s Law.

3D stacked memory technologies such as HBM, HMC and Wide I/O provide an order of

magnitude better memory bandwidth with better energy efficiency than current DDR stan-

dards. While die stacked memories are commercially available already, researchers have

been exploring ways to tackle the memory wall problem by placing compute and memory

in the same 3D package. The processor performance improves significantly but, better per-

formance comes at the price of stringent thermal constraints. A fundamental understanding

of the multi-physics interactions between performance, energy and temperature is critical

to ensure the viability of 3D die stacked processor-memory architecture.

9.1 Thesis Conclusions

This thesis attempts to develop this understanding by first investigating various techniques

on 2D architectures and later extrapolating the insights obtained to the 3D processor-

memory architecture. Traditionally, power/energy/thermal management in 2D designs have

been dominated by heuristics. Implementing a simple algorithm has been the driving force

for architects to adopt such an approach. Of late, researchers have been slowly embrac-

ing a more formal control theoretic approach that can guarantee stability, robustness etc.

This thesis points out the limits of dynamic management techniques based on (potentially

multiple) heuristics and their inefficiency and inability to manage SoCs with multiple di-

verse components. Accordingly, the works presented in this thesis draw inspiration from

154

the rich area of control theory, and develops regulation and optimization techniques and

demonstrates their efficacy on a cycle level simulator as well as some real physical sys-

tems. Furthermore, this thesis proposes simple, effective and robust feedback controllers

that can be implemented on a real physical system with minimal overheads.

The main ideas developed in this thesis are listed below:

• Performance characterization of current power management strategies in SoCs demon-

strating the scope for coordinated power management.

• A control-theoretic solution to the coordinated management of the core and the mem-

ory to minimize energy consumption for a target performance level.

• Extending the coordinated control framework to multi-core multi-memory-controller

systems to improve energy efficiency.

• A distributed feedback controller to regulate core temperatures in a 2D multi-core

processor.

• A comprehensive characterization of a 3D stacked processor-memory architecture.

• A distributed coordinated control framework for performance, energy and thermal

management in a 3D stacked processor-memory architecture.

The first contribution of this thesis is the characterization of various power/energy man-

agement methods implemented in different hardware and software levels of the SoC stack,

using a smartphone as an example of a mobile device. An important observation on the

interaction between DVFS governors for the processor and memory is made during this

investigation: Governors implementing their policies in an isolated manner are energy in-

efficient.

Equipped with this insight, a coordinated feedback controller managing the energy con-

sumption of the processor and memory is implemented on a commercially available smart-

phone. The feedback controller is application-specific, in that, it utilizes performance and

155

power data obtained offline. By choosing the CPU frequency and memory bandwidth si-

multaneously, it achieves 4 − 31% better energy efficiency for a worst case performance

loss of < 1% for 6 real world applications.

The next contribution expands the scope of the application-specific coordinated feed-

back controller to multi-core multi-memory controller systems. Simple analytic models

for performance and power for the processor and memory are arrived at by regression. An

online optimization, coupled with application phase detection, minimizes the EDP of the

entire system. This technique is implemented on a cycle level simulator configured to sim-

ulate (i) single-core single-memory-controller and (ii) four-cores two-memory-controllers.

The EDP results for both system configurations show that the controller indeed chooses a

combination of CPU and memory frequency that gives the lowest system-wide EDP.

The next set of contributions of this thesis deal with temperature and its coupling with

performance. As opposed to considering temperature as a constraint to be observed in

an optimization problem, an adaptive gain integral controller is designed to regulate tem-

perature of a core to a fixed value. Experiments on a cycle-level simulator demonstrates

rapid convergence and robustness to modeling inaccuracies. It also highlights an important

fact relating workload characteristics and temperature: The ability to utilize the package

thermal capacity is dependent on the application phase and varies dynamically.

To investigate this further, a set of characterization experiments are conducted on a 3D

stacked processor-memory architecture. A detailed characterization of the multi-physics

interaction between (a) thermal behaviors (b) compute and memory microarchitecture and

(c) application workloads is conducted. A concept called “effective heat capacity” is de-

veloped. It is the heat generated beyond which no further gains in performance is observed

with increases in voltage-frequency of the compute logic.

The last part of this thesis attempts to maximize the utilization of the effective heat

capacity in a 3D stacked processor-memory architecture. Accordingly, this thesis advo-

cates the temperature as a resource just like compute or memory cycles. Supported by the

156

observations from the detailed characterization a real-time, numerical optimization based,

application agnostic controller, TRINITY, is developed for managing performance, energy

and temperature. Compared to heuristics based schemes, TRINITY achieves up to 11%

improvement in energy-delay-product while keeping temperature lower by 4 Kelvin. A

secondary benefit is the increase in device reliability by up to 26%.

9.2 Future Work

The underlying essence of this thesis is the coordinated control of the processor and the

memory. By carefully investigating the interactions between thermal behaviors, compute

and memory microarchitecture and the applications, control theory based solutions for im-

proving energy efficiency have been proposed. Today’s computers, be it hand held mo-

bile devices or high performance servers, are heterogeneous systems; A few examples

are: ARM’s big.LITTLE [93], AMD’s APU (CPU + GPU) [175], heterogeneous mem-

ory systems (die stacked + off-chip + non-volatile memories etc.). Optimizing the energy

efficiency of such systems with diverse components is a challenge and an open problem.

Areas for potential future research are briefly described below.

Energy Management in Mobile Devices: Smartphones and hand held mobile devices are

ubiquitous. CHAPTERS 3 and 4 are only a starting point. Managing the energy consump-

tion of the SoC which contains a heterogeneous CPU, a GPU, off-chip memory, WiFi/LTE

modules etc. in a distributed manner is a fertile area for future research. Instead of in-

creasing the battery capacity to ensure longer battery life, intelligently managing energy

consumed by individual components is a better option. Static one-off solutions based on

heuristics is unsustainable. Consequently, formal control theoretic approaches, that are

simple to implement on the firmware, for coordinating DVFS of different diverse modules

on the SoC should be investigated.

Application-specific controllers are particularly well suited on mobile platforms. Ad-

ditionally, mobile device manufacturers and application developers already collect usage

157

statistics from the end user. However, the usage trends, device type, environmental con-

ditions etc. can vary from person to person. Machine learning techniques can be applied

to classify the collected data based on (i) set of top applications used by the customer, (ii)

device type, (iii) usage conditions (hot vs. cold temperature areas) etc. Performance and

power consumption data unique to a particular end-user can be periodically sent to his/her

device to improve energy efficiency.

Thermal and Performance-Aware Data Mapping in stacked memories: 3D processor-

memory stacks can have temporally and spatially varying thermal fields. Higher DRAM

temperatures can result in serious performance reduction on account of increased refresh

rates. Memory addressing patterns is another source of performance variation as described

in CHAPTER 7. The trade-off between performance and temperature on account of various

addressing patterns needs to be investigated thoroughly. The insights thus obtained can

help in dynamically optimizing metrics for the memory such as energy-per-bit. Providing

temperature feedback from the different memory layers to the OS can help maximize the

utilization of the available bandwidth. Temperature-aware remapping of pages within the

stacked memory layers along with memory DVFS has the potential to improve overall

system performance.

158

REFERENCES

[1] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W. Keller, “En-
ergy management for commercial servers,” Computer, vol. 36, no. 12, pp. 39–48,
2003.

[2] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian, A. Davis, and
N. P. Jouppi, “Rethinking dram design and organization for energy-constrained
multi-cores,” in ACM SIGARCH Computer Architecture News, ACM, vol. 38, 2010,
pp. 175–186.

[3] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Igna-
towski, “Top-pim: Throughput-oriented programmable processing in memory,” in
Proceedings of the 23rd international symposium on High-performance parallel
and distributed computing, ACM, 2014, pp. 85–98.

[4] M. Motoyoshi, “Through-silicon via (tsv),” Proceedings of the IEEE, vol. 97, no. 1,
pp. 43–48, 2009.

[5] Ddr3 sdram standard, https://www.jedec.org/standards-documents/
docs/jesd-79-3d, 2012.

[6] Ddr4 sdram standard, https://www.jedec.org/standards-documents/
docs/jesd79-4a, 2017.

[7] High bandwidth memory (hbm) dram, https://www.jedec.org/standards-
documents/docs/jesd235a, 2015.

[8] Hybrid memory cube consortium, http://www.hybridmemorycube.org/.

[9] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-d ics: A novel chip design
for improving deep-submicrometer interconnect performance and systems-on-chip
integration,” Proceedings of the IEEE, vol. 89, no. 5, pp. 602–633, 2001.

[10] C. C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari, “Bridging the processor-memory
performance gap with 3d ic technology,” IEEE Design & Test of Computers, vol. 22,
no. 6, pp. 556–564, 2005.

[11] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh, D. Mc-
Caule, P. Morrow, D. W. Nelson, D. Pantuso, et al., “Die stacking (3d) microarchi-
tecture,” in Proceedings of the 39th Annual IEEE/ACM International Symposium
on Microarchitecture, IEEE Computer Society, 2006, pp. 469–479.

159

https://www.jedec.org/standards-documents/docs/jesd-79-3d
https://www.jedec.org/standards-documents/docs/jesd-79-3d
https://www.jedec.org/standards-documents/docs/jesd79-4a
https://www.jedec.org/standards-documents/docs/jesd79-4a
https://www.jedec.org/standards-documents/docs/jesd235a
https://www.jedec.org/standards-documents/docs/jesd235a
http://www.hybridmemorycube.org/

[12] G. H. Loh, “3d-stacked memory architectures for multi-core processors,” in ACM
SIGARCH computer architecture news, IEEE Computer Society, vol. 36, 2008,
pp. 453–464.

[13] D. H. Woo, N. H. Seong, D. L. Lewis, and H.-H. S. Lee, “An optimized 3d-stacked
memory architecture by exploiting excessive, high-density tsv bandwidth,” in High
Performance Computer Architecture (HPCA), 2010 IEEE 16th International Sym-
posium on, IEEE, 2010, pp. 1–12.

[14] S. Borkar, “3d integration for energy efficient system design,” in Proceedings of
the 48th Design Automation Conference, ACM, 2011, pp. 214–219.

[15] P. Emma, A. Buyuktosunoglu, M. Healy, K. Kailas, V. Puente, R. Yu, A. Hart-
stein, P. Bose, and J. Moreno, “3d stacking of high-performance processors,” in
High Performance Computer Architecture (HPCA), 2014 IEEE 20th International
Symposium on, IEEE, 2014, pp. 500–511.

[16] Iot devices will outnumber the world’s population this year for the first time, https:
//www.zdnet.com/article/iot-devices-will-outnumber-
the-worlds-population-this-year-for-the-first-time/.

[17] M. Halpern, Y. Zhu, and V. J. Reddi, “Mobile cpu’s rise to power: Quantifying
the impact of generational mobile cpu design trends on performance, energy, and
user satisfaction,” in 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), IEEE, 2016, pp. 64–76.

[18] Jedec releases lpddr4 standard for low power memory devices, https://www.
jedec.org/news/pressreleases/jedec- releases- lpddr4-
standard-low-power-memory-devices.

[19] Jedec publishes wide i/o 2 mobile dram standard, https://www.jedec.org/
news/pressreleases/jedec-publishes-wide-io-2-mobile-
dram-standard.

[20] J. Ahn, S. Yoo, and K. Choi, “Dynamic power management of off-chip links for
hybrid memory cubes,” in Proceedings of the 51st Annual Design Automation Con-
ference, ACM, 2014, pp. 1–6.

[21] M. J. Khurshid and M. Lipasti, “Data compression for thermal mitigation in the
hybrid memory cube,” in 2013 IEEE 31st International Conference on Computer
Design (ICCD), IEEE, 2013, pp. 185–192.

[22] A. Agrawal, J. Torrellas, and S. Idgunji, “Xylem: Enhancing vertical thermal con-
duction in 3d processor-memory stacks,” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, ACM, 2017, pp. 546–559.

160

https://www.zdnet.com/article/iot-devices-will-outnumber-the-worlds-population-this-year-for-the-first-time/
https://www.zdnet.com/article/iot-devices-will-outnumber-the-worlds-population-this-year-for-the-first-time/
https://www.zdnet.com/article/iot-devices-will-outnumber-the-worlds-population-this-year-for-the-first-time/
https://www.jedec.org/news/pressreleases/jedec-releases-lpddr4-standard-low-power-memory-devices
https://www.jedec.org/news/pressreleases/jedec-releases-lpddr4-standard-low-power-memory-devices
https://www.jedec.org/news/pressreleases/jedec-releases-lpddr4-standard-low-power-memory-devices
https://www.jedec.org/news/pressreleases/jedec-publishes-wide-io-2-mobile-dram-standard
https://www.jedec.org/news/pressreleases/jedec-publishes-wide-io-2-mobile-dram-standard
https://www.jedec.org/news/pressreleases/jedec-publishes-wide-io-2-mobile-dram-standard

[23] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini, “Coscale:
Coordinating cpu and memory system dvfs in server systems,” in 45th Annual
IEEE/ACM International Symposium on Microarchitecture, 2012, pp. 143–154.

[24] I. Paul, W. Huang, M. Arora, and S. Yalamanchili, “Harmonia: Balancing compute
and memory power in high-performance gpus,” in 2015 ACM/IEEE 42nd Annual
International Symposium on Computer Architecture (ISCA), IEEE, 2015, pp. 54–
65.

[25] B. Su, J. Gu, L. Shen, W. Huang, J. L. Greathouse, and Z. Wang, “Ppep: Online per-
formance, power, and energy prediction framework and dvfs space exploration,” in
Proceedings of the 47th Annual IEEE/ACM International Symposium on Microar-
chitecture, IEEE Computer Society, 2014, pp. 445–457.

[26] R. Begum, D. Werner, M. Hempstead, G. Prasad, and G. Challen, “Energy-performance
trade-offs on energy-constrained devices with multi-component dvfs,” in Workload
Characterization (IISWC), 2015 IEEE International Symposium on, IEEE, 2015,
pp. 34–43.

[27] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra, “Integrated cpu-gpu power manage-
ment for 3d mobile games,” in Design Automation Conference (DAC), 2014 51st
ACM/EDAC/IEEE, IEEE, 2014, pp. 1–6.

[28] Y. Zhu, M. Halpern, and V. J. Reddi, “The role of the cpu in energy-efficient mobile
web browsing,” IEEE Micro, vol. 35, no. 1, pp. 26–33, 2015.

[29] C. Ykman-Couvreur, P. Avasare, G. Mariani, G. Palermo, C. Silvano, and V. Zac-
caria, “Linking run-time resource management of embedded multi-core platforms
with automated design-time exploration,” IET Computers & Digital Techniques,
vol. 5, no. 2, pp. 123–135, 2011.

[30] K. Skadron, T. Abdelzaher, and M. R. Stan, “Control-theoretic techniques and
thermal-rc modeling for accurate and localized dynamic thermal management,”
in High-Performance Computer Architecture, 2002. Proceedings. Eighth Interna-
tional Symposium on, IEEE, 2002, pp. 17–28.

[31] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D.
Tarjan, “Temperature-aware microarchitecture,” in ACM SIGARCH Computer Ar-
chitecture News, ACM, vol. 31, 2003, pp. 2–13.

[32] N. Almoosa, W. Song, Y. Wardi, and S. Yalamanchili, “A power capping controller
for multicore processors,” in 2012 American Control Conference (ACC), IEEE,
2012, pp. 4709–4714.

161

[33] X Chen, H Xiao, Y Wardi, and S Yalamanchili, “Throughput regulation in shared
memory multicore processors,” in 2015 IEEE 22nd International Conference on
High Performance Computing (HiPC), IEEE, 2015, pp. 12–20.

[34] X. Wang, K. Ma, and Y. Wang, “Adaptive power control with online model esti-
mation for chip multiprocessors,” IEEE Transactions on parallel and Distributed
Systems, vol. 22, no. 10, pp. 1681–1696, 2011.

[35] F. Zanini, D. Atienza, L. Benini, and G. De Micheli, “Multicore thermal manage-
ment with model predictive control,” in Circuit Theory and Design, 2009. ECCTD
2009. European Conference on, IEEE, 2009, pp. 711–714.

[36] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, L. Benini, and G. De
Micheli, “Temperature control of high-performance multi-core platforms using con-
vex optimization,” in 2008 Design, Automation and Test in Europe, IEEE, 2008,
pp. 110–115.

[37] K. Rao, J. Wang, S. Yalamanchili, Y. Wardi, and H. Ye, “Application-specific
performance-aware energy optimization on android mobile devices,” 2017 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
2017.

[38] C. Imes, D. H. Kim, M. Maggio, and H. Hoffmann, “Poet: A portable approach to
minimizing energy under soft real-time constraints,” in 21st IEEE Real-Time and
Embedded Technology and Applications Symposium, 2015, pp. 75–86.

[39] K. Rao, W. Song, S. Yalamanchili, and Y. Wardi, “Temperature regulation in mul-
ticore processors using adjustable-gain integral controllers,” in 2015 IEEE Confer-
ence on Control Applications (CCA), IEEE, 2015, pp. 810–815.

[40] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the obvi-
ous,” ACM SIGARCH computer architecture news, vol. 23, no. 1, pp. 20–24, 1995.

[41] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative ap-
proach. Elsevier, 2011.

[42] P. Machanick, “Approaches to addressing the memory wall,” School of IT and Elec-
trical Engineering, University of Queensland, 2002.

[43] A. White, “Exascale challenges: Applications, technologies, and co-design,”

[44] B. Black, “Die stacking is happening!” In 46th IEEE/ACM International Sympo-
sium on Microarchitecture Keynote, 2013.

162

[45] High bandwidth memory, reinventing memory technology, http://www.amd.
com/en-us/innovations/software-technologies/hbm.

[46] J. T. Pawlowski, “Hybrid memory cube (hmc),” in Hot Chips 23 Symposium (HCS),
2011 IEEE, IEEE, 2011, pp. 1–24.

[47] V. Pallipadi and A. Starikovskiy, “The ondemand governor,” in Proceedings of the
Linux Symposium, sn, vol. 2, 2006, pp. 215–230.

[48] M. Kambadur and M. Kim, “An experimental survey of energy management across
the stack,” in ACM International Conference on Object Oriented Programming Sys-
tems Languages and Applications (OOPSLA), 2014, pp. 329–344.

[49] A. Miyoshi, C. Lefurgy, E. Hensbergen, R. Rajamony, and R. Rajkumar, “Criti-
cal power slope: Understanding the runtime effects of frequency scaling,” in 16th
International Conference on Supercomputing, 2002, pp. 35–44.

[50] E. Rotem, “Intel architecture, code name skylake deep dive: A new architecture
to manage power performance and energy efficiency,” in Intel Developer Forum,
2015.

[51] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Rajwan, “Power-
management architecture of the intel microarchitecture code-named sandy bridge,”
Ieee micro, vol. 32, no. 2, pp. 20–27, 2012.

[52] S. Jahagirdar, V. George, I. Sodhi, and R. Wells, “Power management of the third
generation intel core micro architecture formerly codenamed ivy bridge,” in Hot
Chips 24 Symposium (HCS), 2012 IEEE, IEEE, 2012, pp. 1–49.

[53] B. Sinharoy, R Swanberg, N. Nayar, B Mealey, J. Stuecheli, B. Schiefer, J. Leen-
stra, J Jann, P Oehler, D Levitan, et al., “Advanced features in ibm power8 sys-
tems,” IBM Journal of Research and Development, vol. 59, no. 1, pp. 1–1, 2015.

[54] Amd phenom ii key architectural features, http://www.amd.com/us/
products/desktop/processors/phenom-ii/Pages/phenom-ii-
key-architectural-features.aspx.

[55] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency scaling: The laws of
diminishing returns,” in Proceedings of the 2010 international conference on Power
aware computing and systems, 2010, pp. 1–8.

[56] S. Mittal, “A survey of techniques for improving energy efficiency in embedded
computing systems,” International Journal of Computer Aided Engineering and
Technology, vol. 6, no. 4, pp. 440–459, 2014.

163

http://www.amd.com/en-us/innovations/software-technologies/hbm
http://www.amd.com/en-us/innovations/software-technologies/hbm
http://www.amd.com/us/products/desktop/processors/phenom-ii/Pages/phenom-ii-key-architectural-features.aspx
http://www.amd.com/us/products/desktop/processors/phenom-ii/Pages/phenom-ii-key-architectural-features.aspx
http://www.amd.com/us/products/desktop/processors/phenom-ii/Pages/phenom-ii-key-architectural-features.aspx

[57] J. Heo, D. Henriksson, X. Liu, and T. Abdelzaher, “Integrating adaptive compo-
nents: An emerging challenge in performance-adaptive systems and a server farm
case-study,” in Real-Time Systems Symposium, 2007. RTSS 2007. 28th IEEE Inter-
national, IEEE, 2007, pp. 227–238.

[58] R. P. Pothukuchi, A. Ansari, P. Voulgaris, and J. Torrellas, “Using multiple input,
multiple output formal control to maximize resource efficiency in architectures,” in
Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International Sym-
posium on, IEEE, 2016, pp. 658–670.

[59] V. Hanumaiah, D. Desai, B. Gaudette, C.-J. Wu, and S. Vrudhula, “Steam: A smart
temperature and energy aware multicore controller,” ACM Transactions on Embed-
ded Computing Systems (TECS), vol. 13, no. 5s, p. 151, 2014.

[60] Y. Wang, K. Ma, and X. Wang, “Temperature-constrained power control for chip
multiprocessors with online model estimation,” in ACM SIGARCH computer ar-
chitecture news, ACM, vol. 37, 2009, pp. 314–324.

[61] S. Fan, S. M. Zahedi, and B. C. Lee, “The computational sprinting game,” ACM
SIGARCH Computer Architecture News, vol. 44, no. 2, pp. 561–575, 2016.

[62] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated management of multiple in-
teracting resources in chip multiprocessors: A machine learning approach,” in Mi-
croarchitecture, 2008. MICRO-41. 2008 41st IEEE/ACM International Symposium
on, IEEE, 2008, pp. 318–329.

[63] X. Wang and J. F. Martı́nez, “Rebudget: Trading off efficiency vs. fairness in market-
based multicore resource allocation via runtime budget reassignment,” ACM SIG-
PLAN Notices, vol. 51, no. 4, pp. 19–32, 2016.

[64] ——, “Xchange: A market-based approach to scalable dynamic multi-resource al-
location in multicore architectures,” in High Performance Computer Architecture
(HPCA), 2015 IEEE 21st International Symposium on, IEEE, 2015, pp. 113–125.

[65] S. S. Jha, W. Heirman, A. Falcón, T. E. Carlson, K. Van Craeynest, J. Tubella,
A. González, and L. Eeckhout, “Chrysso: An integrated power manager for con-
strained many-core processors,” in Proceedings of the 12th ACM International
Conference on Computing Frontiers, ACM, 2015, p. 19.

[66] W.-Y. Liang and P.-T. Lai, “Design and implementation of a critical speed-based
dvfs mechanism for the android operating system,” in The 5th International Con-
ference on Embedded and Multimedia Computing (EMC), 2010, pp. 1–6.

[67] A. K. Mishra, S. Srikantaiah, M. Kandemir, and C. R. Das, “Cpm in cmps: Coor-
dinated power management in chip-multiprocessors,” in High Performance Com-

164

puting, Networking, Storage and Analysis (SC), 2010 International Conference for,
IEEE, 2010, pp. 1–12.

[68] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, “No power
struggles: Coordinated multi-level power management for the data center,” in ACM
SIGARCH Computer Architecture News, ACM, vol. 36, 2008, pp. 48–59.

[69] P. Juang, Q. Wu, L.-S. Peh, M. Martonosi, and D. W. Clark, “Coordinated, dis-
tributed, formal energy management of chip multiprocessors,” in Proceedings of
the 2005 international symposium on Low power electronics and design, ACM,
2005, pp. 127–130.

[70] X Chen, Y Wardi, and S Yalamanchili, “Power regulation in high performance
multicore processors,” arXiv preprint arXiv:1709.04859, 2017.

[71] N. Almoosa, W Song, S. Yalamanchili, and Y. Wardi, “Throughput regulation in
multicore processors via ipa,” in Decision and Control (CDC), 2012 IEEE 51st
Annual Conference on, IEEE, 2012, pp. 7267–7272.

[72] W.-Y. Liang, M.-F. Chang, Y.-L. Chen, and C.-F. Lai, “Energy efficient video de-
coding for the android operating system,” in IEEE International Conference on
Consumer Electronics (ICCE), 2013, pp. 344–345.

[73] O. Sahin, P. T. Varghese, and A. K. Coskun, “Just enough is more: Achieving sus-
tainable performance in mobile devices under thermal limitations,” in Computer-
Aided Design (ICCAD), 2015 IEEE/ACM International Conference on, IEEE, 2015,
pp. 839–846.

[74] J. Donald and M. Martonosi, “Techniques for multicore thermal management: Clas-
sification and new exploration,” in ACM SIGARCH Computer Architecture News,
IEEE Computer Society, vol. 34, 2006, pp. 78–88.

[75] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini, “Thermal and energy manage-
ment of high-performance multicores: Distributed and self-calibrating model-predictive
controller,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 1,
pp. 170–183, 2013.

[76] B. Shi, Y. Zhang, and A. Srivastava, “Dynamic thermal management for single and
multicore processors under soft thermal constraints,” in Proceedings of the 16th
ACM/IEEE international symposium on Low power electronics and design, ACM,
2010, pp. 165–170.

[77] Y. Fu, N. Kottenstette, C. Lu, and X. D. Koutsoukos, “Feedback thermal control
of real-time systems on multicore processors,” in Proceedings of the tenth ACM
international conference on Embedded software, ACM, 2012, pp. 113–122.

165

[78] S. Mittal, “A survey of architectural techniques for dram power management,”
International Journal of High Performance Systems Architecture, vol. 4, no. 2,
pp. 110–119, 2012.

[79] C. Weis, I. Loi, L. Benini, and N. Wehn, “Exploration and optimization of 3-d
integrated dram subsystems,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 32, no. 4, pp. 597–610, 2013.

[80] K. Kang, J. Jung, S. Yoo, and C.-M. Kyung, “Maximizing throughput of temperature-
constrained multi-core systems with 3d-stacked cache memory,” in Quality Elec-
tronic Design (ISQED), 2011 12th International Symposium on, IEEE, 2011, pp. 1–
6.

[81] W.-H. Lo, K.-z. Liang, and T. Hwang, “Thermal-aware dynamic page allocation
policy by future access patterns for hybrid memory cube (hmc),” in 2016 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2016,
pp. 1084–1089.

[82] J. Meng, K. Kawakami, and A. K. Coskun, “Optimizing energy efficiency of 3-d
multicore systems with stacked dram under power and thermal constraints,” in Pro-
ceedings of the 49th Annual Design Automation Conference, ACM, 2012, pp. 648–
655.

[83] D. Zhao, H. Homayoun, and A. V. Veidenbaum, “Temperature aware thread migra-
tion in 3d architecture with stacked dram,” in Quality Electronic Design (ISQED),
2013 14th International Symposium on, IEEE, 2013, pp. 80–87.

[84] L.-N. Tran, F. J. Kurdahi, A. M. Eltawil, and H. Homayoun, “Heterogeneous mem-
ory management for 3d-dram and external dram with qos,” in Design Automation
Conference (ASP-DAC), 2013 18th Asia and South Pacific, IEEE, 2013, pp. 663–
668.

[85] P. Balaprakash, D. Buntinas, A. Chan, A. Guha, R. Gupta, S. H. K. Narayanan,
A. A. Chien, P. Hovland, and B. Norris, “Exascale workload characterization and
architecture implications,” in Proceedings of the High Performance Computing
Symposium, Society for Computer Simulation International, 2013, p. 5.

[86] G. L. Loi, B. Agrawal, N. Srivastava, S.-C. Lin, T. Sherwood, and K. Banerjee,
“A thermally-aware performance analysis of vertically integrated (3-d) processor-
memory hierarchy,” in Proceedings of the 43rd annual Design Automation Confer-
ence, ACM, 2006, pp. 991–996.

[87] Y.-J. Chen, C.-L. Yang, P.-S. Lin, and Y.-C. Lu, “Thermal/performance characteri-
zation of cmps with 3d-stacked drams under synergistic voltage-frequency control

166

of cores and drams,” in Proceedings of the 2015 Conference on research in adaptive
and convergent systems, ACM, 2015, pp. 430–436.

[88] K. Puttaswamy and G. H. Loh, “Thermal herding: Microarchitecture techniques
for controlling hotspots in high-performance 3d-integrated processors,” in High
Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th International
Symposium on, IEEE, 2007, pp. 193–204.

[89] L. Yang, R. Dick, H. Lekatsas, and S. Chakradhar, “Online memory compres-
sion for embedded systems,” ACM Transactions on Embedded Computing Systems,
vol. 9, no. 3, 2010.

[90] W. Zang and A. Gordon-Ross, “A survey on cache tuning from a power/energy
perspective,” ACM Computing Survey, vol. 45, no. 3, 2013.

[91] T. Kolpe, A. Zhai, and S. Sapatnekar, “Enabling improved power management in
multicore processors through clustered dvfs,” in Design, Automation, and Test in
Europe, 2011, pp. 1–6.

[92] K. Ma, X. Li, W. Chen, C. Zhang, and X. Wang, “Greengpu: A holistic approach
to energy efficiency in gpu-cpu heterogeneous architectures,” in 41st International
Conference on Parallel Processing, 2012, pp. 48–57.

[93] Big.little technology, https://www.arm.com/products/processors/
technologies/biglittleprocessing.php.

[94] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for reduced cpu en-
ergy,” in 1st USENIX Conference on Operating System Design and Implementation,
1994.

[95] J. Chen and L. John, “Energy-aware application scheduling on a heterogeneous
multi-core system,” in IEEE International Symposium on Workload Characteriza-
tion, 2008, pp. 5–13.

[96] G. Liu, M. Fan, and G. Quan, “Neighbor-aware dynamic thermal management for
multi-core platform,” in 2012 Design, Automation & Test in Europe Conference &
Exhibition (DATE), IEEE, 2012, pp. 187–192.

[97] I. Yeo, C. C. Liu, and E. J. Kim, “Predictive dynamic thermal management for mul-
ticore systems,” in Proceedings of the 45th annual Design Automation Conference,
ACM, 2008, pp. 734–739.

[98] Energy aware scheduling (eas) progress update, http://www.linaro.org/
blog/core-dump/energy-aware-scheduling-eas-progress-
update/.

167

https://www.arm.com/products/processors/technologies/biglittleprocessing.php
https://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://www.linaro.org/blog/core-dump/energy-aware-scheduling-eas-progress-update/
http://www.linaro.org/blog/core-dump/energy-aware-scheduling-eas-progress-update/
http://www.linaro.org/blog/core-dump/energy-aware-scheduling-eas-progress-update/

[99] K. Cooper and L. Torczon, Engineering a Compiler, 2nd. Morgan Kaufmann, 2012.

[100] O. Asare and M. Goudarzi, “Opportunities fo embedded software power reduc-
tions,” in 24th Canadian Conference on Electrical and Computer Engineering,
2011, pp. 763–766.

[101] J. Ayala and M. López-Vallejo, “Improving register file banking with a power-
aware unroller,” in Proceedings of PARC, 2004.

[102] J. Pallister, S. Hollis, and J. Bennett, Identifying compiler options to minimise en-
ergy consumption for embedded platforms, http://arxiv.org/abs/1303.
6485, 2013.

[103] J. Cebrián, L. Natvig, and J. Meyer, “Improving energy efficiency through paral-
lelization and vectorization on intel core i5 and i7 processors,” in SC Companion:
High Performance Computing, Networking, Storage and Analysis, 2012, pp. 675–
684.

[104] T. Hönig, C. Eibel, R. Kapitza, and W. Schröder-Preikschat, “Seep: Exploiting sym-
bolic execution for energy-aware programming,” ACM SIGOPS Operating Systems
Review, vol. 45, no. 3, pp. 58–62, 2011.

[105] M. Kambadur and M. Kim, “Nrg-loops: Adjusting power from within applica-
tions,” in International Symposium on Code Generation and Optimization, 2016,
pp. 206–215.

[106] I. Paul, S. Manne, M. Arora, W. L. Bircher, and S. Yalamanchili, “Cooperative
boosting: Needy versus greedy power management,” in ACM SIGARCH Computer
Architecture News, ACM, vol. 41, 2013, pp. 285–296.

[107] I. Paul, V. Ravi, S. Manne, M. Arora, and S. Yalamanchili, “Coordinated energy
management in heterogeneous processors,” Scientific Programming, vol. 22, no. 2,
pp. 93–108, 2014.

[108] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini, “Memscale:
Active low-power modes for main memory,” in ACM SIGPLAN Notices, ACM,
vol. 46, 2011, pp. 225–238.

[109] M. H. Santriaji and H. Hoffman, “Grape: Minimizing energy for gpu applications
with performance requirements,” IEEE MICRO, 2016.

[110] Monsoon power monitor, https://www.msoon.com/LabEquipment/
PowerMonitor/.

168

http://arxiv.org/abs/1303.6485
http://arxiv.org/abs/1303.6485
https://www.msoon.com/LabEquipment/PowerMonitor/
https://www.msoon.com/LabEquipment/PowerMonitor/

[111] Android debug bridge, https://developer.android.com/studio/
command-line/adb.html.

[112] Antutu, http://www.antutu.com/en/index.shtml.

[113] Geekbench3, http://support.primatelabs.com/kb/geekbench/
interpreting-geekbench-3-scores.

[114] Vellamo, https://play.google.com/store/apps/details?id=
com.quicinc.vellamo&hl=en.

[115] 3dmark, http://www.futuremark.com/benchmarks/3dmark/android.

[116] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran: Timing-and touch-sensitive
record and replay for android,” in 2013 35th International Conference on Software
Engineering (ICSE), IEEE, 2013, pp. 72–81.

[117] D. Pandiyan, S.-Y. Lee, and C.-J. Wu, “Performance, energy characterizations and
architectural implications of an emerging mobile platform benchmark suite-mobilebench,”
in Workload Characterization (IISWC), 2013 IEEE International Symposium on,
IEEE, 2013, pp. 133–142.

[118] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: Charac-
terization and architectural implications,” in Proceedings of the 17th international
conference on Parallel architectures and compilation techniques, ACM, 2008, pp. 72–
81.

[119] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH Computer
Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[120] D. Brodowski, “Linux kernel cpufreq subsystem,” http://www.kernel.
org/pub/linux/utils/kernel/cpufreq/cpufreq-info.html,

[121] Advanced configuration and power interface, http://www.acpi.info/.

[122] C. Gao, A. Gutierrez, M. Rajan, R. G. Dreslinski, T. Mudge, and C.-J. Wu, “A study
of mobile device utilization,” in IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2015, pp. 225–234.

[123] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, “Memory power
management via dynamic voltage/frequency scaling,” in Proceedings of the 8th
ACM international conference on Autonomic computing, ACM, 2011, pp. 31–40.

[124] P. T. Bezerra, L. A. Araujo, G. B. Ribeiro, A. C.d.S. B. Neto, A. G. Silva-Filho,
C. A. Siebra, F. Q.B. da Silva, A. L. Santos, A. Mascaro, and P. H. Costa, “Dy-

169

https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/command-line/adb.html
http://www.antutu.com/en/index.shtml
http://support.primatelabs.com/kb/geekbench/interpreting-geekbench-3-scores
http://support.primatelabs.com/kb/geekbench/interpreting-geekbench-3-scores
https://play.google.com/store/apps/details?id=com.quicinc.vellamo&hl=en
https://play.google.com/store/apps/details?id=com.quicinc.vellamo&hl=en
http://www.futuremark.com/benchmarks/3dmark/android
http://www.kernel.org/pub/linux/utils/kernel/cpufreq/cpufreq-info.html
http://www.kernel.org/pub/linux/utils/kernel/cpufreq/cpufreq-info.html
http://www.acpi.info/

namic frequency scaling on android platforms for energy consumption reduction,”
in Proceedings of the 8th ACM Workshop on Performance Monitoring and Mea-
surement of Heterogeneous Wireless and Wired Networks, ser. PM2HW2N ’13,
2013, pp. 189–196.

[125] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi, “An analysis of
efficient multi-core global power management policies: Maximizing performance
for a given power budget,” in Proceedings of the 39th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2006, pp. 347–358.

[126] T. Patikirikorala and A. Colman, “Feedback controllers in the cloud,” in Proceed-
ings of APSEC, 2010.

[127] L. Cao and H. M. Schwartz, “Analysis of the kalman filter based estimation algo-
rithm: An orthogonal decomposition approach,” Automatica, vol. 40, no. 1, pp. 5–
19, 2004.

[128] Ffmpeg library, https://ffmpeg.org/about.html.

[129] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi, C. Emmons, and
N. Paver, “Full-system analysis and characterization of interactive smartphone ap-
plications,” in Workload Characterization (IISWC), 2011 IEEE International Sym-
posium on, IEEE, 2011, pp. 81–90.

[130] C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase monitoring and pre-
diction on real systems with application to dynamic power management,” in Pro-
ceedings of the 39th Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2006, pp. 359–370.

[131] J. Lau, S. Schoemackers, and B. Calder, “Structures for phase classification,” in
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), 2004, pp. 57–67.

[132] M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B.
Carter, “Architecting for power management: The ibm R© power7 approach,” in
High Performance Computer Architecture (HPCA), 2010 IEEE 16th International
Symposium on, IEEE, 2010, pp. 1–11.

[133] V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini, “Dma-aware memory energy man-
agement.,” in HPCA, vol. 6, 2006, pp. 133–144.

[134] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power aware page allocation,” ACM
Sigplan Notices, vol. 35, no. 11, pp. 105–116, 2000.

170

https://ffmpeg.org/about.html

[135] H. Huang, K. G. Shin, C. Lefurgy, and T. Keller, “Improving energy efficiency by
making dram less randomly accessed,” in Proceedings of the 2005 international
symposium on Low power electronics and design, ACM, 2005, pp. 393–398.

[136] X. Fan, C. Ellis, and A. Lebeck, “Memory controller policies for dram power man-
agement,” in Proceedings of the 2001 international symposium on Low power elec-
tronics and design, ACM, 2001, pp. 129–134.

[137] B. Diniz, D. Guedes, W. Meira Jr, and R. Bianchini, “Limiting the power consump-
tion of main memory,” ACM SIGARCH Computer Architecture News, vol. 35, no. 2,
pp. 290–301, 2007.

[138] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M. J. Ir-
win, “Hardware and software techniques for controlling dram power modes,” IEEE
Transactions on Computers, vol. 50, no. 11, pp. 1154–1173, 2001.

[139] J. H. Ahn, J. Leverich, R. Schreiber, and N. P. Jouppi, “Multicore dimm: An energy
efficient memory module with independently controlled drams,” IEEE Computer
Architecture Letters, vol. 8, no. 1, pp. 5–8, 2009.

[140] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu, “Mini-rank: Adap-
tive dram architecture for improving memory power efficiency,” in Microarchitec-
ture, 2008. MICRO-41. 2008 41st IEEE/ACM International Symposium on, IEEE,
2008, pp. 210–221.

[141] E. Cooper-Balis and B. Jacob, “Fine-grained activation for power reduction in
dram,” IEEE Micro, vol. 30, no. 3, pp. 34–47, 2010.

[142] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini, “Mul-
tiscale: Memory system dvfs with multiple memory controllers,” in Proceedings
of the 2012 ACM/IEEE international symposium on Low power electronics and
design, ACM, 2012, pp. 297–302.

[143] Tn-41-01:calculating memory system power for ddr3, https://www.micron.
com/resource-details/3465e69a-3616-4a69-b24d-ae459b295aae.

[144] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle accurate memory
system simulator,” IEEE Computer Architecture Letters, vol. 10, no. 1, pp. 16–19,
2011.

[145] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin, “Graphbig: Understanding
graph computing in the context of industrial solutions,” in High Performance Com-
puting, Networking, Storage and Analysis, 2015 SC-International Conference for,
IEEE, 2015, pp. 1–12.

171

https://www.micron.com/resource-details/3465e69a-3616-4a69-b24d-ae459b295aae
https://www.micron.com/resource-details/3465e69a-3616-4a69-b24d-ae459b295aae

[146] D. Abts, N. D. Enright Jerger, J. Kim, D. Gibson, and M. H. Lipasti, “Achieving
predictable performance through better memory controller placement in many-core
cmps,” ACM SIGARCH Computer Architecture News, vol. 37, no. 3, pp. 451–461,
2009.

[147] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina,
C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-chip interconnection architecture
of the tile processor,” IEEE micro, vol. 27, no. 5, pp. 15–31, 2007.

[148] M. Awasthi, D. Nellans, K. Sudan, R. Balasubramonian, and A. Davis, “Handling
the problems and opportunities posed by multiple on-chip memory controllers,”
in Parallel Architectures and Compilation Techniques (PACT), 2010 19th Interna-
tional Conference on, IEEE, 2010, pp. 319–330.

[149] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc,
“Design of ion-implanted mosfet’s with very small physical dimensions,” IEEE
Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[150] International technology roadmap for semiconductors (itrs), 2011, http : / /
www.itrs2.net/2011-itrs.html.

[151] J. Kong, S. W. Chung, and K. Skadron, “Recent thermal management techniques
for microprocessors,” ACM Computing Surveys (CSUR), vol. 44, no. 3, p. 13, 2012.

[152] H. Qian, X. Huang, H. Yu, and C. H. Chang, “Cyber-physical thermal manage-
ment of 3d multi-core cache-processor system with microfluidic cooling,” Journal
of Low Power Electronics, vol. 7, no. 1, pp. 110–121, 2011.

[153] W. J. Song, S. Mukhopadhyay, and S. Yalamanchili, “Managing performance-reliability
tradeoffs in multicore processors,” in Reliability Physics Symposium (IRPS), 2015
IEEE International, IEEE, 2015, pp. 3C–1–12.

[154] P. Lancaster, “Error analysis for the newton-raphson method,” Numerische Mathe-
matik, vol. 9, no. 1, pp. 55–68, 1966.

[155] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in
several variables. Siam, 1970, vol. 30.

[156] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, “A dynamic voltage
scaled microprocessor system,” IEEE Journal of solid-state circuits, vol. 35, no. 11,
pp. 1571–1580, 2000.

[157] R. McGowen, C. A. Poirier, C. Bostak, J. Ignowski, M. Millican, W. H. Parks, and
S. Naffziger, “Power and temperature control on a 90-nm itanium family proces-
sor,” IEEE Journal of Solid-State Circuits, vol. 41, no. 1, pp. 229–237, 2006.

172

http://www.itrs2.net/2011-itrs.html
http://www.itrs2.net/2011-itrs.html

[158] J. A. Butts and G. S. Sohi, “A static power model for architects,” in Proceedings of
the 33rd annual ACM/IEEE international symposium on Microarchitecture, ACM,
2000, pp. 191–201.

[159] J. Rabaey, Low power design essentials. Springer Science & Business Media, 2009.

[160] Y. Han, I. Koren, and C. M. Krishna, “Tilts: A fast architectural-level transient ther-
mal simulation method,” Journal of Low Power Electronics, vol. 3, no. 1, pp. 13–
21, 2007.

[161] J. Wang, J. Beu, R. Bheda, T. Conte, Z. Dong, C. Kersey, M. Rasquinha, G. Riley,
W. Song, H. Xiao, et al., “Manifold: A parallel simulation framework for multicore
systems,” in Performance Analysis of Systems and Software (ISPASS), 2014 IEEE
International Symposium on, IEEE, 2014, pp. 106–115.

[162] W. J. Song, S. Mukhopadhyay, and S. Yalamanchili, “Kitfox: Multiphysics libraries
for integrated power, thermal, and reliability simulations of multicore microarchi-
tecture,” IEEE Transactions on Components, Packaging and Manufacturing Tech-
nology, vol. 5, no. 11, pp. 1590–1601, 2015.

[163] C. D. Kersey, A. Rodrigues, and S. Yalamanchili, “A universal parallel front-end
for execution driven microarchitecture simulation,” in Proceedings of the 2012
Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools,
ACM, 2012, pp. 25–32.

[164] Hotspot version 5.0, http : / / lava . cs . virginia . edu / HotSpot /
index.htm.

[165] Y. Eckert, N. Jayasena, and G. H. Loh, “Thermal feasibility of die-stacked process-
ing in memory,” 2014.

[166] D. Milojevic, S. Idgunji, D. Jevdjic, E. Ozer, P. Lotfi-Kamran, A. Panteli, A. Pro-
dromou, C. Nicopoulos, D. Hardy, B. Falsari, et al., “Thermal characterization of
cloud workloads on a power-efficient server-on-chip,” in Computer Design (ICCD),
2012 IEEE 30th International Conference on, IEEE, 2012, pp. 175–182.

[167] K. Puttaswamy and G. H. Loh, “Thermal analysis of a 3d die-stacked high-performance
microprocessor,” in Proceedings of the 16th ACM Great Lakes symposium on VLSI,
ACM, 2006, pp. 19–24.

[168] R. Zhang, M. R. Stan, and K. Skadron, “Hotspot 6.0: Validation, acceleration and
extension,” University of Virginia, Tech. Rep, 2015.

[169] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza, “3d-ice:
Fast compact transient thermal modeling for 3d ics with inter-tier liquid cooling,”

173

http://lava.cs.virginia.edu/HotSpot/index.htm
http://lava.cs.virginia.edu/HotSpot/index.htm

in Proceedings of the International Conference on Computer-Aided Design, IEEE
Press, 2010, pp. 463–470.

[170] C. Zhu, Z. Gu, L. Shang, R. P. Dick, and R. Joseph, “Three-dimensional chip-
multiprocessor run-time thermal management,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 27, no. 8, pp. 1479–1492,
2008.

[171] J. G. Beu, M. C. Rosier, and T. M. Conte, “Manager-client pairing: A frame-
work for implementing coherence hierarchies,” in Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture, ACM, 2011, pp. 226–
236.

[172] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,
“Mcpat: An integrated power, area, and timing modeling framework for multicore
and manycore architectures,” in Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium on, IEEE, 2009, pp. 469–480.

[173] S. M. Hassan and S. Yalamanchili, “Understanding the impact of air and microflu-
idics cooling on performance of 3d stacked memory systems,” in Proceedings of
the Second International Symposium on Memory Systems, ACM, 2016, pp. 387–
394.

[174] A. Mazouz, A. Laurent, B. Pradelle, and W. Jalby, “Evaluation of cpu frequency
transition latency,” Computer Science-Research and Development, vol. 29, no. 3-4,
pp. 187–195, 2014.

[175] Amd reveals fusion cpu+gpu, to challenge intel in laptops, https://arstechnica.
com/information-technology/2010/02/amd-reveals-fusion-
cpugpu-to-challege-intel-in-laptops/.

174

https://arstechnica.com/information-technology/2010/02/amd-reveals-fusion-cpugpu-to-challege-intel-in-laptops/
https://arstechnica.com/information-technology/2010/02/amd-reveals-fusion-cpugpu-to-challege-intel-in-laptops/
https://arstechnica.com/information-technology/2010/02/amd-reveals-fusion-cpugpu-to-challege-intel-in-laptops/

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Thesis Statement
	Thesis Organization

	Problem Formulation and Related Work
	The Memory Wall
	Power, Energy and Thermal Management of Processors and Memory
	Dynamic Voltage and Frequency Scaling (DVFS)
	CPU Idling
	Microarchitecture Optimizations
	OS, Compiler Optimizations

	Coordinated Management of Processor and Memory
	Summary

	Performance, Power and Energy Characterization: Mobile Devices
	Overview
	Methodology
	Experimental Testbed
	Hardware and Software Testing Options
	Other Factors

	Results
	Compiler Optimizations and Thread Level Parallelism
	CPU Governors
	Memory Bandwidth Governors
	GPU Governors
	Cross Effects

	Summary

	Coordinated Control: Mobile Devices
	Overview
	Motivation
	Controller Design
	Offline Profiling
	Online Controller
	Implementation Challenges
	Applications

	Evaluation
	Results and Analysis
	Application Scope
	Effect of Different Background Loads
	Comparison with CPU-only DVFS

	Summary

	Coordinated Control: Generalization to Multi-Core Multi-Memory-Controller Systems
	Overview
	Memory Controller Configurations
	Performance and Power Model for a Single-Core Single-Memory-Controller System
	Optimization Problem: Single-Core Single-Memory-Controller
	Solution Strategy
	Results
	Microbenchmark Characterization: Two-Cores Two-Memory Controllers
	Optimization Problem: Four-Cores Two-Memory-Controllers
	Solution Strategy
	Results
	Discussion
	Summary

	Thermal Management: 2D Architectures
	Overview
	Regulation Technique
	Temperature Control in Multi-Core Processors
	Results
	Summary

	Characterization of a 3D Processor-Memory Architecture
	Overview
	Characterization
	Experimental Framework
	Nomenclature
	Thermal Coupling Analysis

	Summary

	Coordinated Management in 3D Architectures: Performance, Energy and Temperature
	Overview
	TRINITY
	System Models
	Solution Strategy

	Results
	Benchmarks
	Analyzing TRINITY Performance
	Impact on Lifetime Reliability
	Effect of TRINITY Parameter Variations

	Summary

	Conclusions and Future Work
	Thesis Conclusions
	Future Work

	References

