6,055 research outputs found

    Intelligent intrusion detection in low power IoTs

    Get PDF
    Security and privacy of data are one of the prime concerns in today’s Internet of Things (IoT). Conventional security techniques like signature-based detection of malware and regular updates of a signature database are not feasible solutions as they cannot secure such systems effectively, having limited resources. Programming languages permitting immediate memory accesses through pointers often result in applications having memory-related errors, which may lead to unpredictable failures and security vulnerabilities. Furthermore, energy efficient IoT devices running on batteries cannot afford the implementation of cryptography algorithms as such techniques have significant impact on the system power consumption. Therefore, in order to operate IoT in a secure manner, the system must be able to detect and prevent any kind of intrusions before the network (i.e., sensor nodes and base station) is destabilised by the attackers. In this article, we have presented an intrusion detection and prevention mechanism by implementing an intelligent security architecture using random neural networks (RNNs). The application’s source code is also instrumented at compile time in order to detect out-of-bound memory accesses. It is based on creating tags, to be coupled with each memory allocation and then placing additional tag checking instructions for each access made to the memory. To validate the feasibility of the proposed security solution, it is implemented for an existing IoT system and its functionality is practically demonstrated by successfully detecting the presence of any suspicious sensor node within the system operating range and anomalous activity in the base station with an accuracy of 97.23%. Overall, the proposed security solution has presented a minimal performance overhead.</jats:p

    Assessing Self-Repair on FPGAs with Biologically Realistic Astrocyte-Neuron Networks

    Get PDF
    This paper presents a hardware based implementation of a biologically-faithful astrocyte-based selfrepairing mechanism for Spiking Neural Networks. Spiking Astrocyte-neuron Networks (SANNs) are a new computing paradigm which capture the key mechanisms of how the human brain performs repairs. Using SANN in hardware affords the potential for realizing computing architecture that can self-repair. This paper demonstrates that Spiking Astrocyte Neural Network (SANN) in hardware have a resilience to significant levels of faults. The key novelty of the paper resides in implementing an SANN on FPGAs using fixed-point representation and demonstrating graceful performance degradation to different levels of injected faults via its self-repair capability. A fixed-point implementation of astrocyte, neurons and tripartite synapses are presented and compared against previous hardware floating-point and Matlab software implementations of SANN. All results are obtained from the SANN FPGA implementation and show how the reduced fixedpoint representation can maintain the biologically-realistic repair capability
    • …
    corecore