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ABSTRACT

UNCERTAINTY AWARE MAPPING OF EMBEDDED SYSTEMS FOR
RELIABILITY, PERFORMANCE, AND ENERGY

Wenkai Guan
Marquette University

Due to technology downscaling, embedded systems have increased in com-
plexity and heterogeneity. Increasingly large process, voltage, and temperature
variations negatively affect the design and optimization process of these systems.
These factors contribute to increased uncertainties that in turn undermine the
accuracy and effectiveness of traditional design approaches. In this thesis, we
formulate the problem of uncertainty aware mapping for multicore embedded sys-
tem platforms as a multi-objective optimization problem. We present a solution
to this problem that integrates uncertainty models as a new design methodology
constructed with Monte Carlo and evolutionary algorithms. The solution is un-
certainty aware because it is able to model uncertainties in design parameters and
to identify robust design points that limit the influence of these uncertainties onto
the objective functions. The proposed design methodology is implemented as a
tool that can generate the robust Pareto frontier in the objective space formed by
reliability, performance, and energy consumption.

Keyword: Embedded systems; Uncertainties; Robust mapping; Reliabil-
ity; Performance; Energy consumption.
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CHAPTER 1

Problem Statement, Objective and Contributions

1.1 Problem Statement

Today, embedded systems can be found in many application domains, ranging

from safety and mission-critical systems in avionics, automotive, nuclear plant

control, and medical devices for multimedia, gaming, and communications. Future

embedded systems will be increasingly complex and will contain tens to hundreds

of heterogeneous cores. Due to continuous technology downscaling of fabrication

processes, the design of embedded systems will face new challenges including: (1)

increased design uncertainties due to variations in fabrication processes, supply

voltages, and temperatures [1; 2]; (2) poor reliability and performance degradation

caused by elevated rates of faults and increasingly adverse aging mechanisms [3;

4]; and (3) increased design complexity caused by heterogeneity of the hardware

platform, diversity in hardware and software components, and new communication

infrastructures such as networks-on-chip [5; 6].

In this thesis, we assume increased design uncertainties due to variations

in fabrication processes, supply voltages, and temperatures, which have been dis-

cussed and modeled in recent literature [7; 8; 9]. Factors like these make for

various design parameters or variables not to be deterministic anymore; instead,

they become less precisely known or more uncertain, and many researchers started
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Figure 1.1: Conventional design flow for embedded systems. In this thesis, we
focus on the problem of mapping. Dashed arrows labeled 1,2,3 indicate possible
routes to go back in the design flow to change design decisions in order to improve
the design.

to model them statistically rather than as fixed deterministic values. This uncer-

tainty increases as we go to deeper nanometer technology nodes.

The traditional design process of embedded systems involves an automated

design space exploration (DSE). DSE is an iterative process built mainly around

the problem of mapping and scheduling of the application onto the architecture

platform. The process typically follows a “Y-chart” design flow as illustrated in

Fig. 1.1. During this DSE, the solutions generated and evaluated are as good and

accurate (i.e., close to what they would be in reality in terms of different attributes

such as reliability, execution time, and power consumption) as the accuracy of the

model-based estimations that are employed. These estimations, in turn, rely on

the accuracy of parameters that are used in the estimation models. If these design

parameters become uncertain − increasingly so due to the reasons listed earlier

− then, the optimization path during the design space exploration may become
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Figure 1.2: (a) Pareto frontier surface in traditional embedded systems design. (b)
Uncertain Pareto surface where a design point degenerates into multiple solutions.

uncertain and diverge from the path towards the true optimal design solution.

In this context, it becomes desirable to be able to quantify such divergence

and to develop a design methodology capable of finding design solutions that are

the most likely, with a certain confidence, to be robust against uncertainties. These

design solutions represent points on the Pareto frontier generated during the design

space exploration, an example of which is shown in Fig. 1.2.a. However, when one

considers uncertainties in the design process, the traditional Pareto surface in the

solution space becomes uncertain as shown in Fig. 1.2.b. This is the problem

addressed in this thesis. As it will be described next, we propose a solution to the

problem of mapping under uncertainties.

1.2 Objectives

In this thesis, we propose a design method that is able to identify robust design

points on the uncertain Pareto frontier. The proposed method models and handles

uncertainties directly. This method is implemented as a computer program (i.e., a
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design tool) that integrates uncertainty models and algorithms to solve the prob-

lem of mapping for hardware/software (HW/SW) design of embedded systems.

These algorithms are capable of performing robust multi-objective optimization

to effectively balance reliability, performance, and energy consumption. This tool

will help embedded systems designers to identify the best design solution points

on the uncertain surface from Fig. 1.2.b under assumed levels of uncertainties.

This tool chooses as the best final solution the one closest to the “origin” of the

3D objective space from Fig. 1.2.b. The chosen solution represents a compromise

among all three objectives. However, the designer can pick a different solution. For

example, if performance is the most important for some application, then, a design

point with the best performance can be selected, but likely with worse reliability

and power consumption.

1.3 Contributions

This thesis proposes a solution to the problem of mapping for embedded systems

under uncertainties. To this end, the main contributions of this thesis include:

• A solution to the mapping problem for general purpose embedded systems

while considering simultaneously reliability, execution time, and energy con-

sumption. The solution is implemented as a design space exploration frame-

work tool called DESUU (Design of Embedded Systems Under Uncertainty),

which uses the Non-dominated Sorting Genetic Algorithm (NSGA-II).

• Models of uncertainty in design parameters. We investigate different levels

of injected uncertainty and provide simulation results.
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• A novel uncertainty aware analysis technique with consideration of both un-

certainty correlations and different levels of uncertainty. The proposed un-

certainty aware analysis technique is implemented as a framework tool called

DESUU-II.

• Simulation results that demonstrate the advantages of the proposed tech-

niques and solutions. In this thesis, we analyze an architecture platform

constructed with both hardware and software components.

To the best of our knowledge, this work is the first to address the prob-

lem of multi-objective (reliability, performance, and energy) mapping for general

purpose embedded systems under uncertainties.

1.4 Thesis Organization

The organization of this thesis is depicted in Fig. 1.3. Chapter 2 provides back-

ground information. It starts with the overview of Electronic System-Level (ESL)

design and the principle of Design Space Exploration (DSE). Then, it continues

with a more detailed discussion of recent work on uncertainty aware and reliabil-

ity oriented embedded systems design. Chapter 3 presents a description of the

Anti-lock Brake System (ABS) application testcase, which is used in the motivat-

ing discussion for the proposed method. In Chapter 4, we present the uncertainty

models. Then, we present the proposed method for solving the problem of mapping

in embedded systems design under uncertainty. Chapter 5 presents the compari-

son simulation experiments with the traditional method. Chapter 6 presents the

simulation experiments of the proposed robust method, as well as a computational
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complexity analysis to study the scalability of the implemented tool. Finally,

Chapter 7 concludes the thesis and discusses future work ideas.
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CHAPTER 2

Background

In this chapter, we first introduce an overview of Electronic System-Level (ESL)

design, which points out the level of abstraction for our target problem. Then,

we introduce the Design Space Exploration (DSE) and the main challenges in this

domain. In the third section, we review traditional classes of widely-used reliability

evaluation approaches for embedded systems. In the fourth section, we introduce

the basic techniques that are used for uncertainty aware optimization of embedded

systems. Finally, we review the previous work related to the problem of mapping of

embedded systems with the design objectives that include reliability, performance,

and energy consumption.

2.1 Electronic System-Level Design

The term hardware/software codesign appeared in the early 1990s to describe the

confluence of hardware and software in Integrated Circuit (IC) design [10; 11]. Due

to technology downscaling, the ICs have increased in complexity, time-to-market

pressure, and development costs, the abstraction level at which the systems under

design are expressed must be solved [12; 13]. The term Electronic System-Level

(ESL) design, at which interfacing and reusing designs across different abstraction

levels are facilitated, is resulted by these challenges. Hardware/software codesign

at ESL reduces the time-to-market and design risks through the simultaneous
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analysis, exploration, and design of hardware and software [14]. Nowadays, the

major challenges in the design of electronic systems as stated in [15; 16] are:

• Allocation or architecture synthesis: It is the process of selecting a set of sys-

tem resources such as processors, hardware intellectual property (IP) blocks,

and their interconnects that compose the system architecture.

• Mapping: It is the process of mapping system functionality using tasks,

processes, functions, and so on, onto the system architecture.

• Scheduling: It is the process of ordering the execution of functions, memory

accesses, and communications on individual resources.

The set of all permutations of allocations, mapping, and scheduling deci-

sions determines the design space of embedded systems.

2.2 Design Space Exploration

The task of system synthesis is defined as the allocation of resources from the archi-

tectural model, mapping of the tasks onto the allocated resources, and scheduling

the execution order of the tasks [17]. The feasible design solutions are represented

by the permutations of allocations, mappings, and scheduling decisions that satisfy

the given design constraints. The process of finding these feasible design solutions

is called Design Space Exploration (DSE). Regarding a large number of design

alternatives, such as the type and the number of processors, memory units, and

interconnections, the design space is usually extremely huge, prohibiting manual

search. In addition, the design objectives, such as reliability, performance, and
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energy consumption, of DSE are usually complex and related to each other, in-

creasing the DSE complexity. Therefore, it is important to have a systematic DSE

that is automated as much as possible at the early stage of embedded system de-

sign. Such automatic DSE is an iterative process built mainly around the problem

of mapping and scheduling of the application tasks onto the architecture platform.

For instance, Fig. 1.1 in Chapter 1 illustrates the “Y-chart” design flow. The main

challenges in the DSE domain are:

• Exploration techniques: DSE requires good exploration algorithms which are

suitable for large discrete search spaces with a large number of alternative

solutions and multiple design objectives. For instance, in this thesis, we inves-

tigate the performance of an evolutionary algorithm to find design solutions

for DSE with multiple design objectives.

• Evaluation of design solution points: How to model and evaluate the flexibly

and efficiency of different design objectives is another challenging problem.

For example, in this thesis, we customize the evaluation function with a

Monte Carlo simulation technique, to evaluate the design solution points

with injected levels of uncertainty in design parameters.

2.3 Reliability Evaluation of Embedded Systems

Reliability has been a primary design objective of DSE of embedded systems. Re-

search into reliability evaluation of architecture platform has led to a variety of

models, each of which focuses on a specific level of abstraction or system charac-

teristics. This section reviews essential classes of widely-used and well-accepted
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reliability evaluation models for embedded systems.

2.3.1 Combinatorial Models

Combinatorial models usually decompose the complex system into functional en-

tities, such as units or subsystems, for reliability evaluation. Some of the classic

combinatorial models are Reliability Block Diagram (RBD) and Fault Trees (FT).

Reliability Block Diagram

RBD is a reliability modeling approach in reliability evaluation of embedded sys-

tems architecture platform. An RBD models the structural relationship of how

the sub-system failure and the components failure combine to lead to system fail-

ure. When a RBD approach is used, the system is decomposed into Reliability

Blocks that have particular failure characteristics. The connections between the

reliability blocks construct the path of the system behavior. If it is possible to find

at least one way from the start of the RBD to a particular component through

operational components, the particular component is considered functional. These

components can be organized in series, parallel or other structure. An organization

of a set of blocks of components that are configured in parallel within the blocks

is called Series-Parallel (SP) system [18]. In SP systems, we call subsystem for a

component with its parallel redundancies, and we compute the reliability of the

subsystems independently from the other parts of the system. Therefore, in SP

RBDs, the overall system becomes a series of connected subsystems whose reli-

ability is known. Hence, the overall reliability of the system can be analytically
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computed under SP assumption. RBD is a reliability modeling approach in relia-

bility evaluation of embedded systems architecture platform. An RBD models the

structural relationship of how the sub-system failure and the components failure

combine to lead to system failure. When a RBD approach is used, the system

is decomposed into Reliability Blocks that have particular failure characteristics.

The connections between the reliability blocks construct the path of the system

behavior. If it is possible to find at least one way from the start of the RBD to a

particular component through operational components, the particular component

is considered functional. These components can be organized in series, parallel or

other structure. An organization of a set of blocks of components that are config-

ured in parallel within the blocks is called Series-Parallel (SP) system [18]. In SP

systems, we call subsystem for a component with its parallel redundancies, and we

compute the reliability of the subsystems independently from the other parts of the

system. Therefore, in SP RBDs, the overall system becomes a series of connected

subsystems whose reliability is known. Hence, the overall reliability of the system

can be analytically computed under SP assumption.

Fault Trees

FT is another reliability evaluation approach that is widely used in the literature

[19; 20]. FT construction is a deductive, top-down process where the failure events

are organized into a tree structure. In the analysis of the reliability of the target

architecture platform, the effects of lower-level faults and events are systematically

propagated by quantifying the reliability of a higher-level abstraction. Different

types of FTs, such as Component Fault Trees (CFT) [21] and State Event Fault
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Trees (SEFT) [22], are used in the reliability evaluation in different contexts and

abstraction levels.

2.3.2 Markov Model

Markov modeling is used for analyzing complex probabilistic systems taking into

consideration of repair mechanisms and the order of events in the system. A

Markov model is constructed by a set of equations that describe the probabilis-

tic transitions among the states and initialization probability distributions of the

starting states. One important property of a Markov model is that the current

state transitions are independent of the history of the state transitions, i.e. tran-

sition from state i to state j depends only on the state i, and is independent of

the history that led to state i. This property indicates that the complete history

in Markov model is summarized in the current state of the process.

Discrete Time Markov Chains (DTMC)

DTMCs are finite state machine formalisms with probabilities of transitions be-

tween states that are widely used in modeling discrete-time dynamic systems. A

DTMC can be applied to represent all the relevant states of software execution

and the probability to transfer from one state to another. Among all the states,

the starting state is called the initial state and one or more among the other states

represent successful completion of execution or occurrence of a failure. The formal

definition of a DTMC can be expressed as a tuple (S, s0, P, L) where,

• S is a finite set of states
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• s0 is the initial state

• P : S × S → [0, 1] is the transition probability matrix

• L : S → 2AP is the labeling function

DTMCs can be used to model both a single transition system and the

synchronous composition of many systems. The labeling function describes the

mapping process from the states to the set of atomic propositions (AP ). P (s, s′)

denotes the probability of making a transition from state s to the states s′. In a

DTMC,
∑

s′∈S P (s, s′) = 1 for all state s ∈ S, which implies that even terminating

states should have an outgoing transition to itself with a probability 1. When a

system is modeled as a DTMC, the execution is represented by a path through the

DTMC.

2.4 Uncertainty Aware Optimization of Embedded Systems

Uncertainty aware optimization methods for embedded systems have been pro-

posed only recently. The work in [23; 24] are the latest attempts to address the

problem of uncertainty in reliability evaluation. Both [23; 24] use a Monte Carlo

Simulation techniques to handle uncertainty in design parameters, and evolution-

ary algorithms for optimization of reliability.

2.4.1 Monte Carlo (MC) Simulation

The MC simulation takes samples from the input parameters of the architectural

elements, which vary in the probability distribution. Any sampled parameter of
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an architectural element may be contributed to more than one parameter in the

evaluation model. Every time a sample is taken from an input distribution, all

model parameters dependent on this parameter are updated. The steps that are

involved in the MC simulation are as follows:

• Sample: A sample is taken from the probability distributions of each param-

eter. We draw a sample from these distributions as follows:

(a) Obtain the Cumulative Distribution Function (CDF) of the parameter

from its PDF.

(b) Generate a random number x from the uniform distribution (0, 1).

(c) Obtain CDF−1(x).

• Update: From the samples obtained from the input distributions, the numeri-

cal values for the evaluation model parameters are updated. Since more than

one parameter of the probabilistic model may refer to a setting in the archi-

tecture, a subscription mechanism is proposed. Parameters of the evaluation

model are subscribed to uncertain parameters in the architecture platform.

When we sample a parameter from the input distribution for a specific ar-

chitectural setting, all the subscribing model parameters are updated and

recomputed.

• Compute: Analytically simulate the model and obtain the computed results.
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2.4.2 Evolutionary Algorithms for Optimization

For the design of embedded systems with multiple conflicting design objectives,

one can provide either a weight function to combine multiple objectives or a multi-

objective exploration technique to scan the search space simultaneously. The for-

mer method needs to choose the proper weight coefficients for the optimization

function and results in a single optimized solution. In contrast, the later method

determines not only one optimized solution but rather a set of Pareto frontiers.

Therefore, population-based methods, such as evolutionary algorithms, have re-

ceived a lot of attention in this area. Among them, the Non-dominated Sorting

Genetic Algorithm (NSGA)-II has been shown to perform efficiently for system-

level synthesis.

For the optimization process, NSGA-II uses an initial population of chro-

mosomes consisting of alleles. Each allele in a chromosome represents a mapping of

a task from the application to a component in the architecture platform. The ini-

tial population of deployment architectures is generated at random. The crossover

and mutation operators are used to create new chromosomes by combining exist-

ing ones or changing the mapping of a single task to another component on the

architecture platform. Then, all the chromosomes are evaluated, according to the

evaluation function in NSGA-II, and selected to form the new parents’ population.

Details about the NSGA-II will be discussed in Chapter 4.
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2.5 Previous Work

In this thesis, we focus on the problem of mapping of embedded applications to

multicore systems-on-chip (SoCs) platforms with consideration of specified levels of

uncertainty and with the primary objectives that include reliability, performance,

and energy consumption. The problem of HW/SW co-design for embedded systems

has been studied extensively in the past.

It was formulated as multi-objective optimization in studies of system-

level synthesis [25; 26; 27; 28] as well as of platform configuration [29]. The former

focuses on solving the problem of mapping a task-level application onto a hetero-

geneous architecture constructed with both hardware and software components.

The latter includes parameter tuning for the platform architecture and its configu-

ration space exploration. The work in [25] solves this multi-objective optimization

problem by using multi-objective evolutionary algorithms (MOEAs). Simulation

results showed that MOEAs provide the designer with a set of solutions in a rea-

sonable amount of time. The authors of [27] apply a divide-and-conquer approach

to solve the multi-objective mapping problem. The study in [26] focuses on evalu-

ating the performance of various state-of-the-art task mapping heuristics, both at

design time and at runtime, by using the rSesame framework on a reconfigurable

architecture. The work in [28] proposes a hybrid task mapping algorithm, which

combines a static mapping exploration and a dynamic mapping optimization for

heterogeneous MPSoCs, and achieves an overall improvement of system efficiency.

However, that work only considers performance as the main design objective. The

study in [29] focuses on exploring architectural parameters, such as processor type,
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memory subsystem, and bus communication, that make up the hardware kernel

of a parameterized SoC platform for the design of embedded systems with the

consideration of power consumption and performance constraints.

Several previous solutions to the mapping problem have been integrated

into computer-aided design (CAD) automation tools. For instance, these tools

include architectural exploration environments, such as those described in the fol-

lowing paragraphs:

Metropolis [30] is an integrated electronic system design environment for

simulation, formal analysis, and synthesis of embedded systems. It is based on the

metamodel concept, which can support not only functional capture and analysis

but also architecture description and the mapping of functionality to architectural

elements. The Metropolis metamodel’s formal semantics allow embedding compu-

tation models into a rigorous framework that favors design reuse and design chain

support. It was used for applications from automotive to wireless communication

and video applications.

MESH [31] is a performance modeling environment which captures

software-on-hardware in concurrent, layered thread relationships in SoC designs.

It provides a primary interface between functional and instruction set simulator

(ISS) models and allows for early and high-level performance modeling without

the need for the knowledge of ISS or complete software models. It also efficiently

tracks heterogeneous design trade-offs while considering design objectives that in-

clude performance. However, as an interface between the high-level functional

model and the low-level ISS model, it has an increased development complexity.
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SCE [32] is a system-level design framework, which uses the SpecC speci-

fication language. It follows a specify-explore-refine methodology, with support for

heterogeneous platforms constructed of both hardware and software components,

IP blocks, and buses for communication. It is an automated design flow with a

toolchain from specification down to hardware/software implementation. It allows

rapid and extensive design space exploration and thus can find out an optimal

implementation quickly.

Artemix [33] is a workbench that provides modeling and simulation meth-

ods and tools for evaluating performance efficiently and for exploring design space

of heterogeneous embedded multimedia systems. By transforming dataflow ac-

tors in the intermediate mapping layer, and transforming coarse-grained applica-

tion events into finer grained architecture events, it can bridge the abstraction

gap between application and architecture models. It is composed of mainly two

system-level modeling and simulation environments, which make it powerful but

complicated.

ESPAM [34] aims at automating multiprocessor system design, program-

ming, and implementation. It transfers the design specification and programming

from the Register Transfer Level (RTL) and C level to a higher level of abstraction

of the system level. When it is applied, it first specifies a multiprocessor system

at a high abstraction level. Then, it refines this specification down to a real im-

plementation. ESPAM reduces the design time beginning from the system-level

specification and going down to complete implementation.

SHARA [35] is a scenario-based hierarchical run-time adaptive resource
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allocation framework. This framework integrates a hierarchical resource manage-

ment mechanism, where a global resource manager controls the workload distribu-

tion among tiles and the local resource manager optimizes the resource allocation

for the assigned applications to reduce the complexity of the task mapping problem

at runtime. It also includes a hybrid approach, which combines the design-time

optimization of DSE with run-time mapping re-optimization, for mapping appli-

cations to the underlying resources, and thus handle the complex and dynamic

application workloads for MPSoC systems. In addition, SHARA includes a self-

adaptive scheduler for adaptivity throttling. SHARA can support large numbers of

workload scenarios with near-optimal mappings. It can also adapt its behavior ac-

cording to the user behavior. However, it does not consider the power consumption

and reliability or uncertainty as design objectives.

These tools facilitate flexible system-level performance evaluation by pro-

viding support for mapping a behavioral application specification to an architec-

ture specification. However, most of these tools have not considered reliability

or uncertainty. Reliability has become a primary design concern in optimization

techniques of embedded systems. The review in [36] discussed several studies that

focused on architectures constructed only with software components. The au-

thors pointed out that, at that time, only a few researchers directly considered

uncertainty and/or reliability as design objectives. The study in [37] formulates a

framework to evaluate the system reliability under uncertainty. The work in [38]

introduces a simulation-based method which uses Discrete Time Markov Chains

(DTMC) and probabilistic model checking to accommodate a diverse set of param-

eter range distribution when measuring the uncertainty. The work in [39] proposes
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to automatically incorporate Imperfect Fault Coverage (IFC) into the reliability

model, in order to accurately analyze the reliability of complex systems includ-

ing nested redundancies and repeated components. Their approach can evaluate

system reliability more accurately at reasonable computation time and memory

overhead compared to previous IFC-aware approaches.

Reliability has become a primary design concern also in networks-on-chip

(NoC) and multicore processors as well. As such, it started to be considered along-

side more traditional design objectives like performance and energy consumption.

For example, the study in [40] presented a run-time resource manager that finds

the most effective mapping of tasks on the processing nodes to optimize system re-

liability while leveraging on performance and communication energy in NoC-based

many-core architectures. Similarly, the study in [41] presented a neural network

based reliability estimator and thread migration for dynamic reliability manage-

ment for chip multiprocessors. Furthermore, the work in [42] investigates the use

of dynamic voltage and frequency scaling (DVFS) as a mechanism for dynamic

reliability management for chip multiprocessors.

However, the majority of the previous work did not consider uncertainty

or reliability in the design process of embedded systems. The studies in [23; 24] are

recent attempts to capture uncertainty in the process of optimization of embedded

systems. The work in [23] proposed a novel robust optimization approach that deals

with uncertain parameters during the design phase of software-intense systems.

But, reliability was the only objective considered during the optimization process.

In addition, the authors only focused on architecture platforms constructed with
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software components. The study in [24] proposed an uncertainty-aware reliability

model for the design space exploration of embedded systems. But, similarly to the

study in [23], reliability was considered as the only uncertain parameter. In addi-

tion, the authors made an unstated assumption that the components are affected

by one uncertainty source (e.g., one correlation group). In fact, the components

are usually affected by multiple uncertainty sources with different levels of uncer-

tainty, and the uncertainty in design parameters is the combination of the influence

of different uncertainty sources. For instance, the failure rates of the components

of an embedded system from the automotive application domainshich are located

close to both the engine and the cooling fan can be affected by both the engine

heat and the cool air from the fan. Moreover, the authors did not explore the

impact of different levels of uncertainty on the design parameters.

Therefore, while these works focused on formulating reliability estimation

techniques with consideration of uncertainties, in this thesis, we take that further

and integrate such techniques in a more comprehensive approach that also con-

siders performance and energy consumption, not only reliability. In addition, we

investigate different levels of uncertainties and analyze both uncertainty correlation

and different levels of uncertainty.

2.6 Summary

This chapter presented the background and the related work for uncertainty aware

mapping of embedded systems for reliability, performance, and energy consump-

tion. In next chapter, we will introduce the motivation of this thesis.
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CHAPTER 3

Motivating Example

In this chapter, we introduce the Anti-lock Brake System (ABS) application test-

case. The ABS testcase study represents a specific problem from the automotive

industry. It maps the components of the ABS application to the heterogeneous

architecture of the embedded system. We use it to present the motivation for the

work proposed in this thesis. We use both the traditional point-estimate and the

proposed robust-estimate approaches to evaluate the system reliability, execution

time, and power consumption of the ABS testcase. Simulation results show that

there is a significant difference between these two estimation approaches. There-

fore, we conclude that a new design method, which is capable of modeling uncer-

tainty to provide reliable and robust design solutions, is needed for the design of

future high performance heterogeneous embedded systems.

3.1 ABS Testcase Study

The ABS is designed to optimize the braking effectiveness in order to keep wheels

rolling on the road and to reduce the breaking distance [43; 44]. It is important

for the car control as it is used to prevent the lockup of the wheels during the

braking action [45]. The block diagram of a typical ABS is shown in Fig. 3.1.

It includes the blocks labeled from 0 to 7, as components that interact as shown

by the arrows. The block labeled 0 is called the ABS main unit. Its role is to
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Figure 3.1: ABS software components and interactions.

prevent skidding and to help drivers control the wheels on wet and slippery roads.

Block 1 is the Emergency Stop Detector, whose role is to maximize the brake

pressure if it detects any sudden pedal action associated with an emergency stop.

Block 2 is the Brake Pedal Sensor, whose role is to read from the pedal sensor

and send the data through to Block 1. Block 3 is the Load Compensator, which

is used to improve the braking performance by compensating uneven braking due

to the heavy or unbalanced loading of the vehicle [46]. Blocks 4 to 7 represent

the transceiver software components dedicated to each wheel, which communicate

with sensors and brake actuators. More specific, WAC stands for wheel actuator

controllers and WSR represents wheel sensor readers.
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Figure 3.2: Motivation of this thesis.

3.2 Motivation

If we used traditional design methods to map the ABS testcase described above,

then, in such methods we would work with point-estimate parameters. However,

these parameters can become uncertain as discussed in Chapter 1. If design pa-

rameters become uncertain (e.g., the failure rate of CPUs who are located close

to the engine or the cooling fan can be significantly affected by the different tem-

peratures), then, the design space exploration to solve the mapping problem may

lead to suboptimal solutions. In building the motivation for this thesis, we ask

ourselves two questions, as illustrated hierarchically in Fig. 3.2:

1. Why do we need to consider uncertainty in design parameters of embed-

ded systems? In addition, why do we need to consider uncertainty in the

estimation of reliability, performance, and energy consumption?

2. Why do we need to consider both different levels of uncertainty and uncer-

tainty correlations?
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Figure 3.4: Histogram of execution time. All histograms are obtained using 105

parameter samples during the estimation process.

3.2.1 Answering Question 1

In answering the first question, we used the proposed mapping algorithm described

later in this thesis to map the ABS testcase to a platform architecture also de-

scribed later in Chapter 6. The proposed method has the ability to model uncer-

tainty in design parameters. We use it to estimate the reliability, which we consider
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Figure 3.5: Histogram of energy consumption. All histograms are obtained using
105 parameter samples during the estimation process.

to be affected by uncertainty. Details about the estimations under uncertainty for

reliability, performance, and power consumption will be described later in Chapter

4.

In order to report the difference obtained when considering uncertainty in

design parameters of embedded systems, we implement both the robust-estimate

approach and the point-estimate approach in our framework which will be dis-

cussed later in Chapter 5. In this experiment, we use the same given mapping

(e.g., round-robin mapping) when estimating the design objectives such as system

reliability, execution time, and energy consumption through both approaches. The

reliability, execution time, and energy consumption of the system as estimated by

our tool are shown in Fig. 3.3, Fig. 3.4, Fig. 3.5. This figure also shows the

estimated reliability, execution time, and energy consumption when design pa-

rameters are estimated using the traditional point-estimate approach. Fig. 3.3

depicts the histogram of reliability obtained using 105 samples during the Monte



27

Carlo estimation. It can be seen that the mean value of the estimated reliability is

0.9424, while the point-estimate reliability is 0.9459. This represents a 13.4% dif-

ference between these two estimations. From this experiment, it can be concluded

that when design parameters are subject to uncertainty, estimation of reliability

with the traditional point-estimate approach may be significantly inaccurate. In

other words, if we use traditional point-estimate values for reliability, we would

overestimate it. This may lead to suboptimal solutions.

Similarly, if we consider uncertainty in design parameters that affect per-

formance and energy consumption, the proposed tool provides the estimations

shown in Fig. 3.4 and Fig. 3.5 Again, we can see significant differences between

these estimations and the estimated values with the traditional approach. Fig.

3.4 shows that the mean value of the estimated execution time is 0.1348s, while

the execution time of the point-estimate approach is 0.1215s. This represents a

9.5% difference. Similar results are found for the estimation of energy consump-

tion. The energy consumption estimated with the proposed tool is 809.9774uJ ,

while the point-estimate is 615.51uJ . This represents a 29.9% difference between

these two estimation approaches. Therefore, in answering the question why to

consider uncertainty in design parameters, we find out that there are significant

differences between the traditional point-estimate and the robust-estimate of reli-

ability, execution time, and energy consumption estimations. Large differences in

these estimations may lead to suboptimal design solutions when design parameters

are affected by uncertainties.

To address that, the next chapter proposes a design method capable of
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Figure 3.6: Histogram of system reliability for LOU and LOU-UC techniques.

robust multi-objective optimization. This method is implemented as a computer-

aided design (CAD) automation tool constructed with Monte Carlo and evolution-

ary algorithms, which can overcome the issues described earlier.

3.2.2 Answering Question 2

Existing uncertainty-aware analysis techniques consider either only Uncertainty

Correlations (UC) or different Levels of Uncertainty (LOU). However, in practice,

it is possible that factors like temperature may affect several system components

simultaneously. This introduces uncertainty correlations between system compo-

nents. In addition, these components are usually affected by multiple uncertainty

sources with different levels of uncertainty. Thus, different levels of uncertainty

exist between these system components. Therefore, we need to consider different

levels of uncertainty as well as uncertainty correlations when we analyze uncer-

tainty in design parameters.
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In order to report the difference obtained with and without the consider-

ation of uncertainty correlations, we implement in the proposed tool the capacity

to model both situations: different levels of uncertainty and uncertainty correla-

tions. We use the same ABS testcase and the same mapping as in Section 3.2.1 to

evaluate the design solution in both situations. Fig. 3.6 shows the histogram of

reliability obtained with LOU (DESUU-I) and LOU-UC (DESUU-II) techniques

using 105 samples during the Monte Carlo estimation. We can see that there exists

a significant difference between the two mean values of the estimated reliability.

This shows that when we consider only different levels of uncertainty, the esti-

mated reliability spans a relatively small range with high probability. In the case

of the LOU-UC, there exists a much smaller difference in the relative frequency

value of bounds and of the mean value of the estimated reliability. This shows

that the components affected by the same uncertainty sources, which is captured

as uncertainty correlations, may result in a reliability distribution significantly dif-

ferent. In other words, if we consider only the different levels of uncertainty of the

components in our modeling, we may overestimate the system reliability, which

can lead to inaccurate reliability estimation.

To address this issue as well, in the next chapter, we propose a novel

uncertainty-aware analysis technique to consider or capture both aspects: different

levels of uncertainty and uncertainty correlations of the components.
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CHAPTER 4

Proposed Design Methodology

How can we design high performance heterogeneous embedded systems that are

reliable and robust to uncertainty in design parameters? This chapter seeks to

answer this question by laying the foundation for uncertainty modeling and robust

multi-objective optimization for embedded systems design. A design flow, which

is capable of robust multi-objective optimization incorporated within a CAD au-

tomation tool constructed with Monte Carlo and evolutionary algorithm, is devel-

oped. The proposed design flow is uncertainty-aware in the sense that it is able to

capture and directly deal with uncertainty in design parameters. It is reliability-

oriented as reliability is included as a design concern in addition to performance

and energy consumption. The proposed probabilistic uncertainty models and al-

gorithmic innovations to solve the multi-objective mapping problem are discussed

in the following sections.

4.1 Approach Overview

The proposed design flow is essentially an iterative process that uses an enhanced

evolutionary algorithm, to solve the problem of mapping. The problem of mapping

is the problem of finding the best placement of application tasks and communica-

tions between tasks onto the architecture platform.

The block diagram of the proposed design flow under uncertainties is
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Figure 4.1: Block diagram of the proposed design method for embedded systems
mapping under uncertainties.

shown in Fig. 4.1. The outer loop represents the iterative process of the design

space exploration. The inner loop represents the iterative process of the Monte

Carlo simulation technique that we employ for the estimation of objective functions

under uncertainty. The primary objectives that we consider in this thesis include

reliability, performance (measured as execution time), and energy consumption.

Thus, the problem we attempt to solve is a multi-objective problem under spec-

ified levels of uncertainty. The output of the optimization process illustrated in

Fig. 4.1 is a set of robust solution points that form the robust Pareto frontier in

the three dimensional objective space (1-reliability) vs. performance vs. energy

consumption. In the next sections, we describe the primary steps of the proposed

design flow. These steps correspond to different blocks from the diagram in Fig.

4.1.
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4.2 Uncertainty Modeling

The proposed design flow directly considers the uncertainty in design parameters

and variables. The design parameters in embedded systems can be grouped into

system-specific parameters (e.g., hardware and software failure rates, throughput

metrics) and environment-related parameters (e.g., operational and usage profile

of the system). The accuracy of these parameters is adversely affected by various

kinds of uncertainties. Generally, it is difficult to determine accurate values of some

of these parameters. Other parameters require information that is only available in

later stages of the design process or depend on application-specific workloads, and

thus are only available at runtime. Hence, the parameter values used in design-time

optimizations represent estimations that are subject to uncertainty.

Uncertainty arises from the lack of knowledge regarding the true value of

a quantity of interest. Uncertainty implies that optimization decisions might be

non-optimal because one might expect one outcome but something quite different

might in fact occur. Generally, uncertainty is heterogeneous and diverse. Sources

of uncertainty include: uncertainty of data and model parameters, uncertainty

about model choice, and uncertainty about the future. In the nanometer scale

domain, uncertainty arises from temperature and voltage gradients, variations in

application workloads, and from fabrication process and circuit parameter vari-

ations. Many design parameters and variables can be affected by uncertainties.

For instance, failure rates of software components depend on the amount of test-

ing and complexity of the algorithms contained in the component. Likewise, the

failure rate of a hardware component can depend on the operational environment.
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Hence, capturing parameter uncertainty into hardware platform and application

description is difficult.

In the proposed design flow, we employ probability distributions to spec-

ify design parameters affected by uncertainty. This approach allows the design

parameters to be given as probability distributions (continuous or discrete) in any

mixture. The use of probability distributions entails the support for conversion

from other complementary approaches. For example, interval estimation can be

represented as a uniform distribution while the mean-variance estimation methods

can be replaced with a normal distribution with the same mean and variance [23].

The Uncertainties block on the top left-hand side from the diagram in

Fig. 4.1 represents the uncertainty injection process. There has been significant

work studying uncertainty in various fields including engineering, mathematics,

and other sciences [47; 48; 49]. However, it is generally agreed that there is no

single model for handling any type of imperfect information. Therefore, similarly

to [23], we propose to adopt the most general approach to capture uncertainty:

design parameters and their variation can be specified as generalized, continuous

or discrete, probability distributions in any mixture. Aside from its generality

and ability to accommodate any probability distribution, this approach has the

advantage of being able to accommodate complementary approaches as well. For

instance, we can use uniform distributions to convert interval estimates into the

proposed framework. On the limitations side, combining different probability dis-

tributions is usually analytically intractable, and therefore we must resort to Monte

Carlo simulation based techniques in order to quantify figures of merit of interest
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Figure 4.2: (a) To inject 5% uncertainty for a parameter characterized by a uniform
distribution whose mean is 100 for example, we generate samples from a uniform
distribution defined on the interval [a = µ− 0.05 · µ/

√
3, b = µ+ 0.05 · µ/

√
3]. (b)

The interval used for the case of a Gaussian distribution whose mean is µ.

(described later). This, in turn, may increase the computational runtime.

Uncertainty can be injected into the application or/and the architecture,

depending on what design parameters are assumed to be affected by uncertainties

and to what degree. This injection will be done in different amounts or degrees

during the design space exploration depicted in Fig. 4.1. The injection process

amounts to generating samples from pre-specified probability distributions during

the Monte Carlo simulation technique used to evaluate reliability, execution time,

and energy. Because we allow working with any type of probability distribution,

we must define what is meant by injecting a given percentage of uncertainty into

the design parameters of interest. We do that by pre-specifying the mean and

the variance of the probability distributions out of which the sampling is done

according to the rules listed in Table 4.1.

The rationale behind the rules presented in Table 4.1 can be explained
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with the help of Fig. 4.2. For example, let us assume that the uncertainty is

modeled for some design parameter with a uniform distribution. Then, modeling

5% of uncertainty in this design parameter during the design space exploration

is achieved by having the MC simulation (discussed later in a different section)

generate samples from an interval as shown in Fig. 4.2.a for the case when, for

example, the mean is µ = 100. That is because the variance (whose square root is

the standard deviation, σ) is given by the expression V ar = (b − a)2/12. In the

case of a Gaussian distribution, samples are generated randomly from a distribution

Gaussian(µ, σ) but only samples falling inside the interval [µ−3σ, µ+3σ], as shown

in Fig. 4.2.b are accepted, which represent 99.7% of all generated samples. The

case of the beta distribution is similar to that of the Gaussian case. The difference

is only in the actual confidence level, which can be different from 99.7%. Note

that similar rules can be derived for any other type of distribution that we may be

interested in using to model parameter uncertainty. For simplicity, in this thesis,

we restrict ourselves to using uniform and Gaussian distributions for modeling

the execution time and the power consumption of architecture components and

for modeling the transition probabilities inside the reliability model (discussed

later). In addition, beta distribution is used to model failure rates of components,

similarly to the study in [23]. However, our framework is flexible and can easily

Table 4.1: Rules for defining mean and variance of distributions from which sam-
pling must be done to achieve a certain degree of uncertainty injection.

Probability Uncertainty Uncertainty Uncertainty
Distribution 1% 5% 10%

Uniform(µ, σ) σ = 0.01 · µ1/
√

3 σ = 0.05 · µ2/
√

3 σ = 0.1 · µ3/
√

3
Gaussian(µ, σ) σ = 0.01 · µ1/3 σ = 0.05 · µ2/3 σ = 0.1 · µ3/3
Beta(µ, σ) σ = 0.01 · µ1/3 σ = 0.05 · µ2/3 σ = 0.1 · µ3/3
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Figure 4.3: ABS application mapping problem. We only show the mapping of the
tasks for simplicity.

accommodate other probability distributions if embedded designers find their data

to fit better such distributions.

4.3 Application Modeling

To be able to formulate the mapping problem in a computer program like the

one developed in this thesis, one must work with models for both Application and

Architecture in Fig. 4.1. In this thesis, we adopt the notation from [50; 51; 52]

and model applications using Kahn Process Networks (KPNs), which are among

the most popular models of computation used in embedded systems design [27;

33]. A KPN is represented as an application directed graph GAP (VAP , EAP ). Each

node or vertex vi, i ∈ {1, .., |VAP |} corresponds to a process or task of GAP . For

each vertex vi, we define Bi = {ej ∈ EAP} to be the set of application channels
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connected to vertex vi. When a vertex is mapped to a hardware component,

hti represents the hardware execution time. When the task can be executed on

multiple hardware cores, hti becomes a set hti = {hti1, hti2, .., htiU}, where U is

the number of hardware cores on which the task can be executed. When a vertex

is mapped to a software component, sti is the software execution time. When

the task can be executed on multiple software components, sti becomes a set

sti = {sti1, sti2, .., stiV }, where V is the number of software components on which

the task can be executed. Each edge ej, j ∈ {1, .., |EAP |} corresponds to a data or

control link between two different tasks of GAP . If a communication link is mapped

onto a memory core, mtj represents the memory access time, which will be added

to the path delay. When the link can be mapped to multiple memory components,

mtj becomes a set mtj = {mtj1,mtj2, ..,mtjW}, where W is the number of memory

components on which the link can be mapped to.

For example, Fig. 4.3 shows the application graph of the ABS testcase.

It includes 8 tasks and 9 communication channels. The graph GABS includes

the nodes set VABS = {vi|i ∈ {1, 2, ..., 8}} and the edges set EABS = {ej|j ∈

{1, 2, ..., 9}}. Since there are 5 hardware components in the architecture platform

shown in Fig. 4.3, when a node vi is mapped to a hardware component, the

hardware execution time hti becomes a set hti = {hti1, hti2, ..., hti5|i ∈ {1, 2, ..., 8}}.

Similarly, since there are also 5 software components in the target architecture

for the ABS application, when a vertex is mapped to a software component, the

software execution time sti becomes a set sti = {sti1, sti2, ..., sti5|i ∈ {1, 2, ..., 8}}.

Likewise, if a communication link is mapped onto a memory core, the memory

access time mtj becomes a set mtj = {mtj1,mtj2|j ∈ {1, 2, ..., 9}}.
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4.4 Architecture Modeling

The architecture model is also represented by a graph GAR(VAR, EAR), where the

sets VAR and EAR denote the architecture components and the connections between

them. The set of architecture components consists of two disjoint subsets: the set

of processing cores (P) that include hardware and software elements and the set

of memories (M), VAR = P ∪M . The delay of a communication link between two

different architecture components is denoted as ltpq, with p, q ∈ {1, .., |EAR|}. The

power dissipations are denoted as pc for the core c during execution, as pm for the

memory core m, and as pl for the communication links. In this thesis, we assume

that the architecture platform is given because we do not address the problem of

architecture synthesis.

For instance, Fig. 4.3 also shows the architecture platform, onto which the

ABS application will be mapped. It includes 5 hardware components (e.g., FPGAs)

and 5 software components (e.g., CPUs). These architecture components commu-

nicate through the common bus link. The software (SW) components are repre-

sented by general central processing units (CPUs) but can also include (application

specific) digital signal processors (DSPs) as well. These are referred to as “soft-

ware” because they are supposed to run application tasks compiled into software

executables that will be run as programs. Components like field programmable

gate arrays (FPGAs) and application specific integrated circuit (ASICs) are re-

ferred to as hardware (HW) components. Memories represent the third category

of components, to which application communications can be mapped to.
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4.5 Generation of Initial Candidates

With regard to Fig. 4.1, the GA algorithm requires a set of limited solutions. This

is indicated with the corresponding “Generate initial candidates” block in Fig. 4.1.

Therefore, in the proposed method, an initial set of candidate solutions needed by

the evolutionary algorithm (discussed later in this chapter) is first generated. We

randomly generate the initial set of candidate solutions for simplicity. The idea is

to generate a starting point that captures specific requirements on the amount of

hardware resources used and which is not much different from a design solution

arrived at via a completely manual approach. Because the hardware platform is

fixed, the initial candidate solutions represent different mappings of the application

on to the hardware platform.

4.6 Design Space Exploration Using Genetic Algorithms

The “Design Space Exploration” block from Fig. 4.1 is where new solutions are

generated and where design optimization takes place. This is a challenging step not

only because of the complexity of the mapping problem but also because it must

accommodate uncertainty as well. We propose to use the stochastic optimization

algorithm: Non-dominated Sorting Genetic Algorithm (NSGA-II) to solve this

problem. The NSGA-II is designed and instrumented to guide the search process

toward robust and optimal solutions and is achieved by closing the outer loop

shown in Fig. 4.1, hence implicitly taking into consideration the searched solution’s

reaction to uncertain parameter variations.



40

The mapping problem is a multi-objective optimization problem whose

objective functions or quality attributes often conflict. In this thesis, we consider

the three objectives described next.

4.6.1 Objective 1: Reliability

The first objective function is the reliability of the system, which needs to be

maximized. To estimate reliability, we adopt the approach employed in [53] and

describe it next. This reliability model is based on absorbing discrete time Markov

chain (DTMC) models, which have been used for a long time [54]. A DTMC model

is a graphical model consisting of a finite state machine like state graph. For a given

mapping solution, the DTMC model is constructed from the architecture platform

of the system. A node in this graph represents the execution of an application

task mapped to that component. An arc represents the transfer of execution

between tasks mapped to different components. The graph has added a super-

initial node to represent the execution start of the application. In addition, arcs

are added to the graph from the newly added node; these arcs are labeled with

appropriate initialization probabilities q0(ci). A super-final node is also added

to capture the end of the execution of the application. The DTMC model is

characterized by a transition probability matrix P = [pij]. The probability pij

represents the probability that task j is called after executing task i. This model

assumes that the components of the system fail independently. Moreover, the

probability Ri that the component performs its function correctly characterizes

the reliability of the component ci. In other words, this is the probability that

that component finishes its task correctly and it also transfers the control to the
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Figure 4.4: DTMC model when states C and F are added.

next task without a failure.

The DTMC graph model is modified further by adding two absorbing

states C and F . The meaning of these new states in the graph model is that

they represent the correct output and failure cases during the execution of the

application. These new states require the transition probability matrix P to be

modified into P̂ . In this modification, the original transition probability pij is

replaced with Ripij. The new notation Ripij denotes the probability of correct

output from task i and of successful transfer of control to task j. To denote the

correct execution, a new arc is created from the final state n to the state C. This

arc is annotated with transition probability Rn. Similarly, a directed arc from

state i to state F is added to represent the failure of a component ci. This arc is

annotated with transition probability (1 − Ri). Once the DTMC is constructed

as described above, the reliability of the application mapped to the architecture

platform can be estimated as the probability of reaching the absorbing state C.

An example of the DTMC model is shown in Fig. 4.4.

Now, let us denote with Q the matrix derived from P̂ after the rows and

columns corresponding to the absorbing states C and F are deleted. In this case,
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the probability of reaching state n from 1 through k transitions is represented by

Qk(1, n). Note also that the number k of such transitions from the initial state 1 to

the final state n can vary up to infinity. Under these assumptions, it can be shown

[54; 53] that the infinite summation converges as given by the following equation

(I is the identity matrix),

S = I +Q+Q2 +Q3 + ... =
∞∑
k=0

Qk = (I −Q)−1 (4.1)

In the above equation, S is called the fundamental matrix of the DTMC. S(i, j) is

the expected number of visits to state j starting from state i before it is absorbed. It

was used by the authors of [54] to derive an expression to estimate the architecture

based reliability of the overall system as follows:

R = S(1, n)Rn (4.2)

In this thesis, we use this reliability estimation method. Normally, re-

liability is desired to be maximized. However, in order to construct the three-

dimensional solution space such that each metric improves as we move towards

the center of the coordinate system, we need to transform the maximization prob-

lem into a minimization problem. The objective of maximizing the reliability of

the system can be written as a minimization objective as follows:

min {1−R} (4.3)

Note that other reliability models can be used here as well. Our framework

is generic enough and not restricted to using only DTMC based reliability models;

it can employ any reliability model of interest such as that in [24] for example.
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However, in this thesis we use the DTMC model for simplicity.

4.6.2 Objective 2: Execution Time as Measure of Performance

The second objective function is the one that minimizes the maximum execution or

processing time of the critical path from the set of all paths (set denoted as Path)

inside the application task graph. This minimum value is used as a direct measure

of performance, and using the notations introduced in the previous sections, can

be expressed as follows.

min

{
max
Path

{
∑

i∈VAP ,i∈Path

htiuxiu +
∑

i∈VAP ,i∈Path

stivxiv +

∑
j∈EAP ,j∈Path

[ ltkl + (mtjw + ltmn)xjw ]xj }

} (4.4)

The first term in the above equation represents the contribution of the hardware

cores to the execution time of the critical path. Similarly, the second term captures

the contribution from the tasks executed as software modules. Finally, the third

term is the contribution to the processing time of the delay due to direct links

between different architecture cores and possibly of the memory access time if

the application communication channel j is mapped onto a memory core. Here,

mtjw is the memory access time with w ∈ {1, .., |M |}, ltkl is the link delay between

architecture cores k and l with k, l ∈ {1, .., |VAR|} and ltmn is the link delay between

architecture cores m and n also with m,n ∈ {1, .., |VAR|}.

The variables xiu, xiv, xjw, and xj are decision variables that capture

whether a task i is mapped to a hardware core u or a software core v, whether
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a communication channel j is mapped to a memory core w, and whether a com-

munication channel is contained within a core (i.e., two communicating tasks are

mapped to the same core, in which case xj = 0) or not. The values of these de-

cision variables are different for different mapping solutions, which are generated

during the genetic algorithm based design space exploration from Fig. 4.1.

4.6.3 Objective 3: Energy Consumption

The third objective function minimizes the energy consumption of the whole sys-

tem. It is given by:

min

{ ∑
i∈VAP

htiupuxiu +
∑
i∈VAP

stivpvxiv +

∑
j∈EAP

[ ltklpk + (mtjwpw + ltmnpn)xjw ]xj

} (4.5)

The energy consumption of the whole system consists of the energy con-

sumption of the processing cores, the communication links, and the memories. The

energy consumption of the processing cores can be represented by the sum of the

energy consumption for the hardware cores and the software cores. Similarly, the

energy consumption of the communication links can be captured by the product

of the execution time spent on communication and the power dissipation for the

communication links. Likewise, the energy consumption of the memories is the

product of the total processing time of the memories and the power dissipation for

memory cores. In the above equation, The first and the second terms represent

the contribution of the processing cores to the energy consumption. Similarly,
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the third term captures the contribution from the communication links and the

memories to the energy consumption.

4.6.4 Solving the Multi-objective Problem

Once all three objective functions are defined as discussed in the previous sections,

the overall optimization problem − which in our case is the mapping problem −

can be written in a generalized form as follows [55]:

min
x

z = f(x) = (f1(x), f2(x), f3(x))T (4.6)

s.t. x ∈ X (4.7)

In the above equation, x represents a particular solution, and X is a set

of feasible solutions. In our case, a mapping solution is captured by the individ-

ual decision variables discussed earlier that completely describe how application

tasks are assigned to the cores of the architecture platform. The three individual

objective functions f1, f2, and f3 effectively evaluate the expressions from equa-

tions (4.3), (4.4), and (4.5) for a given mapping solution. The overall objective

function z = f(x) translates a solution x from the decision space defined by the

decision variables to a point in the objective space defined by the three objective

or cost functions. In our case, the objective space is three dimensional, as shown

in Fig. 1.2, and the overall objective function is defined as the equally weighted

summation of the three individual objective functions.



46

Because multi-objective optimization problems usually do not have a sin-

gle best solution which optimizes all objectives at the same time, we are interested

in finding a set of solutions that form the so called Pareto frontier. The solution

points that form the Pareto frontier are points that are non-dominated by any

other solution point among all solutions from the feasible set. There has been

a lot of work done on the topic of multi-objective optimization problems. One

of the most popular approaches to solving this problem and to find the Pareto

frontier is to use evolutionary algorithms due to their inherent ability to handle

multiple objectives at the same time. Therefore, in this thesis, we construct our so-

lution to the multi-objective mapping problem also using such an approach. More

specifically, we use the Non-dominated Sorting Genetic Algorithm (NSGA-II) [56]

because it was shown to offer benefits over other types of evolutionary algorithms

[55] including ease of implementation and lower computational complexity. This

algorithm implements the outer loop from Fig. 4.1. The pseudocode description

of this algorithm is shown in Algorithm 1. For complete details about NSGA-II,

please see [56].

The idea of the genetic algorithm is to iteratively generate new children

solution populations from previous parent solution populations. This generation

is usually realized using different forms of crossover and mutation. Details about

NSGA-II based DSE will be explained in the following subsections.
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Algorithm 1 Design space exploration based on NSGA-II

Inputs: N size of the population, M maximum number of generations.
Outputs: Pareto frontier, as non-dominated solutions in PM .
P0 = GenerateInitialPopulation(); // size N
Q0 = Ø; // start with children set empty
EvaluateObjectiveFunction(P0); // calculate fitness
RankPopulation(P0); // done according to fitness values
for (i = 0 to M − 1) do

Qi = SelectionCrossoverMutation(Pi); // create children population
EvaluateObjectiveFunction(Qi); // uncertainty aware, Monte Carlo based
Pi+1 = CombineParentsAndChildren(Pi, Qi);
RankPopulation(Pi+1);
Pi+1 = SelectNIndividuals(Pi+1); // elitism: keep non-dominated

end

Encoding and Initial Population

In this thesis, we encode the mapping solution from the target application to the

architecture platform as a string of integers. Each genotype (or representation of

the possible mapping) consists of task nodes that can be mapped to SW compo-

nents, task nodes that can be mapped to HW components, and communication

arcs that can be mapped to memory components. Each gene in the chromosome

(or genotype) represents a unique identifier of the component in the architecture

platform. In addition, it has its own feasible set. For example, for genes represent-

ing nodes that must be mapped to SW components, only the set of CPUs in the

architecture model form the feasible set.

In our NSGA-II, the chromosomes in the initial population are generated

randomly. Moreover, we limit the size of the initial population and also the size of

the set of generated individuals during each evolution process of the NSGA-II to

reduce the runtime.
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Fitness Function

The fitness function is defined for measuring the quality of mapping solutions.

During the iterative process of the outer loop in Fig. 4.1, the fitness of the new

solutions are evaluated by EvaluateObjectiveFunction(), which essentially uses

equation (4.6). It is also this evaluation step that distinguishes our approach from

previous work. Here, we assume uncertainties to affect design parameters. We

capture such uncertainties as described in the previous sections. The evaluation

step employs a Monte Carlo simulation technique to deal with uncertain quantities

and will be discussed in the next section.

Selection

During each evolution generation of the NSGA-II, a proportion of the existing

population is selected to be in the parents population. We use a tournament

selection operator based on the rank and crowded distance of each solution in the

population. The calculations of the rank and crowded distance are similar to [56].

Genetic Operators

We use the simulated binary crossover (SBX) operator and polynomial mutation in

NSGA-II [56]. The crossover probability is pc = 0.9 and the mutation probability

is pm = 1/n, where n is the number of decision variables.
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Termination

In terms of the stopping conditions for our NSGA-II, a maximum number of gen-

erations is adopted to guarantee that the evolution process will stop.

Computational Complexity

The computational complexity of the NSGA-II algorithm is O(MN2), where M

is the number of objectives and N is the population size. Because we are using

three objectives, the runtime is longer than when one would focus on only one or

two objectives. However, to keep the runtime under control one can adjust control

several other factors like the population size that could be reduced a little and have

a significant impact on the runtime because of the squared relationship. We report

results of the runtime investigation of our tool in the Simulation Experiments in

Chapter 5.

4.7 Selection

During the iterations of the genetic algorithm, design solution points are evaluated

with the MC based technique. Some of those solution points should be selected and

provided as output of the method. We want these solutions to be the most robust

solutions. This is illustrated in Fig. 4.1 by the Selection box, where solutions

that are found to be better than previous solutions are added to the list of robust

solutions. This iterative process continues until the stopping criterion - based on

computational runtime limits or solution quality - is met.
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4.8 Estimation Under Uncertainty

To estimate different quality attributes of a solution candidate when input param-

eters are subject to uncertainty, we use a Monte Carlo (MC) simulation technique

because the MC method is the tractable method that is capable of accommodating

multiple types of probability distributions during its sampling process and because

analytic solutions are extremely difficult or impossible to derive when dealing with

a wide variety of probability distributions. During MC runs, each candidate solu-

tion is evaluated for different values or samples from the input distributions that

characterize uncertain parameters and this evaluation process is agnostic to the

assumptions made about the input distributions.

During the NSGA-II genetic algorithm based DSE depicted in Fig. 4.1,

each new solution candidate must be evaluated in order to estimate three differ-

ent design attributes of interest. These attributes are reliability, execution time,

and energy. Their deterministic calculation, in a traditional design flow, can be

done using the main expressions from equations (4.3), (4.4), and (4.5). If how-

ever, we assume that design parameters are affected by uncertainties, then, any

of the design attributes that is affected by uncertainties cannot be estimated any-

more using deterministic equations. Analytic solutions are extremely difficult or

impossible to derive when dealing with a wide variety of distributions. Instead,

estimation techniques that model and can handle uncertainty must be employed.

Usually, in such situations, a Monte Carlo simulation based technique represents

the only tractable method that is capable of accommodating multiple types of

probability distributions [23; 38; 41]. Therefore, in this thesis, we use Monte Carlo
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simulation based techniques to estimate the attributes of interest that are affected

by uncertainty. Such a formulation allows us to combine quality attributes which

inherit uncertainty with ones that are deterministic (or certain) in any mixture.

4.8.1 Consideration of Uncertainty Correlations

When modeling the uncertainty in design parameters in embedded systems, we

need to consider the uncertainty correlations. The reason for that is because mul-

tiple uncertainty sources (e.g., some heat sources) may affect several components

simultaneously, thus, a correlation between uncertainties of components exists.

The work in [24] is a recent attempt to consider uncertainty correlations when

modeling components’ uncertainties. We model the uncertainty correlations in a

similar way, but with the difference that we consider the uncertainty correlations

under the influence of multiple uncertainty sources. We do that because in practice,

the architecture components are usually affected by multiple uncertainty sources,

and the uncertainty in design parameters are the combination of the influence of

different uncertainty sources. First, we need to introduce some of the definitions

that will be used later.

Correlation Group: A simple set of components being affected by the

uncertainty sources. Such as Fig. 4.5 group A.

Independent Group: If the correlation group g contains only one compo-

nent, and group g is affected by the same uncertainty source, then, we call group

g an independent group. Such as Fig. 4.5 group B.

Single Correlation Group: If all the components in the correlation group
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Figure 4.5: Definitions of different correlation groups.

g are affected by the same uncertainty source, then, we call group g a single

correlation group. Such as Fig. 4.5 group C.

Multiple Correlation Group: If some of the components in the correlation

group g are affected by multiple uncertainty sources, then, we call group g a

multiple correlation group.

qthg percentile: is the percentile we sample in correlation group g from its

uncertain parameters probability distributions. It is used to guarantee that all

components in group g vary together for each sampling process.

The consideration of uncertainty correlations can be achieved in the fol-

lowing way:

(1) For an independent group, samples from the uncertain design parameters

probability distributions are generated using independently sampled parameters.
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(2) For a single correlation group, samples from the uncertain design param-

eters are generated using the qthg percentile of its probability distribution, where qg

is a uniformly distributed random number that satisfies qg ∈ [0, 1] for each sam-

pling process.

(3) For a multiple correlation group, samples from the uncertain design

parameters probability distributions are generated using the qthg percentile of its

probability distribution, where qthg is determined using the following equation:

qthg =
n∑

i=1

αi · qig (4.8)

where αi is the coefficient (it can be set by the user for simplicity) between [0,1],

which is used to measure the degree of influence from the uncertainty source i to

group g, and it satisfies
∑n

i=1 αi = 1. qig is the qthg percentile for group g affected

by uncertainty source i.

Therefore, by generating samples in this way, the uncertain parameters

from the components in a single correlation group vary together, and their varia-

tions are independent from those of different single correlation groups. Also, the

samples of the uncertain parameters for those components in multiple correlation

groups combine the influence of all uncertainty sources, and such combinations are

independent of those of other multiple correlation groups.

4.8.2 Consideration of Different Levels of Uncertainty

With the concept of correlation groups and the proposed uncertainty modeling

defined, we can easily consider different levels of uncertainty. We inject different

levels of uncertainty into the design parameters of the components according to
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Figure 4.6: Block diagram of the Monte Carlo simulation based technique to esti-
mate reliability.

the assumed degree of the influence from the uncertainty sources forming the cor-

relation groups. For instance, if one correlation group is close to some heat source,

that may translate in an actual 10% level of uncertainty in design parameters for

the components in that correlation group. That means we must inject 10% level of

uncertainty for the design parameters of the components in that correlation group.

Similarly, components in a different correlation group may be far from such heat

sources, and consequently, they may need to only have 1% level of uncertainty

injected. Details as to how to inject different levels of uncertainty into the design

parameters have been discussed in the uncertainty modeling section.

4.8.3 Robust Estimation of the Reliability

To estimate reliability, we employ the enhanced Monte Carlo estimation technique

proposed in [23; 38] together with the consideration of both uncertainty correlations

and different levels of uncertainty. This technique is represented by the Monte

Carlo Simulation block in Fig. 4.1 and detailed in Fig. 4.6.
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Input Parameters

The input to the Monte Carlo Simulation block from Fig. 4.6 is the probabilis-

tic DTMC reliability model, which includes deterministic parameters and uncer-

tain parameters. The deterministic parameters can be obtained from the tradi-

tional embedded systems design parameters, while the uncertain parameters can

be achieved through the uncertainty injection process. As a means to capture

heterogeneous uncertainties in design parameters, uncertain parameters are char-

acterized by generalized probabilistic distributions. Details about the uncertain

parameters were described in Section 4.2.

Reliability Probabilistic Model (DTMC) Construction

The next step of the robust estimation of the reliability is to construct the proba-

bilistic model. This probabilistic model is based on absorbing discrete time Markov

chain models, which have been described in Section 4.6.1. Given the fact that the

inputs are probability distributions, the resulting evaluation model parameters

become probability distributions or functions of probability distributions.

Monte Carlo (MC) Simulation

During the Monte Carlo iterations, these distributions are sampled with considera-

tion of both uncertainty correlations and different levels of uncertainty, to generate

instances that are then used as numerical values to compute the attribute of in-

terest. Once the samples are obtained from the input distributions, we update

all the corresponding evaluation model parameters and recompute the reliability
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estimate. In this way, the impact of uncertainties on the estimation process is

captured.

One single run of MC simulation leads to one numerical value of the reli-

ability estimate. Due to the uncertain parameters, the estimated reliability from

different MC runs are most often not identical. The estimated reliability metric

becomes a variable quantity itself whose distribution is unknown. The variation

of this quantity will represent an important measure that summarizes the impact

of uncertainties.

Robust Estimates

To indicate the robustness of the reliability estimate, we use percentiles obtained

from the MC runs. Since this has to be done without knowing the distribution, we

use a non-parametric statistical estimation technique similar to [23]. This approach

builds on previous results that use probabilistic quality models for the attribute of

interest a − in this case reliability − and statistical estimation techniques to derive

a single measure of interest, â (such as expectancy, variance, worst case value,

confidence bound, etc.), as a descriptive measure of the extent and characteristics

of uncertainty in the values in A = {ai, i = 1, 2, ..., N}, whose distribution is

unknown.

The accuracy of the estimate â depends on the number of MC runs, i.e., the

sample size. However, to keep the computational runtime reasonable, we employ

a dynamic stopping criterion based on accuracy monitoring, which works by using

a sliding window of a minimum of k MC runs (a1, a2, ..., ak). For each snapshot of
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Figure 4.7: Block diagram of the Monte Carlo simulation based technique to esti-
mate execution time, and energy consumption.

the sliding window, one of the above estimation methods is used to compute an â.

In this way, the sequence Â = {â1, â2, ..., âk} is constructed and monitored. Only

the last k samples of the estimate Â are monitored. A statistical significance test is

done on the samples of Â, and the relative error of the estimate Â is checked against

a tolerance level (i.e., 0.05). Once the error is smaller than the desired tolerance

level, as the objective is to detect if sufficient accuracy has been obtained, the

Monte Carlo runs are stopped.

4.8.4 Robust estimation for Performance and Energy Consumption

To estimate the performance and energy consumption attributes, the Monte Carlo

simulation technique is simpler because here we do not need to build the probabilis-

tic DTMC model. During multiple MC runs, parameters affected by uncertainties

are also sampled from their respective probability distributions and used as nu-

merical values inside equations (4.4) and (4.5) as Fig. 4.7 illustrates.

As mentioned earlier, in this thesis, we assume increased design uncertain-

ties due to variations in fabrication processes, supply voltage, and temperatures,
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which have been discussed and modeled in recent literature. This uncertainty in-

creases as we go to deeper nanometer technology nodes. To model that, in the

simulation results section, we will investigate different degrees of uncertainty. By

increased uncertainty that we inject we mean that some design parameters or vari-

ables are even less accurately known.

4.9 Robustness of Design Solution Points

Generally, the output of the Monte Carlo simulation technique to estimate a certain

attribute of interest for a given mapping solution is a number of samples out of the

probability distribution that characterizes the unknown attribute. We use the 95

percentile estimate as the actual value used to generate and plot the robust Pareto

frontier in the objective space. Working with percentile estimates provides a means

to quantify or specify the robustness of the solution. The higher the percentile,

the more robust the given solution is against uncertainties. Robustness is defined

as the ability of a given solution to be immune or to tolerate uncertainties while

still guaranteeing the desired performance.

Aside from generating the robust Pareto frontier in the three-dimensional

objective space (1-reliability) vs. performance vs. energy, during each of the ge-

netic algorithm iterations (see Fig. 4.1), solution points that are found to be

better than previously found solutions are selected and added to the list of best

robust solutions. This is a short list of potential design solution points from which

embedded systems designers may select a final solution.
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4.10 Conclusions

This chapter presented a design methodology for solving the mapping problem in

embedded systems under uncertainties. The proposed method was incorporated

within an automation software tool to integrate uncertainty models and novel op-

timization algorithms constructed with Monte Carlo and evolutionary algorithms.

Details about the simulation experiments will be discussed in the next chapter.
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CHAPTER 5

Simulation Experiments - Comparison to Traditional Method

Having described the theoretical concepts that contribute to the uncertainty

aware mapping of embedded systems design in the previous chapters, this chap-

ter presents the comparison experiments between the traditional point-estimate

method and the proposed robust-estimate method for the Motion-JPEG (MJPEG)

and the MP3 testcases. This chapter is organized into four sections. The first part

of this chapter briefly introduces the experimental setup and the testcases. The

second section describes the architecture platform we use during the simulation

experiments. In the third section, we compare results obtained with two different

estimation techniques: the proposed robust approach and the traditional deter-

ministic approach. In the last section, we compare the Pareto frontiers generated

by the proposed robust approach and the deterministic approach for both MJPEG

and MP3 testcases.

5.1 Experimental Setup and Testcases

We report simulation results obtained with both the proposed design method and

the traditional design method. For the NSGA-II genetic algorithm implementa-

tion, we integrate into our tool the C implementation publicly available at [57].

All simulations are done on a 64 bit Intel i5-4690 CPU, 3.50 GHz x4 with 8 GB

memory running the Ubuntu 14.04 LTS operation system. Both the traditional
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Table 5.1: Parameters of NSGA-II.

Parameter Value

initial population size 256
number of generations 512
crossover probability 0.8
mutation probability 0.2

deterministic approach and the proposed robust approach have been integrated

into the software framework that we developed, and which we call the Design of

Embedded Systems Under Uncertainty (DESUU) tool. The parameters of the

NSGA-II genetic algorithm we have used for DSE are the same as the one used by

the Sesame simulator, and are listed in Table 5.1. Sesame [52], an abbreviation for

“Simulation of Embedded Systems Architectures for Multi-level Exploration”, is a

system-level modeling and simulation environment which aims at efficient design

space exploration of embedded systems. Sesame recognizes separate application

and architecture models, where an application model describes the functional be-

havior of an application and the architecture model defines architecture resources

and capture their performance and energy constraints. Sesame employs the tra-

ditional point-estimate approach when mapping an application model onto an ar-

chitecture model.

We use two testcases as our benchmarks: a Motion-JPEG (MJPEG) en-

coder and an MP3 decoder. The MJPEG testcase contains 8 tasks and 18 commu-

nication channels, and the MP3 testcase includes 27 tasks and 52 communication

channels. We adopt these two testcases from [28]. Figure 5.1 shows the KPN of

the MJPEG and the MP3 testcases.
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Figure 5.1: The KPN of (a) MJPEG testcase. (b) MP3 testcases.

5.2 Architecture Platform

We use the same target architecture as the Sesame simulator, which is a hetero-

geneous MPSoC including five different processors, connected to a shared bus and

memory. The architecture platform is shown in Fig. 5.2. We have installed the

Sesame simulator and collected the real simulated average execution cycles per

task for both MJPEG and MP3 testcases. We use these values in the simulations

with DESUU tool, to be able to do a fair comparison. Also, we adopt the power

consumption values for different processors from [58].
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Figure 5.2: Architecture platform used in simulations done with the Sesame tool.

With respect to the target architecture, in order to mimic uncertainty

resources, we assume that the I/O component generates more heat in time, which

increases the temperature of the nearby components. The increase in temperature

is modeled as an increase in the uncertainty in design parameters of the affected

components. Thus, we inject 10% level of uncertainty for processors P0 and P3,

5% level of uncertainty for processors P1 and P4, and 1% level of uncertainty for

processors P2 and the memory component.

To this end, we have installed and configured both the traditional deter-

ministic approach (Sesame tool) and have developed the proposed robust approach

(DESUU tool) to use the same NSGA-II parameters. Simulations are conducted

on the same benchmarks and using the same architecture platform.

5.3 Robust and Deterministic Estimation

In the first set of simulations, we conduct a comparison of the estimation techiques

used by the proposed approach (DESUU tool) and by the deterministic approach

(Sesame tool). We look at the execution time and the energy consumption for

MJPEG and MP3 testcases. For simplicity, we use a given round-robin mapping
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in both approaches. The execution time is characterized or measured by execution

cycles and the energy consumption is described in nanojoule (nJ).

The comparison between the results obtained using the robust estimation

approach and those obtained with the deterministic estimation approach is shown

in Fig. 5.3. Recall that in the motivation example from Chapter 3, we saw that

uncertainty in the design parameters of embedded systems may result or lead to

different solutions from those found by traditional approaches. Here, Fig. 5.3.

further shows that, for a given mapping, the Sesame tool provides smaller values

for both performance and energy consumption. In contrast, the DESUU approach,

which employs more robust and accurate technique provides larger values. Fig. 5.3

indicates that the Sesame approach underestimates the design attributes, which

if used during the optimization process conducted during DSE, may lead to non-

optimal final solutions.

5.4 Pareto Frontiers

Next, we compute the Pareto frontiers obtained with both approaches. Fig. 5.4

shows that the proposed DESUU tool generates Pareto frontiers that are shifted

away from those obtained by the Sesame tool. This shift is in aggrement with

the results from the previous work. On those frontiers, the solution points that

are closest to the system of coordinates are the solutions that represent the best

trade-off between the execution time and energy consumption.

Furthermore, we observe that the solutions on the Pareto frontiers gen-

erated by Sesame approach appear to be better than the solutions on the Pareto
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Figure 5.3: The comparison estimation between the Sesame approach and the
DESUU approach for (a) MJPEG testcase (b) MP3 testcase.
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Figure 5.4: Pareto frontiers generated by the Sesame approach and the DESUUU
approach for (a) MJPEG testcase (b) MP3 testcase.



67

frontiers obtained by the DESUU approach. However, the simulations found by

the Sesame tool are not aware of uncertainty and provide an optimistic view of

what the performance and energy consumption values would be. We believe that

the traditional deterministic approach of the Sesame tool under-estimates design

attribute values, and that can lead to inaccurate final solutions.

5.5 Conclusion

In this chapter, we compared the Pareto frontiers generated by the proposed robust

approach and the deterministic approach to the problem of mapping. These fron-

tiers are in the two dimensional space characterized by the performance and the

energy consumption attributes. Comparisons are done for two testcases: MJPEG

and MP3. In the next chapter, we will report and discuss simulation results ob-

tained with the proposed robust design method for a larger set of testcases. In

addition, we will present a scalability analysis of the proposed DESUU tool.
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CHAPTER 6

Simulation Experiments - Proposed Robust Method, Scalability

Analysis

After conducting the comparison experiments between the traditional point-

estimate method and the proposed robust-estimate method in Chapter 5, in this

chapter, we report simulation results obtained with the proposed design method,

which we implemented as a computer program in C++. As in Chapter 5, all sim-

ulations are done on a 64 bit Intel i5-4690 CPU, 3.50 GHz x4 with 8 GB memory

running the Ubuntu 14.04 LTS operation system.

6.1 Testcases

We use four testcases as our benchmarks with their characteristics listed in Table

6.1. Here, we have split the tasks of each testcase into HW and SW modules ran-

domly because we do not address in this thesis the problem of HW/SW partition-

ing. Therefore, for each testcase, HW tasks must be mapped to HW components

and SW tasks must be mapped to SW components.

The first two testcases are from the automotive application domain, ABS

(anti-lock break system) and ACC (adaptive cruise control). We adopted these two

testcases from the study in [23]. The last two testcases are from the multimedia

application domain, H.264 (video decoder) and JPEG (picture compression). We

adopted the H.264 testcase from [59] and the testcase JPEG from [60]. The block
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Table 6.1: Listing of the testcases used for simulations.

Testcase Num. of Num. of
HW tasks SW tasks

ABS 5 5
ACC 6 5
H.264 5 5
JPEG 5 5

Table 6.2: Detailed description of the ABS testcase.

Trans(ci → cj) P (ci, cj)

s→ 4 GAUSSIAN, 0.3, 0.01
s→ 5 GAUSSIAN, 0.3, 0.01
s→ 2 GAUSSIAN, 0.3, 0.01
s→ 0 GAUSSIAN, 0.1, 0.01
4→ 0 GAUSSIAN, 0.7, 0.01
4→ 3 GAUSSIAN, 0.3, 0.01
0→ 6 GAUSSIAN, 0.5, 0.01
0→ 7 GAUSSIAN, 0.5, 0.01
6→ f 1
5→ 0 GAUSSIAN, 0.7, 0.01
5→ 3 GAUSSIAN, 0.3, 0.01
3→ 0 1
2→ 1 1
1→ 3 1
7→ f 1

diagrams and their DTMC models used for reliability estimation of these testcases

are shown in Fig. 6.1, 6.2, 6.3, and 6.4. The detailed descriptions of the DTMC

models are listed in Tables 6.2, 6.3, 6.4, and 6.5.

We assume that a given testcase or application has been profiled and that

the performance and power consumption numbers for all the tasks in the applica-

tion graph when implemented on the SW and HW components of the application

platform are known. These numbers are then treated as the mean values of the
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Table 6.3: Detailed description of the ACC testcase.

Trans(ci → cj) P (ci, cj)

s→ 1 GAUSSIAN, 0.2, 0.01
s→ 4 GAUSSIAN, 0.4, 0.01
s→ 7 GAUSSIAN, 0.4, 0.01
1→ 2 1
2→ 3 GAUSSIAN, 0.1, 0.01
2→ 9 GAUSSIAN, 0.5, 0.01
2→ 8 GAUSSIAN, 0.4, 0.01
3→ f 1
4→ 5 GAUSSIAN, 0.5, 0.01
4→ 8 GAUSSIAN, 0.5, 0.01
5→ 2 GAUSSIAN, 0.4, 0.01
5→ 6 GAUSSIAN, 0.6, 0.01
6→ 2 1
7→ 5 GAUSSIAN, 0.5, 0.01
7→ 8 GAUSSIAN, 0.5, 0.01
8→ 9 1
9→ f 1

Table 6.4: Detailed description of the H.264 testcase.

Trans(ci → cj) P (ci, cj)

0→ 1 1
1→ 2 1
2→ 3 1
3→ 4 GAUSSIAN, 0.5, 0.01
3→ 5 GAUSSIAN, 0.5, 0.01
4→ 6 1
5→ 6 1
6→ 4 GAUSSIAN, 0.5, 0.01
6→ 7 GAUSSIAN, 0.5, 0.01
7→ 8 1
8→ 5 GAUSSIAN, 0.5, 0.01
8→ 9 GAUSSIAN, 0.5, 0.01

probability distributions that are used to model the uncertain values. The amount

of uncertainty is controlled through the variance of the respective distribution as

discussed in Chapter 4.
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Table 6.5: Detailed description of the JPEG testcase.

Trans(ci → cj) P (ci, cj)

0→ 1 1
1→ 2 1
2→ 3 1
3→ 4 1
4→ 5 GAUSSIAN, 0.5, 0.01
4→ 6 GAUSSIAN, 0.5, 0.01
5→ 2 GAUSSIAN, 0.25, 0.01
5→ 3 GAUSSIAN, 0.25, 0.01
5→ 6 GAUSSIAN, 0.25, 0.01
5→ 7 GAUSSIAN, 0.25, 0.01
6→ 7 1
7→ 8 1
8→ 9 1

6.1.1 Architecture Platform

Because reliability, performance, and energy consumption represent objective func-

tions, the only constraints that we used in our problem formulation consist of the

architecture platform being given and the HW/SW partitioning of the given ap-

plication. Specifically, in our case we assume that the architecture platform has

twelve components in order to be able to accommodate the largest application

task graph that we investigated. That includes five software components, five

hardware components, and two memory components. The communication arcs in

the graph are assumed to be implemented via memory mapping; that is the source

task writes into a memory component and the destination tasks read from the

memory component. Our architecture is a hypothetical one, which we envisioned

based on the projections made by the research community about multiprocessor

systems-on-chip (MPSoCs); that future embedded systems will be composed of
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Figure 6.1: (a) Block diagram of the ABS testcase. (b) The DTMC model with
states C and F removed.

tens and even hundreds of heterogeneous processing elements, including CPUs,

DSPs, FPGAs, ASICs, and mixed digital/analog blocks for communication. In

our assumed architecture platform (see Fig. 4.3), we assume two types of CPUs

similar to the recent multicore proposals that integrate high-performance “big”

and energy efficient “little” cores [61; 62; 63]. As HW components, we assume also

two different types of FPGAs; one type that is slower but consumes less power and

the other type that is faster but consumes more power. The FPGAs are assumed
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Figure 6.2: (a) Block diagram of the ACC testcase. (b) The DTMC model with
states C and F removed.

to be faster than the CPUs and can offer increased parallelism; they may not be

as fast as the ASIC cores, but, have the flexibility of reconfiguration.

Because we do not have available characterization data of actual execution

times on different components, we adopt generic execution times and failure rates

similar to [23], but with the assumption that execution times on HW components

are shorter than those of SW components. For the power consumption of different

components, we adopt values similar to those reported in [64]. Please note that,

the generality of our tool is not affected by these assumptions because once we
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Figure 6.3: (a) Block diagram of the H.264 testcase. (b) The DTMC model with
states C and F removed.

are given any HW/SW partitioning solution and more technology-specific data,

our tool can find the best (as a compromise between reliability, performance, and

energy) mapping solutions that are robust to pre-specified levels of uncertainty.
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Figure 6.4: (a) Block diagram of the JPEG testcase. (b) The DTMC model with
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6.1.2 Pareto Frontiers

In the first set of simulations, we use our tool to identify the robust Pareto frontier

in the (1-reliability) vs. performance vs. energy objective space for each of the

testcases. All attributes are assumed to be affected by uncertainties, and therefore,

they are estimated using the Monte Carlo technique described in Chapter 4. In

order to generate Pareto frontiers that are scale independent, we normalize the

performance and energy cost functions such that all values are inside the range

[0, 1]. The normalization of a given cost function is done according to: fnorm =
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Figure 6.5: Robust Pareto frontiers of the simulated testcases for 5% injected
uncertainty: (a) ABS, (b) ACC.

(f − fmin)/(fmax − fmin), where fmin and fmax are the minimum and maximum

or worst case scenario values of the respective objective cost function f . The cost
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Figure 6.6: Robust Pareto frontiers of the simulated testcases for 5% injected
uncertainty: (a) H.264, and (b) JPEG.

function (1-reliability) is already with values in the [0, 1] range, hence, it does not

require normalization.
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The simplified Pareto frontiers of all the testcases are shown in Fig. 6.5

and 6.6 for a level of 5% injected uncertainty. These Pareto frontiers are simplified

in the sense that they do not show all the actual solution points that were found to

be on these frontiers during the execution of our tool. During this simplification, we

basically select nine solution points from an actual Pareto frontier: three solution

points that are as close as possible to the center of coordinates, and three pairs of

two solution points that are very good in terms of only one of the three costs. We

do this in order to keep these figures simple, yet to give the user enough solutions

to choose from (the number of solutions can be changed if the user desired).

The solution points that are the closest to the system of coordinates repre-

sent solutions that the tool reports as being the best compromise among all three

objectives. The other solution points can be selected if any of the three objectives

is very important, depending on the application at hand. For example, if execu-

tion time or performance is highly critical, one of the two solution points that were

found to offer very good performance (but with worse energy consumption and

worse reliability) can be selected.

The ability to generate these 3D Pareto frontiers comprised of

robust solution points (robust in the sense described in Chapter 4) rep-

resents one of the main contributions of this thesis.

6.1.3 Different Levels of Uncertainty

Second, we investigate how the Pareto frontiers change for different levels of in-

jected uncertainty. Being able to study different levels of uncertainty can help in
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two different scenarios. First, it can help us conduct what if type of investigations.

For example, let us say that for a given technology node the uncertainty level is

assumed to be 5%, but, that this value itself is not completely certain. In this

case, we could investigate how the selected best solution found by the tool for

uncertainty 5% would change if the assumed uncertainty level itself is varied. Such

an investigation would help us see how the solution point moves in the 3D space

and whether it still satisfies the desired figures of merit for the application at hand.

This scenario is what we focus in this section.

However, as a second scenario, increasing levels of injected uncertainty can

emulate the less deterministic design parameter values due to increased variations

as we move toward deeper nonometer technology nodes. When the uncertainty

increases, the availability of a tool like ours becomes even more important because

it can help the designer to identify robust solution points, which are more immune

against parameter spread. However, when migrating from a technology node to

the next, the mean values (discussed in Chapter 4) of all the design parameters

assumed to be affected by uncertainty must be scaled accordingly.

The different levels of uncertainty that we simulated are: 0% (no uncer-

tainty, this is the deterministic case), 1%, 5%, and 10%. The simulations help to

shed light over how the Pareto frontier changes with the change in the amount of

injected uncertainty; under the assumption that the architecture platform remains

the same in terms of number of components and floorplan. For brevity, we show

here only the plots for the first testcase; the other testcases have similar plots.

These Pareto frontiers are shown in Fig. 6.7.
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Figure 6.8: Comparison between the deterministic approach (DA) and the robust
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Having the deterministic case as a reference, when uncertainty is injected,

the previously deterministic and fixed parameter values are replaced with samples

generated using various probability distributions, each characterized by a certain
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mean and standard deviation pair. The standard deviation value that is used is

directly related to the amount of desired uncertainty to be injected as discussed

earlier in the thesis. Thus, a previously deterministic design solution point degen-

erates into a probability distribution, whose 95 percentile estimate represents the

robust solution point that we use for constructing the robust Pareto frontiers. The

location of this point is most likely different from the location of the previously

deterministic design solution point. The amount of this change is within a vicinity

whose size is dictated by the amount of uncertainty injected.

For example, this can be seen in the zoom-in picture from Fig. 6.8, which

shows the four solution points for each of the four levels of injected uncertainty

for a given mapping solution. The zero injected uncertainty represents the deter-

ministic approach. Essentially, this figure illustrates how a solution point found

by traditional deterministic approaches can be off from the robust design solution

point identified by our tool for a given level of injected uncertainty. However,

by using our tool, we can identify this shift and quantify each of the found solu-

tion points in terms of reliability, performance, and energy per assumed amount

of uncertainty. Therefore, such a tool can aid embedded designers in finding the

appropriate solution points to be selected for a given application domain. Our

tool provides the means to investigate these changes. We view this as

another important contribution of this thesis.

It is noteworthy to observe also that these types of investigations could

be thought of also within a framework where we would be interested in for exam-

ple altering the architecture platform and possibly the mapping solution between
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different technology nodes or generations (characterized by different levels of un-

certainty) such that the increased uncertainties affect minimally the quality of a

previous design, while also having the desired confidence level that the estimated

figures of merit in simulations are reflective of what they will be in reality when

the entire system is manufactured and realized in practice. Such other types of

investigations will be the subject of our future work.

6.1.4 Consideration of Both Different Levels of Uncertainty and Un-

certainty Correlations

After conducting the comparison experiments for different levels of uncertainty

(DLOU), we further investigate how the Pareto frontiers change when correlations

between uncertainty sources are considered. The motivation example in Chap-

ter 3 answered the question of why we need to consider different levels of uncer-

tainty as well as uncertainty correlations. Then, in Chapter 4 we proposed a novel

uncertainty-aware analysis technique which considers both different levels of un-

certainty and uncertainty correlations (DLOU-UC). In this section, the proposed

uncertainty-aware analysis technique is implemented as a framework tool called

DESUU-II. We conduct comparison experiments for the Pareto frontiers obtained

by the DLOU technique (DESUU tool) and the DLOU-UC technique (DESUU-II

tool).

We assume all the CPUs in the target architecture are affected by the same

uncertainty source with injected 10% level of uncertainty, and all the FPGAs in the

target architecture are influenced by another same uncertainty source with injected
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5% level of uncertainty. Therefore, there are two correlation groups according to

the discussion in Chapter 4. We use the ABS testcase in these experiments.
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We compare the Pareto frontiers obtained by the DLOU (DESUU tool)

and the DLOU-UC (DESUU-II tool), the results are shown in Fig. 6.9. This figure

shows that the Pareto frontier obtained in the DLOU-UC technique is located far-

ther away from the system of coordinates when compared to the one obtained in the

DLOU technique. This difference between the Pareto frontiers is expected because

the DLOU technique analyzes the uncertainty among different components inde-

pendently, while the DLOU-UC technique considers the uncertainty correlations

among those components, which restricts the process of sampling of parameters

for all components in the Monte Carlo simulations.

With different Pareto frontiers obtained, the locations of the optimal solu-

tions obtained by the DLOU and the DLOU-UC are most likely to be different. For

example, this can be observed in the zoom-in picture from Fig. 6.10, which shows

that the optimal solution point obtained in the DLOU-UC technique is shifted

when compared with the one obtained in the DLOU technique. In other words,

if we use DLOU in uncertainty analysis, the solution may become suboptimal

because we would miss taking into consideration of uncertainty correlations.

6.1.5 Scalability of the Computational Runtime and Convergence

Here, we look into the computational complexity and seek insights into the con-

vergence of the algorithms. The computational complexity of the proposed tool

is primarily affected by two factors, for a given testcase size. These factors are

the number of iterations of the outer and inner loops from Fig. 4.1. To study

the scalability of the computational runtime with the number of iterations of the
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Figure 6.11: Computational runtime of our tool versus the number of iterations of
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outer loop, which corresponds to different number of solution populations explored

by the genetic algorithm, we plot in Fig. 6.11 the computational runtime of our

tool versus the number of iterations of the outer loop. This plot shows that the

computational runtime scales linearly.

Inside each iteration of the outer loop, we have a number of iterations of

the inner loop, which corresponds to the number of MC runs done for the purpose

of attribute estimation under uncertainties. The computational runtime of our

tool for a single iteration of the outer loop versus the number of MC runs is shown

in Fig. 6.12. This plot shows again a linear dependency.

While the computational runtime is fairly reasonable for the size of the

studied testcases, the question that arises though is how many iterations of the

Monte Carlo algorithm should be used. In other words, we are interested in finding
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Figure 6.12: Computational runtime of only one iteration of the top-level outer
loop versus the number of runs inside the Monte Carlo simulation.

out what is the minimum number of MC runs after which convergence in the

process of estimation is achieved. To answer this question, we looked at how the

number of MC runs impacted the convergence of the estimation of the objective

cost functions. This is illustrated by the plots in Fig. 6.13, where we can see that

after about 2000 iterations of the MC algorithm, each of the three attributes does

not fluctuate anymore.
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6.2 Conclusion

In this chapter, we report the Pareto frontiers obtained by the proposed design

method, which we implemented as a tool called DESUU. In addition, we investi-

gate different levels of injected uncertainty and provide simulation results. Fur-

thermore, we propose a novel uncertainty-aware analysis technique, which consid-

ers both different levels of uncertainty and uncertainty correlations. The proposed

uncertainty-aware analysis technique is implemented as a tool called DESUU-II.

Last but not the least, we analyze the scalability of the computational runtime

and convergence of the proposed design method.
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Figure 6.13: Illustration of the convergence of the MC simulation based estimation.
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CHAPTER 7

Conclusions

7.1 Conclusions and Future Work

To address the increased levels of design uncertainties in current and future em-

bedded systems, we presented a design methodology for the design of embedded

systems under uncertainties. We first formulate the problem of uncertainty aware

mapping for multicore embedded systems platforms as a multi-objective optimiza-

tion problem. Then, we present a solution to this problem that integrates un-

certainty models and optimization algorithms constructed with Monte Carlo and

evolutionary algorithms. The proposed methodology is implemented as a tool

called DESUU that is capable of finding the robust Pareto frontiers in the objec-

tive space for a given testcase application, architecture platform, and given levels

of injected uncertainties. Furthermore, to model uncertainty correlations between

architecture components affected by multiple uncertainty sources, we propose a

novel uncertainty-aware analysis technique with consideration of both uncertainty

correlations and different levels of uncertainty. The proposed uncertainty-aware

analysis technique is implemented as a tool called DESUU-II.

We conduct two sets of simulation experiments with different architecture

platforms and testcases: comparison to traditional method and simulations on the

proposed robust method, scalability analysis. Simulation results demonstrated the

effectiveness of the proposed design method.
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In future work, we plan to also include scheduling [65] into our problem

formulation and to investigate architecture models that use networks-on-chip for

communication. Architecture platform synthesis with direct consideration of all

three objectives is also an interesting problem to investigate.
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