1,971 research outputs found

    Uncertainty quantification of coal seam gas production prediction using Polynomial Chaos

    Full text link
    A surrogate model approximates a computationally expensive solver. Polynomial Chaos is a method to construct surrogate models by summing combinations of carefully chosen polynomials. The polynomials are chosen to respect the probability distributions of the uncertain input variables (parameters); this allows for both uncertainty quantification and global sensitivity analysis. In this paper we apply these techniques to a commercial solver for the estimation of peak gas rate and cumulative gas extraction from a coal seam gas well. The polynomial expansion is shown to honour the underlying geophysics with low error when compared to a much more complex and computationally slower commercial solver. We make use of advanced numerical integration techniques to achieve this accuracy using relatively small amounts of training data

    Uncertainty Aware Mapping of Embedded Systems for Reliability, Performance, and Energy

    Get PDF
    Due to technology downscaling, embedded systems have increased in complexity and heterogeneity. The increasingly large process, voltage, and temperature variations negatively affect the design and optimization process of these systems. These factors contribute to increased uncertainties that in turn undermine the accuracy and effectiveness of traditional design approaches. In this thesis, we formulate the problem of uncertainty aware mapping for multicore embedded system platforms as a multi-objective optimization problem. We present a solution to this problem that integrates uncertainty models as a new design methodology constructed with Monte Carlo and evolutionary algorithms. The solution is uncertainty aware because it is able to model uncertainties in design parameters and to identify robust design points that limit the influence of these uncertainties onto the objective functions. The proposed design methodology is implemented as a tool that can generate the robust Pareto frontier in the objective space formed by reliability, performance, and energy consumption

    Budgeted Reinforcement Learning in Continuous State Space

    Get PDF
    A Budgeted Markov Decision Process (BMDP) is an extension of a Markov Decision Process to critical applications requiring safety constraints. It relies on a notion of risk implemented in the shape of a cost signal constrained to lie below an - adjustable - threshold. So far, BMDPs could only be solved in the case of finite state spaces with known dynamics. This work extends the state-of-the-art to continuous spaces environments and unknown dynamics. We show that the solution to a BMDP is a fixed point of a novel Budgeted Bellman Optimality operator. This observation allows us to introduce natural extensions of Deep Reinforcement Learning algorithms to address large-scale BMDPs. We validate our approach on two simulated applications: spoken dialogue and autonomous driving.Comment: N. Carrara and E. Leurent have equally contribute

    Risk-Sensitive Reinforcement Learning: A Constrained Optimization Viewpoint

    Full text link
    The classic objective in a reinforcement learning (RL) problem is to find a policy that minimizes, in expectation, a long-run objective such as the infinite-horizon discounted or long-run average cost. In many practical applications, optimizing the expected value alone is not sufficient, and it may be necessary to include a risk measure in the optimization process, either as the objective or as a constraint. Various risk measures have been proposed in the literature, e.g., mean-variance tradeoff, exponential utility, the percentile performance, value at risk, conditional value at risk, prospect theory and its later enhancement, cumulative prospect theory. In this article, we focus on the combination of risk criteria and reinforcement learning in a constrained optimization framework, i.e., a setting where the goal to find a policy that optimizes the usual objective of infinite-horizon discounted/average cost, while ensuring that an explicit risk constraint is satisfied. We introduce the risk-constrained RL framework, cover popular risk measures based on variance, conditional value-at-risk and cumulative prospect theory, and present a template for a risk-sensitive RL algorithm. We survey some of our recent work on this topic, covering problems encompassing discounted cost, average cost, and stochastic shortest path settings, together with the aforementioned risk measures in a constrained framework. This non-exhaustive survey is aimed at giving a flavor of the challenges involved in solving a risk-sensitive RL problem, and outlining some potential future research directions
    corecore