3,335 research outputs found

    Perceptual organization in user-generated graph layouts

    Get PDF
    Many graph layout algorithms optimize visual characteristics to achieve useful representations. Implicitly, their goal is to create visual representations that are more intuitive to human observers. In this paper, we asked users to explicitly manipulate nodes in a network diagram to create layouts that they felt best captured the relationships in the data. This allowed us to measure organizational behavior directly, allowing us to evaluate the perceptual importance of particular visual features, such as edge crossings and edge-lengths uniformity. We also manipulated the interior structure of the node relationships by designing data sets that contained clusters, that is, sets of nodes that are strongly interconnected. By varying the degree to which these clusters were ldquomaskedrdquo by extraneous edges we were able to measure observerspsila sensitivity to the existence of clusters and how they revealed them in the network diagram. Based on these measurements we found that observers are able to recover cluster structure, that the distance between clusters is inversely related to the strength of the clustering, and that users exhibit the tendency to use edges to visually delineate perceptual groups. These results demonstrate the role of perceptual organization in representing graph data and provide concrete recommendations for graph layout algorithm

    Perceptual Organization in User-Generated Graph Layouts

    Full text link

    Node-attribute graph layout for small-world networks

    Get PDF
    Small-world networks are a very commonly occurring type of graph in the real-world, which exhibit a clustered structure that is not well represented by current graph layout algorithms. In many cases we also have information about the nodes in such graphs, which are typically depicted on the graph as node colour, shape or size. Here we demonstrate that these attributes can instead be used to layout the graph in high-dimensional data space. Then using a dimension reduction technique, targeted projection pursuit, the graph layout can be optimised for displaying clustering. The technique out-performs force-directed layout methods in cluster separation when applied to a sample, artificially generated, small-world network

    The Perception of Graph Properties In Graph Layouts

    Get PDF
    abstract: When looking at drawings of graphs, questions about graph density, community structures, local clustering and other graph properties may be of critical importance for analysis. While graph layout algorithms have focused on minimizing edge crossing, symmetry, and other such layout properties, there is not much known about how these algorithms relate to a user’s ability to perceive graph properties for a given graph layout. This study applies previously established methodologies for perceptual analysis to identify which graph drawing layout will help the user best perceive a particular graph property. A large scale (n = 588) crowdsourced experiment is conducted to investigate whether the perception of two graph properties (graph density and average local clustering coefficient) can be modeled using Weber’s law. Three graph layout algorithms from three representative classes (Force Directed - FD, Circular, and Multi-Dimensional Scaling - MDS) are studied, and the results of this experiment establish the precision of judgment for these graph layouts and properties. The findings demonstrate that the perception of graph density can be modeled with Weber’s law. Furthermore, the perception of the average clustering coefficient can be modeled as an inverse of Weber’s law, and the MDS layout showed a significantly different precision of judgment than the FD layout.Dissertation/ThesisMasters Thesis Computer Science 201

    Using adjacency matrices to lay out larger small-world networks

    Get PDF
    Many networks exhibit small-world properties. The structure of a small-world network is characterized by short average path lengths and high clustering coefficients. Few graph layout methods capture this structure well which limits their effectiveness and the utility of the visualization itself. Here we present an extension to our novel graphTPP layout method for laying out small-world networks using only their topological properties rather than their node attributes. The Watts–Strogatz model is used to generate a variety of graphs with a small-world network structure. Community detection algorithms are used to generate six different clusterings of the data. These clusterings, the adjacency matrix and edgelist are loaded into graphTPP and, through user interaction combined with linear projections of the adjacency matrix, graphTPP is able to produce a layout which visually separates these clusters. These layouts are compared to the layouts of two force-based techniques. graphTPP is able to clearly separate each of the communities into a spatially distinct area and the edge relationships between the clusters show the strength of their relationship. As a secondary contribution, an edge-grouping algorithm for graphTPP is demonstrated as a means to reduce visual clutter in the layout and reinforce the display of the strength of the relationship between two communities
    corecore