48 research outputs found

    Modelling and performability evaluation of Wireless Sensor Networks

    Get PDF
    This thesis presents generic analytical models of homogeneous clustered Wireless Sensor Networks (WSNs) with a centrally located Cluster Head (CH) coordinating cluster communication with the sink directly or through other intermediate nodes. The focus is to integrate performance and availability studies of WSNs in the presence of sensor nodes and channel failures and repair/replacement. The main purpose is to enhance improvement of WSN Quality of Service (QoS). Other research works also considered in this thesis include modelling of packet arrival distribution at the CH and intermediate nodes, and modelling of energy consumption at the sensor nodes. An investigation and critical analysis of wireless sensor network architectures, energy conservation techniques and QoS requirements are performed in order to improve performance and availability of the network. Existing techniques used for performance evaluation of single and multi-server systems with several operative states are investigated and analysed in details. To begin with, existing approaches for independent (pure) performance modelling are critically analysed with highlights on merits and drawbacks. Similarly, pure availability modelling approaches are also analysed. Considering that pure performance models tend to be too optimistic and pure availability models are too conservative, performability, which is the integration of performance and availability studies is used for the evaluation of the WSN models developed in this study. Two-dimensional Markov state space representations of the systems are used for performability modelling. Following critical analysis of the existing solution techniques, spectral expansion method and system of simultaneous linear equations are developed and used to solving the proposed models. To validate the results obtained with the two techniques, a discrete event simulation tool is explored. In this research, open queuing networks are used to model the behaviour of the CH when subjected to streams of traffic from cluster nodes in addition to dynamics of operating in the various states. The research begins with a model of a CH with an infinite queue capacity subject to failures and repair/replacement. The model is developed progressively to consider bounded queue capacity systems, channel failures and sleep scheduling mechanisms for performability evaluation of WSNs. Using the developed models, various performance measures of the considered system including mean queue length, throughput, response time and blocking probability are evaluated. Finally, energy models considering mean power consumption in each of the possible operative states is developed. The resulting models are in turn employed for the evaluation of energy saving for the proposed case study model. Numerical solutions and discussions are presented for all the queuing models developed. Simulation is also performed in order to validate the accuracy of the results obtained. In order to address issues of performance and availability of WSNs, current research present independent performance and availability studies. The concerns resulting from such studies have therefore remained unresolved over the years hence persistence poor system performance. The novelty of this research is a proposed integrated performance and availability modelling approach for WSNs meant to address challenges of independent studies. In addition, a novel methodology for modelling and evaluation of power consumption is also offered. Proposed model results provide remarkable improvement on system performance and availability in addition to providing tools for further optimisation studies. A significant power saving is also observed from the proposed model results. In order to improve QoS for WSN, it is possible to improve the proposed models by incorporating priority queuing in a mixed traffic environment. A model of multi-server system is also appropriate for addressing traffic routing. It is also possible to extend the proposed energy model to consider other sleep scheduling mechanisms other than On-demand proposed herein. Analysis and classification of possible arrival distribution of WSN packets for various application environments would be a great idea for enabling robust scientific research

    Availability modeling and evaluation of web-based services - A pragmatic approach

    Get PDF
    Cette thèse porte sur le développement d’une approche de modélisation pragmatique permettant aux concepteurs d’applications et systèmes mis en oeuvre sur le web d’évaluer la disponibilité du service fourni aux utilisateurs. Plusieurs sources d’indisponibilité du service sont prises en compte, en particulier i) les défaillances matérielles ou logicielles affectant les serveurs et ii) des dégradations de performance (surcharge des serveurs, temps de réponse trop long, etc.). Une approche hiérarchique multi-niveau basée sur une modélisation de type performabilité est proposée, combinant des chaînes de Markov et des modèles de files d’attente. Les principaux concepts et la faisabilité de cette approche sont illustrés à travers l’exemple d’une agence de voyage. Plusieurs modèles analytiques et études de sensibilité sont présentés en considérant différentes hypothèses concernant l’architecture, les stratégies de recouvrement, les fautes, les profils d’utilisateurs, et les caractéristiques du trafic. ABSTRACT : This thesis presents a pragmatic modeling approach allowing designers of web-based applications and systems to evaluate the service availability provided to the users. Multiple sources of service unavailability are taken into account, in particular i) hardware and software failures affecting the servers, and ii) performance degradation (overload of servers, very long response time, etc.). An hierarchical multi-level approach is proposed based on performability modeling, combining Markov chains and queueing models. The main concepts and the feasibility of this approach are illustrated using a web-based travel agency. Various analytical models and sensitivity studies are presented considering different assumptions with respect to the architectures, recovery strategies, faults, users profile and traffic characteristics

    Performance and reliability modelling of computing systems using spectral expansion

    Get PDF
    PhD ThesisThis thesis is concerned with the analytical modelling of computing and other discrete event systems, for steady state performance and dependability. That is carried out using a novel solution technique, known as the spectral expansion method. The type of problems considered, and the systems analysed, are represented by certain two-dimensional Markov-processes on finite or semi-infinite lattice strips. A sub set of these Markov processes are the Quasi-Birth-and-Death processes. These models are important because they have wide ranging applications in the design and analysis of modern communications, advanced computing systems, flexible manufacturing systems and in dependability modelling. Though the matrixgeometric method is the presently most popular method, in this area, it suffers from certain drawbacks, as illustrated in one of the chapters. Spectral expansion clearly rises above those limitations. This also, is shown with the aid of examples. The contributions of this thesis can be divided into two categories. They are, • The theoretical foundation of the spectral expansion method is laid. Stability analysis of these Markov processes is carried out. Efficient numerical solution algorithms are developed. A comparative study is performed to show that the spectral expansion algorithm has an edge over the matrix-geometric method, in computational efficiency, accuracy and ease of use. • The method is applied to several non-trivial and complicated modelling problems, occuring in computer and communication systems. Performance measures are evaluated and optimisation issues are addressed

    Survivability modeling for cyber-physical systems subject to data corruption

    Get PDF
    Cyber-physical critical infrastructures are created when traditional physical infrastructure is supplemented with advanced monitoring, control, computing, and communication capability. More intelligent decision support and improved efficacy, dependability, and security are expected. Quantitative models and evaluation methods are required for determining the extent to which a cyber-physical infrastructure improves on its physical predecessors. It is essential that these models reflect both cyber and physical aspects of operation and failure. In this dissertation, we propose quantitative models for dependability attributes, in particular, survivability, of cyber-physical systems. Any malfunction or security breach, whether cyber or physical, that causes the system operation to depart from specifications will affect these dependability attributes. Our focus is on data corruption, which compromises decision support -- the fundamental role played by cyber infrastructure. The first research contribution of this work is a Petri net model for information exchange in cyber-physical systems, which facilitates i) evaluation of the extent of data corruption at a given time, and ii) illuminates the service degradation caused by propagation of corrupt data through the cyber infrastructure. In the second research contribution, we propose metrics and an evaluation method for survivability, which captures the extent of functionality retained by a system after a disruptive event. We illustrate the application of our methods through case studies on smart grids, intelligent water distribution networks, and intelligent transportation systems. Data, cyber infrastructure, and intelligent control are part and parcel of nearly every critical infrastructure that underpins daily life in developed countries. Our work provides means for quantifying and predicting the service degradation caused when cyber infrastructure fails to serve its intended purpose. It can also serve as the foundation for efforts to fortify critical systems and mitigate inevitable failures --Abstract, page iii

    A Framework to Quantify Network Resilience and Survivability

    Get PDF
    The significance of resilient communication networks in the modern society is well established. Resilience and survivability mechanisms in current networks are limited and domain specific. Subsequently, the evaluation methods are either qualitative assessments or context-specific metrics. There is a need for rigorous quantitative evaluation of network resilience. We propose a service oriented framework to characterize resilience of networks to a number of faults and challenges at any abstraction level. This dissertation presents methods to quantify the operational state and the expected service of the network using functional metrics. We formalize resilience as transitions of the network state in a two-dimensional state space quantifying network characteristics, from which network service performance parameters can be derived. One dimension represents the network as normally operating, partially degraded, or severely degraded. The other dimension represents network service as acceptable, impaired, or unacceptable. Our goal is to initially understand how to characterize network resilience, and ultimately how to guide network design and engineering toward increased resilience. We apply the proposed framework to evaluate the resilience of the various topologies and routing protocols. Furthermore, we present several mechanisms to improve the resilience of the networks to various challenges
    corecore