41,928 research outputs found

    Even Delta-Matroids and the Complexity of Planar Boolean CSPs

    Full text link
    The main result of this paper is a generalization of the classical blossom algorithm for finding perfect matchings. Our algorithm can efficiently solve Boolean CSPs where each variable appears in exactly two constraints (we call it edge CSP) and all constraints are even Δ\Delta-matroid relations (represented by lists of tuples). As a consequence of this, we settle the complexity classification of planar Boolean CSPs started by Dvorak and Kupec. Using a reduction to even Δ\Delta-matroids, we then extend the tractability result to larger classes of Δ\Delta-matroids that we call efficiently coverable. It properly includes classes that were known to be tractable before, namely co-independent, compact, local, linear and binary, with the following caveat: we represent Δ\Delta-matroids by lists of tuples, while the last two use a representation by matrices. Since an n×nn\times n matrix can represent exponentially many tuples, our tractability result is not strictly stronger than the known algorithm for linear and binary Δ\Delta-matroids.Comment: 33 pages, 9 figure

    Hybrid tractability of soft constraint problems

    Get PDF
    The constraint satisfaction problem (CSP) is a central generic problem in computer science and artificial intelligence: it provides a common framework for many theoretical problems as well as for many real-life applications. Soft constraint problems are a generalisation of the CSP which allow the user to model optimisation problems. Considerable effort has been made in identifying properties which ensure tractability in such problems. In this work, we initiate the study of hybrid tractability of soft constraint problems; that is, properties which guarantee tractability of the given soft constraint problem, but which do not depend only on the underlying structure of the instance (such as being tree-structured) or only on the types of soft constraints in the instance (such as submodularity). We present several novel hybrid classes of soft constraint problems, which include a machine scheduling problem, constraint problems of arbitrary arities with no overlapping nogoods, and the SoftAllDiff constraint with arbitrary unary soft constraints. An important tool in our investigation will be the notion of forbidden substructures.Comment: A full version of a CP'10 paper, 26 page

    On control of discrete-time state-dependent jump linear systems with probabilistic constraints: A receding horizon approach

    Full text link
    In this article, we consider a receding horizon control of discrete-time state-dependent jump linear systems, particular kind of stochastic switching systems, subject to possibly unbounded random disturbances and probabilistic state constraints. Due to a nature of the dynamical system and the constraints, we consider a one-step receding horizon. Using inverse cumulative distribution function, we convert the probabilistic state constraints to deterministic constraints, and obtain a tractable deterministic receding horizon control problem. We consider the receding control law to have a linear state-feedback and an admissible offset term. We ensure mean square boundedness of the state variable via solving linear matrix inequalities off-line, and solve the receding horizon control problem on-line with control offset terms. We illustrate the overall approach applied on a macroeconomic system

    Data-driven Inverse Optimization with Imperfect Information

    Full text link
    In data-driven inverse optimization an observer aims to learn the preferences of an agent who solves a parametric optimization problem depending on an exogenous signal. Thus, the observer seeks the agent's objective function that best explains a historical sequence of signals and corresponding optimal actions. We focus here on situations where the observer has imperfect information, that is, where the agent's true objective function is not contained in the search space of candidate objectives, where the agent suffers from bounded rationality or implementation errors, or where the observed signal-response pairs are corrupted by measurement noise. We formalize this inverse optimization problem as a distributionally robust program minimizing the worst-case risk that the {\em predicted} decision ({\em i.e.}, the decision implied by a particular candidate objective) differs from the agent's {\em actual} response to a random signal. We show that our framework offers rigorous out-of-sample guarantees for different loss functions used to measure prediction errors and that the emerging inverse optimization problems can be exactly reformulated as (or safely approximated by) tractable convex programs when a new suboptimality loss function is used. We show through extensive numerical tests that the proposed distributionally robust approach to inverse optimization attains often better out-of-sample performance than the state-of-the-art approaches

    Optimal and Robust Transmit Designs for MISO Channel Secrecy by Semidefinite Programming

    Full text link
    In recent years there has been growing interest in study of multi-antenna transmit designs for providing secure communication over the physical layer. This paper considers the scenario of an intended multi-input single-output channel overheard by multiple multi-antenna eavesdroppers. Specifically, we address the transmit covariance optimization for secrecy-rate maximization (SRM) of that scenario. The challenge of this problem is that it is a nonconvex optimization problem. This paper shows that the SRM problem can actually be solved in a convex and tractable fashion, by recasting the SRM problem as a semidefinite program (SDP). The SRM problem we solve is under the premise of perfect channel state information (CSI). This paper also deals with the imperfect CSI case. We consider a worst-case robust SRM formulation under spherical CSI uncertainties, and we develop an optimal solution to it, again via SDP. Moreover, our analysis reveals that transmit beamforming is generally the optimal transmit strategy for SRM of the considered scenario, for both the perfect and imperfect CSI cases. Simulation results are provided to illustrate the secrecy-rate performance gains of the proposed SDP solutions compared to some suboptimal transmit designs.Comment: 32 pages, 5 figures; to appear, IEEE Transactions on Signal Processing, 201
    • …
    corecore