17,871 research outputs found

    Paperfolding morphisms, planefilling curves, and fractal tiles

    Get PDF
    An interesting class of automatic sequences emerges from iterated paperfolding. The sequences generate curves in the plane with an almost periodic structure. We generalize the results obtained by Davis and Knuth on the self-avoiding and planefilling properties of these curves, giving simple geometric criteria for a complete classification. Finally, we show how the automatic structure of the sequences leads to self-similarity of the curves, which turns the planefilling curves in a scaling limit into fractal tiles. For some of these tiles we give a particularly simple formula for the Hausdorff dimension of their boundary.Comment: 32 pages, 23 figure

    Infinite Secret Sharing -- Examples

    Get PDF
    The motivation for extending secret sharing schemes to cases when either the set of players is infinite or the domain from which the secret and/or the shares are drawn is infinite or both, is similar to the case when switching to abstract probability spaces from classical combinatorial probability. It might shed new light on old problems, could connect seemingly unrelated problems, and unify diverse phenomena. Definitions equivalent in the finitary case could be very much different when switching to infinity, signifying their difference. The standard requirement that qualified subsets should be able to determine the secret has different interpretations in spite of the fact that, by assumption, all participants have infinite computing power. The requirement that unqualified subsets should have no, or limited information on the secret suggests that we also need some probability distribution. In the infinite case events with zero probability are not necessarily impossible, and we should decide whether bad events with zero probability are allowed or not. In this paper, rather than giving precise definitions, we enlist an abundance of hopefully interesting infinite secret sharing schemes. These schemes touch quite diverse areas of mathematics such as projective geometry, stochastic processes and Hilbert spaces. Nevertheless our main tools are from probability theory. The examples discussed here serve as foundation and illustration to the more theory oriented companion paper

    Limit shape and height fluctuations of random perfect matchings on square-hexagon lattices

    Get PDF
    We study asymptotics of perfect matchings on a large class of graphs called the contracting square-hexagon lattice, which is constructed row by row from either a row of a square grid or a row of a hexagonal lattice. We assign the graph periodic edge weights with period 1×n1\times n, and consider the probability measure of perfect matchings in which the probability of each configuration is proportional to the product of edge weights. We show that the partition function of perfect matchings on such a graph can be computed explicitly by a Schur function depending on the edge weights. By analyzing the asymptotics of the Schur function, we then prove the Law of Large Numbers (limit shape) and the Central Limit Theorem (convergence to the Gaussian free field) for the corresponding height functions. We also show that the distribution of certain type of dimers near the turning corner is the same as the eigenvalues of Gaussian Unitary Ensemble, and that in the scaling limit under the boundary condition that each segment of the bottom boundary grows linearly with respect the dimension of the graph, the frozen boundary is a cloud curve whose number of tangent points to the bottom boundary of the domain depends on the size of the period, as well as the number of segments along the bottom boundary

    Rigidity and Non-recurrence along Sequences

    Full text link
    Two properties of a dynamical system, rigidity and non-recurrence, are examined in detail. The ultimate aim is to characterize the sequences along which these properties do or do not occur for different classes of transformations. The main focus in this article is to characterize explicitly the structural properties of sequences which can be rigidity sequences or non-recurrent sequences for some weakly mixing dynamical system. For ergodic transformations generally and for weakly mixing transformations in particular there are both parallels and distinctions between the class of rigid sequences and the class of non-recurrent sequences. A variety of classes of sequences with various properties are considered showing the complicated and rich structure of rigid and non-recurrent sequences

    Precise BER Formulas for Asynchronous QPSK-Modulated DS-CDMA Systems Using Random Quaternary Spreading Over Rayleigh Channels

    No full text
    Precise bit-error-ratio (BER) analysis of an asynchronous QPSK-modulated direct-sequence code-division multiple-access system using random quaternary spreading sequences for transmission over Rayleigh channels is performed based on the characteristic-function approach. Its accuracy is verified by our numerical simulation results and also compared with those of the Gaussian approximation. Index Terms—Asynchronous direct-sequence code-division multiple-access (DS-CDMA), bit-error-ratio (BER), precise, QPSK, quarternary spreading, Rayleigh
    • 

    corecore