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Germany 

1. Introduction 

Reinforcement learning (RL) (Sutton & Barto, 1998) is the machine learning answer to the 
optimal control problem and has been proven to be a promising solution to a wide variety of 
industrial application domains (e.g., Schaefer et al., 2007; Stephan et al., 2000), including 
robot control (e.g., Merke & Riedmiller, 2001; Abbeel et al., 2006; Lee et al., 2006; Peters & 
Schaal, 2008). 
In contrast to many classical approaches, building upon extensive domain knowledge, RL 
aims to derive an optimal policy (i.e., control strategy) from observations only, acquired by 
the exploration of an unknown environment. For a limited amount of observations the 
collected information may not be sufficient to fully determine the environment’s properties. 
Assuming the environment to be a Markov decision process (MDP), it is in general only 
possible to create estimators for the MDP’s transition probabilities and the reward function. 
As the true parameters remain uncertain, the derived policy that is optimal w.r.t. the 
estimators is in general not optimal w.r.t. the real MDP and may even perform 
insufficiently. This is unacceptable in industrial environments with high requirements not 
only on performance, but also robustness and quality assurance. 
To overcome this problem, we incorporate the uncertainties of the estimators into the 
derived Q-function, which is utilised by many RL methods. In order to guarantee a minimal 
performance with a given probability, as a solution to quality assurance, we present an 
approach using statistical uncertainty propagation (UP) (e.g., D’Agostini, 2003) on the 
Bellman iteration to obtain Q-functions together with their uncertainty. In a second step, we 
introduce a modified Bellman operator, jointly optimising the Q-function and minimising its 
uncertainty. This method leads to a policy that is no more optimal in the conventional 
meaning, but maximizes the guaranteed minimal performance and hence optimises the 
quality requirements. In addition, we show that the approach can be used for efficient 
exploration as well. In the following we apply the technique exemplarily on discrete MDPs. 
This chapter is organised as follows. Within the introduction we give an overview of RL and 
uncertainty and report on related work. The key section 2 discusses how to bring the concepts 
of RL and uncertainty together. We explain the application of uncertainty propagation to the 
Bellman iteration for policy evaluation and policy iteration for discrete MDPs and proceed 
with section 3, where we introduce the concept of certain-optimality. We further discuss the 
important observation that certain-optimal policies are stochastic in general (section 4), having 
a direct impact on the algorithmic solution. Our approach provides a general framework for 
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different statistical paradigms, we elaborate on this generic view as well as important 
examples and their advantages and disadvantages in section 5. Section 6 focuses on a possible 
solution to asymptotically improve the algorithm’s time and space complexity and section 7 
explains how the proposed concepts can be used to effectively rise to the exploration-
exploitation dilemma by seeking uncertain areas of the environment. Finally, in section 8, we 
focus on the three main application fields quality assurance, exploration, and performance 
improvement and prove our claims with artificial and industrial benchmarks. 

1.1 Reinforcement learning 
In (RL) the main objective is to achieve a policy that optimally moves an agent within a 
Markov decision process (MDP), which is given by state and action spaces S and A as well 
as the dynamics, defined by a transition probability distribution PT: S × A × S → [0,1] 
depending on the the current state, the chosen action, and the successor state. The agent 
collects rewards while transiting, whose expected discounted future sum 

 ( )( )( ) ( ) ( 1)

=0

( ) = E , , ,i i ii
s

i

V s R s s sπ π γ π
∞

+⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  (1) 

the value function, has to be maximised over the policy space Π = {π|π : S→ A} for all 

possible states s, where 0 < γ < 1 is the discount factor, s′  the successor state of s, π ∈ Π the 

used policy, and ( )= { , , , , }.is s s s′ ′′… …  As an intermediate step one constructs a so-called  

Q-function ( , )Q s aπ  depending on the current state and the chosen action. The optimal 
** =Q Qπ  is determined by a solution of the Bellman optimality equation 

 ( )* *( , ) = E ( , , ) ( )sQ s a R s a s V sγ′ ′ ′+  (2) 

                           ( )*= E ( , , ) ( , ) .maxs
a

R s a s Q s aγ′
′

′ ′ ′+  (3) 

Therefore the best policy is π*(s) = argmaxa Q*(s, a). We define the Bellman operator T as 

(TQ)(s, a) = Es’ (R(s, a, s’) + γ maxa’ Q(s’, a’)) for any Q. The fixed point of Q = Solve(TQ), i.e., 
the Bellman operator followed by its projection on the Q-function’s hypothesis space, is the 
approached solution (Sutton & Barto, 1998; Lagoudakis & Parr, 2003; Munos, 2003). Given 
the parameters of the MDP, i.e., the definitions of the state and the action space, the 
transition probabilities, and the reward function, this solution can be found using dynamic 
programming. 
For further details and a more broad and general introduction to RL we refer to Sutton & 
Barto (1998) or Kaelbling et al. (1996). 

1.2 Uncertainty 
Statistical uncertainty is a crucial issue in many application fields of statistics including the 
machine learning domain. It is well accepted that any measurement in nature and any 
conclusion from measurements are affected by an uncertainty. The International 
Organization for Standardization (ISO) defines uncertainty to be 

“a parameter, associated with the result of a measurement, that characterizes the 
dispersion of the values that could reasonably be attributed to the measurand” 
(ISO, 1993). 
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We focus on the determination, quantisation, and minimisation of uncertainty of the 
measurements’ conclusions in the context of RL, i.e., the uncertainties of Q-functions and 
policies. The reason for uncertainty in RL is the ignorance about the true environment, i.e., 
the true MDP. The more observations are collected, the more certain the observer is about 
the MDP. And the larger the stochasticity, the more uncertainty remains about the MDP for 
a given amount of observations. And indeed, if the MDP is known to be completely 
deterministic, everything is known about a state-action pair if it is observed once. There is 
no uncertainty left. If in contrast the system is highly stochastic, the risk of obtaining a low 
long-term return in expectation is large. 
Note that the mentioned uncertainty is therefore qualitatively different from the MDP’s 
stochasticity leading to the risk of obtaining a low long-term return in the single run. The 
main difference is that the latter considers the inherent stochasticity of the MDP, whereas 
uncertainty considers the stochasticity of choosing an MDP from a set of MDPs. 

The uncertainty of the measurements, i.e., the transitions and rewards, are propagated to the 

conclusions, e.g., the Q-function, by uncertainty propagation (UP), which is a common 

concept in statistics (D’Agostini, 2003). We determine the uncertainty of values f(x) with  

f: Rm →Rn given the uncertainty of their arguments x as 

 Cov( ) = Cov( , ) = Cov(x) ,Tf f f D D  (4) 

where , =
x

i
i j

j

f
D

∂
∂

 is the Jacobian matrix of f w.r.t. x and Cov(x) = Cov(x,x) the covariance 

matrix of the arguments x holding the uncertainty of x. 
In the following, we usually work on multi-dimensional objects, having several indices, rather 
than vectors like f or x, having a single index. Therefore, those objects have to be appropriately 
vectorised. This can be done by any enumeration and is only of technical importance. 

1.3 Related work 

There have already been several contributions to estimate generalisation, confidence, and 
performance bounds in RL. We consider the work of Bertsekas & Tsitsiklis (1996), who gave 
lower-bounds on the policy’s performance by using policy iteration techniques, which were 
substantially improved by Munos (2003). Kearns et al. (2000) discussed error-bounds for a 
theoretical policy search algorithm based on trajectory trees. Capacity results on policy 
evaluation are given by Peshkin & Mukherjee (2001). Antos et al. (2006) provided a broad 
capacity analysis of Bellman residual minimisation in batch RL. Incorporating prior 
knowledge about confidence and uncertainty directly into the approached policy were 
already applied in former work as well in the context of Bayesian RL. We especially mention 
the work of Engel et al. (2003; 2005), Gaussian process temporal difference learning (GPTD), 
and a similar approach by Rasmussen & Kuss (2003). They applied Gaussian processes and 
hence a prior distribution over value functions in RL, which is updated to posteriors by 
observing samples from the MDP. Ghavamzadeh & Engel recently developed algorithms for 
Bayesian policy gradient RL (2006) and Bayesian actor-critic RL (2007) as further model-free 
approaches to Bayesian RL. In all these methods Gaussian processes are applied to obtain 
the value function and the policy’s gradient, respectively. 
In model-based approaches, however, one starts with a natural local measure of the 
uncertainty of the transition probabilities and rewards. One of the first contributions in the 
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context of RL is provided by Dearden et al. (1998; 1999), who applied Q-learning in a 
Bayesian framework with an application to the exploration-exploitation trade-off. Poupart et 
al. (2006) present an approach for efficient online learning and exploration in a Bayesian 
context, they ascribe Bayesian RL to POMDPs. Besides, statistical uncertainty consideration 
is similar to, but strictly demarcated from other issues that deal with uncertainty and risk 
consideration. Consider the work of Heger (1994) and of Geibel (2001). They deal with risk 
in the context of undesirable states. Mihatsch & Neuneier (2002) developed a method to 
incorporate the inherent stochasticity of the MDP. Most related to our approach is the recent 
independent work by Delage & Mannor (2007), who solved the percentile optimisation 
problem by convex optimization and applied it to the exploration-exploitation trade-off. 
They suppose special priors on the MDP’s parameters, whereas the present work has no 
such requirements and can be applied in a more general context of RL methods. 

2. Bellman iteration and uncertainty propagation 

Our concept of incorporating uncertainty into RL consists in applying UP to the Bellman 
iteration (Schneegass et al., 2008) 

 1( , )       ( )( , )m m
i j i jQ s a TQ s a−:=  (5) 

                                                
| |

1

=1

=     ( | , )( ( , , ) ( )),
S

m
k i j i j k k

k

P s s a R s a s V sγ −+∑  (6) 

here for discrete MDPs. For policy evaluation we have Vm(s) = Qm(s,π(s)), with π  the used 

policy, and for policy iteration Vm(s) = maxa∈A Q
m(s, a) (section 1.1). Thereby we assume a 

finite number of states si, i ∈ {1, . . . , |S|}, and actions aj, j ∈ {1, . . . , |A|}. The Bellman 

iteration converges, with m → ∞, to the optimal Q-function, which is appropriate to the 

estimators P and R. In the general stochastic case, which will be important later, we set 
| |

=1
( ) = ( , ) ( , )

Am m
i ii

V s s a Q s aπ∑  with π(s, a) the probability of choosing a in s. To obtain the 

uncertainty of the approached Q-function, the technique of UP is applied in parallel to the 

Bellman iteration. With given covariance matrices Cov(P), Cov(R), and Cov(P,R) for the 

transition probabilities and the rewards, we obtain the initial complete covariance matrix 

 0

0 0 0

Cov( , , ) = 0 Cov( ) Cov( , )

0 Cov( , ) Cov( )T

Q P R P P R

P R R

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (7) 

and the complete covariance matrix after the mth Bellman iteration 

 ( )( )1 1 1Cov( , , )      Cov , ,
Tm m m mQ P R D Q P R D− − −:=  (8) 

with the Jacobian matrix 

      
, , ,

= 0 I 0 ,

0 0 I

m m m
Q Q Q P Q R

m

D D D

D

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (9) 
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  ( )
, ( , ),( , )

, ( , ),( , , ) , ,

, ( , ),( , , ) , ,

 ( )    =     ( , ) ( | , ),

( )    =    ( , , ) ( ) ,

( )    =    ( | , ).

m
Q Q i j k l k l k i j

m m
Q P i j l n k i l j n i j k k

m
Q R i j l n k i l j n k i j

D s a P s s a

D R s a s V s

D P s s a

γπ

δ δ γ

δ δ

+  

 In combination with the expanded Bellman iteration  

 ( ) ( )1      
T Tm mQ P R TQ P R−:=  (10) 

the presented uncertainty propagation allows to obtain the covariances between Q-function 

and P and R, respectively. All parameters of Qm are linear in Qm, altogether it is a bi-linear 
function. Therefore, UP is indeed approximately applicable in this setting (D’Agostini, 2003). 

Having identified the fixed point consisting of Q* and its covariance Cov(Q*), the uncertainty 
of each individual state-action pair is represented by the square root of the diagonal entries 

* *= diag(Cov( ))Q Qσ , since the diagonal comprises the Q-values’ variances. 

Finally, with probability P(ξ) depending on the distribution class of Q, the function 

 * * *( , ) = ( )( , )uQ s a Q Q s aξσ−  (11) 

provides the guaranteed performance expectation applying action a in state s strictly 

followed by the policy π*(s) = argmaxa Q*(s, a). Suppose exemplarily Q to be distributed 

normally, then the choice ξ = 2 would lead to the guaranteed performance with P(2) ≈ 0.977. 
The appendix provides a proof of existence and uniqueness of the fixed point consisting of 
Q* and Cov(Q*). 

3. Certain-optimality 

The knowledge of uncertainty may help in many areas, e.g., improved exploration (see 

section 7), a general understanding of quality and risks related to the policy’s actual usage, 

but it does not help to improve the guaranteed performance in a principled manner. By 

applying π(s) = argmaxa 
*
uQ (s, a), the uncertainty would not be estimated correctly as the 

agent is only allowed once to decide for another action than the approached policy suggests. 
To overcome this problem, we want to approach a so-called certain-optimal policy, which 

maximises the guaranteed performance. The idea is to obtain a policy π  that is optimal w.r.t. 
a specified confidence level, i.e., which maximises Z(s, a) for all s and a such that 

 ( )( , ) > ( , ) > ( )P Q s a Z s a Pπ ξ  (12) 

is fulfilled, where Qπ  denotes the true performance function of π  and P(ξ) being a 

prespecified probability. We approach such a solution by approximating Z by uQπ  and 

solving 

 ( )   =    argmax max ( , )u
a

s Q s aξ π

π
π  (13) 

                            =    argmax max( )( , )
a

Q Q s aπ π

π
ξσ−  (14) 
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under the constraints that =Q Q
ξπ ξ  is the valid Q-function for π ξ , i.e., 

 
| |

=1

( , ) = ( | , )( ( , , ) ( , ( ))).
S

i j k i j i j k k k
k

Q s a P s s a R s a s Q s sξ ξ ξγ π+∑  (15) 

Relating to the Bellman iteration, Q shall be a fixed point not w.r.t. the value function as the 
maximum over all Q-values, but the maximum over the Q-values minus its weighted 
uncertainty. Therefore, one has to choose 

 ( )      argmax ( )( , )m m m

a

s Q Q s aπ ξσ:= −   (16) 

after each iteration, together with an update of the uncertainties according to the modified 

policy πm. 

4. Stochasticity of certain-optimal policies 

Policy evaluation can be applied to obtain deterministic or stochastic policies. In the 
framework of MDPs an optimal policy which is deterministic always exists (Puterman, 

1994). For certain-optimal policies, however, the situation is different. Particularly, for ξ > 0 

there is a bias on ξσQ(s,π(s)) being larger than ξσQ(s, a), a ≠ π(s), if π  is the evaluated policy, 

since R(s,π(s), s’) depends stronger on V(s’) = Q(s’,π(s’)) than R(s, a, s’), a ≠ π(s). The value 

function implies the choice of action π(s) for all further occurrences of state s. Therefore, the 
(deterministic) joint iteration is not necessarily guaranteed to converge. I.e., switching the 

policy π  to π ’ with Q(s,π ’(s)) — ξσQ(s,π ’(s)) > Q(s,π(s)) — ξσQ(s,π(s)) could lead to a larger 

uncertainty of π ’ at s and hence to Q’(s,π ’(s)) — ξσQ’(s,π ’(s)) < Q’(s,π(s)) — ξσQ’(s,π(s)) for 
Q’ at the next iteration. This causes an oscillation. 
Additionally, there is another effect causing an oscillation when there is a certain 
constellation of Q-values and corresponding uncertainties of concurring actions. Consider 
two actions a1 and a2 in a state s with similar Q-values but different uncertainties, a1 having 
an only slightly higher Q-value but a larger uncertainty. The uncertainty-aware policy 

improvement step (equation (16)) would alter πm to choose a2, the action with the smaller 
uncertainty. However, the fact that this action is inferior might only become obvious in the 

next iteration when the value function is updated for the altered πm (and now implying the 
choice of a2 in s). In the following policy improvement step the policy will be changed back 
to choose a1 in s, since now the Q-function reflects the inferiority of a2. After the next update 
of the Q-function, the values for both actions will be similar again, because now the value 
function implies the choice of a1 and the bad effect of a2 affects Q(s, a2) only once. 
It is intuitively apparent that a certain-optimal policy should be stochastic in general if the 
gain in value must be balanced with the gain in certainty, i.e., with a decreasing risk of 
having estimated the wrong MDP. The risk to obtain a low expected return is hence reduced 
by diversification, a well-known method in many industries and applications. 

The value ξ decides about the cost of certainty. If ξ >0 is large, certain-optimal policies tend 
to become more stochastic, one pays a price for the benefit of a guaranteed minimal 

performance, whereas a small ξ ≤ 0 guarantees deterministic certain-optimal policies and 
uncertainty takes on the meaning of the chance for a high performance. Therefore, we finally 
define a stochastic uncertainty incorporating Bellman iteration as 
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⎧
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⎪
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  (18) 

and aQ(s) = argmaxa (Q — ξσQ)(s, a). The harmonically decreasing change rate of the 
stochastic policies guarantees reachability of all policies on the one hand and convergence 
on the other hand. Algorithm 1 summarises the joint iteration.1 
 

Algorithm 1 Uncertainty Incorporating Joint Iteration for Discrete MDPs

Require: given estimators P and R for a discrete MDP, initial covariance matrices Cov(P),
Cov(R), and Cov(P,R) as well as a scalar ξ

Ensure: calculates a certain-optimal Q-function Q and policy π under the assumption of the
observations and the posteriors given by Cov(P), Cov(R), and Cov(P,R)

set C =
0 0 0
0 Cov(P) Cov(P,R)
0 Cov(P,R)T Cov(R)

set i, j : Q(si, aj) = 0, ∀i, j : π (si, aj ) = 1
|A|

, t = 0

while the desired precision is not reached do
set t = t + 1
set ∀i, j : (σQ)( si, aj) =

find ∀i : ai,max = argmaxaj (Q − ξ σQ)( si, aj)

set ∀i : di,diff = min( 1
t ,1 − π (si, ai,max))

set ∀i : π (si, ai,max) = π (si, ai,max) + di,diff

set ∀i : ∀aj ai,max : π (si, aj) = 1− π (si ,ai,max)
1− π (s,ai,max)+ di,diff

π (si, aj)

set ∀i, j : Q’(si, aj) = ∑
|S|
k= 1 P(sk|si, aj) (R(si, aj, sk) + γ ∑

|A|
l= 1 π (sk, al)Q(sk, al))

set Q = Q’

set D =
DQ,Q DQ,P DQ,R

0 I 0
0 0 I

set C = DCDT

end while
return Q − ξσQ and π

( )
∀

| | , | |i A j i A jC + +

≠

( )

 

                                                 

1 Sample implementations of our algorithms and benchmark problems can be found at:  

http: //ahans.de/publications/robotlearning2010uncertainty/ 
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The function uQξ (s, a)=(Qx — ξσQx)(s, a) with (Qx ,Cx ,πx) as the fixed point of the (stochastic) 

joint iteration for given ξ provides, with probability P(ξ) depending on the distribution class 
of Q, the guaranteed performance applying action a in state s strictly followed by the 

stochastic policy πx. First and foremost, πx maximises the guaranteed performance and is 

therefore called a certain-optimal policy. 

5. The initial covariance matrix – statistical paradigms 

The initial covariance matrix 

 
Cov( , ) Cov( , )

Cov(( , )) =
Cov( , ) Cov( , )T

P P P R
P R

P R R R

⎛ ⎞
⎜ ⎟
⎝ ⎠

  (19) 

has to be designed by problem dependent prior belief. If, e.g., all transitions from different 
state-action pairs and the rewards are assumed to be mutually independent, all transitions 
can be modelled as multinomial distributions. In a Bayesian context one supposes a priorly 
known distribution (D’Agostini, 2003; MacKay, 2003) over the parameter space P(sk|si, aj) for 
given i and j. The Dirichlet distribution with density 

 
| | 1, , ,

1 | | , , | |1, , | |, ,
=1

, ,
=1

( )
( ( | , ), , ( | , )) = ( | , )

( )

S
i j k i j

i j S i j k i jSi j S i j
k

k i j
k

P P s s a P s s a P s s a
α

α α

α

α

−Γ

Γ
∏

∏
……   (20) 

and 
| |

, , ,=1
=

S

i j k i jk
α α∑  is a conjugate prior in this case with posterior parameters 

 , , , , | ,=d
k i j k i j s s ak i j

nα α +   (21) 

in the light of the observations occurring | ,s s ak i j
n  times a transition from si to sk by using 

action aj. The initial covariance matrix for P then becomes 

 , , , , , ,

( , , ),( , , ) , , 2
, ,

( )
(Cov( )) = ,

( ) ( 1)

d d d
k i j k n i j n i j

i j k l m n i l j m d d
i j i j

P
α δ α α

δ δ
α α

−

+
  (22) 

assuming the posterior estimator , , ,( | , ) = /d d
k i j k i j i jP s s a α α . Similarly, the rewards might be 

distributed normally with the normal-gamma distribution as a conjugate prior. 
As a simplification or by using the frequentist paradigm, it is also possible to use the relative 
frequency as the expected transition probabilities with their uncertainties 

 ,

( , , ),( , , ) , ,

,

( | , )( ( | , ))
(Cov( )) =

1
i j

k i j k n n i j

i j k l m n i l j m

s a

P s s a P s s a
P

n

δ
δ δ

−

−
  (23) 

with ,i js an  observed transitions from the state-action pair (si, aj). 
Similarly, the rewards expectations become their sample means and Cov(R) a diagonal 
matrix with entries 

 
| ,

Var( ( , , ))
Cov( ( , , )) = .

1

i j k

i j k

s s ak i j

R s a s
R s a s

n −
  (24) 
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The frequentist view and the conjugate priors have the advantage of being computationally 
feasible, nevertheless, the method is not restricted to them, any meaningful covariance 
matrix Cov((P,R)) is allowed. Particularly, applying covariances between the transitions 
starting from different state-action pairs and between states and rewards is reasonable and 
interesting, if there is some measure of neighbourhood over the state-action space. Crucial is 
finally that the prior represents the user’s belief. 

6. Improving asymptotic performance 

The proposed algorithm’s time complexity per iteration is of higher order than the standard 

Bellman iteration’s one, which needs O(|S|2|A|) time (O(|S|2|A|2) for stochastic policies). 

The bottleneck is the covariance update with a time complexity of O((|S||A|)2.376) 

(Coppersmith & Winograd, 1990), since each entry of Q depends only on |S| entries of P 

and R. The overall complexity is hence bounded by these magnitudes. 
This complexity can limit the applicability of the algorithm for problems with more than a 
few hundred states. To circumvent this issue, it is possible to use an approximate version of 
the algorithm that considers only the diagonal of the covariance matrix. We call this variant 
the diagonal approximation of uncertainty incorporating policy iteration (DUIPI) (Hans & Udluft, 
2009). Only considering the diagonal neglects the correlations between the state-action pairs, 
which in fact are small for many RL problems, where on average different state-action pairs 
share only little probability to reach the same successor state. 

DUIPI is easier to implement and, most importantly, lies in the same complexity class as the 

standard Bellman iteration. In the following we will derive the update equations for DUIPI. 

When neglecting correlations, the uncertainty of values f(x) with f : Rm →Rn, given the 

uncertainty of the arguments x as σx, is determined as 

 

2

2 2( ) = ( ) .i
i i

f
f x

x
σ σ

⎛ ⎞∂
⎜ ⎟

∂⎝ ⎠
∑  (25) 

This is equivalent to equation (4) of full-matrix UP with all non-diagonal elements set equal 
to zero. 
The update step of the Bellman iteration, 

 1( , ) ( | , ) ( , , ) ( ) ,m m

s

Q s a P s s a R s a s V sγ −

′

′ ′ ′⎡ ⎤:= +⎣ ⎦∑  (26) 

can be regarded as a function of the estimated transition probabilities P and rewards R, and 

the Q-function of the previous iteration Qm-1 (Vm-1 is a subset of Qm-1), that yields the updated 

Q-function Qm. Applying UP as given by equation (25) to the Bellman iteration, one obtains 

an update equation for the Q-function’s uncertainty: 

2 2 1 2
,( ( , ))         ( ) ( ( ))m m

Q Q
s

Q s a D V sσ σ −

′

′:= +∑  

                                   2 2
,( ) ( ( | , ))Q P

s

D P s s aσ
′

′ +∑  

                                 2 2
,( ) ( ( , , )) ,Q R

s

D R s a sσ
′

′∑  (27) 
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 1
, , ,= ( | , ), = ( , , ) ( ), = ( | , ).m

Q Q Q P Q RD P s s a D R s a s V s D P s s aγ γ −′ ′ ′ ′+  (28) 

Vm and σVm have to be set depending on the desired type of the policy (stochastic or 

deterministic) and whether policy evaluation or policy iteration is performed. E.g., for policy 

evaluation of a stochastic policy π 

 ( )   =    ( | ) ( , ),m m

a

V s a s Q s aπ∑  (29) 

 2 2 2( ( )) = ( | ) ( ( , )) .m m

a

V s a s Q s aσ π σ∑  (30) 

For policy iteration, according to the Bellman optimality equation and resulting in the Q-

function Q* of an optimal policy, Vm(s) = maxa
 Qm(s, a) and (σVm(s))2 = (σQm(s,argmaxa

 Qm 

(s, a)))2. 

Using the estimators P and R with their uncertainties σP and σR and starting with an initial 

Q-function Q0 and corresponding uncertainty σQ0, e.g., Q0 := 0 and σQ0 := 0, through the 
update equations (26) and (27) the Q-function and corresponding uncertainty are updated in 

each iteration and converge to Q
π 

and σQ
π 

for policy evaluation and Q* and σQ* for policy 
iteration. 
Like the full-matrix algorithm DUIPI can be used with any choice of estimator, e.g., a 

Bayesian setting using Dirichlet priors or the frequentist paradigm (see section 5). The only 

requirement is the possibility to access the estimator’s uncertainties σP and σR. In Hans & 

Udluft (2009) and section 8.2 we give results of experiments using the full-matrix version 

and DUIPI and compare the algorithms for various applications. 

 

Algorithm 2 Diagonal Approximation of Uncertainty Incorporating Policy Iteration

Require: estimators P and R for a discrete MDP, their uncertainties σP and σR, a scalar ξ
Ensure: calculates a certain-optimal policy π

set ∀i, j : Q(si, aj) = 0, (σQ)2(si, aj) = 0

set ∀i, j : π (si, aj) = 1
|A|

, t = 0

while the desired precision is not reached do
set t = t + 1
set ∀s : as,max = argmaxaQ(s, a) − ξ

∀s : ds = min(1/t,1 − π (as,max|s))
set ∀s : π (as,max|s) = π (as,max|s) + ds

set ∀s : ∀a as,max : π (a|s) = 1− π (as,max|s)
1− π (as,max|s)+ ds

π (a|s)

set ∀s : V(s) = ∑a π (s, a)Q(s, a)
set ∀s : (σV)2(s) = ∑a π (s, a)(σQ)2(s, a)
set ∀s, a : Q’(s, a) = ∑s’ P(s’|s, a) R(s, a, s’) + γV(s )]

set ∀s, a : (σQ’)2(s, a) =
∑s(DQ,Q)2(σV)2(s’) + ( DQ,P)2(σP)2(s’|s, a) + ( DQ,R)2(σR)2(s, a, s’)

set Q = Q’, (σQ)2 = ( σQ’)2

end while
return π

2( ) ( , )Q s aσ

≠

[ ’
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7. Uncertainty-based exploration 

Since RL is usually used with an initially unknown environment, it is necessary to explore 
the environment in order to gather knowledge. In that context the so-called exploration-
exploitation dilemma arises: when should the agent stop trying to gain more information 
(explore) and start to act optimally w.r.t. already gathered information (exploit)? Note that 
this decision does not have to be a binary one. A good solution of the exploration-
exploitation problem could also gradually reduce the amount of exploration and increase 
the amount of exploitation, perhaps eventually stopping exploration altogether. 
The algorithms proposed in this chapter can be used to balance exploration and exploitation 
by combining existing (already gathered) knowledge and uncertainty about the 
environment to further explore areas that seem promising judging by the current 
knowledge. Moreover, by aiming at obtaining high rewards and decreasing uncertainty at 
the same time, good online performance is possible (Hans & Udluft, 2010). 

7.1 Efficient exploration in reinforcement learning 

There have been many contributions considering efficient exploration in RL. E.g., Dearden 
et al. (1998) presented Bayesian Q-learning, a Bayesian model-free approach that maintains 
probability distributions over Q-values. They either select an action stochastically according 
to the probability that it is optimal or select an action based on value of information, i.e., select 
the action that maximises the sum of Q-value (according to the current belief) and expected 
gain in information. They later added a Bayesian model-based method that maintains a 
distribution over MDPs, determines value functions for sampled MDPs, and then uses those 
value functions to approximate the true value distribution (Dearden et al., 1999). In model-
based interval estimation (MBIE) one tries to build confidence intervals for the transition 
probability and reward estimates and then optimistically selects the action maximising the 
value within those confidence intervals (Wiering & Schmidhuber, 1998; Strehl & Littman, 
2008). Strehl & Littman (2008) proved that MBIE is able to find near-optimal policies in 

polynomial time. This was first shown by Kearns & Singh (1998) for their E3
 algorithm and 

later by Brafman & Tennenholtz (2003) for the simpler R-Max algorithm. R-Max takes one 
parameter C, which is the number of times a state-action pair (s, a) must have been observed 
until its actual Q-value estimate is used in the Bellman iteration. If it has been observed 

fewer times, its value is assumed as Q(s, a) = Rmax/(1 — γ), which is the maximum possible 
Q-value (Rmax is the maximum possible reward). This way exploration of state-action pairs 
that have been observed fewer than C times is fostered. Strehl & Littman (2008) presented an 
additional algorithm called model-based interval estimation with exploration bonus (MBIE-EB) 
for which they also prove its optimality. According to their experiments, it performs 
similarly to MBIE. MBIE-EB alters the Bellman equation to include an exploration bonus 

term ,/ s anβ , where β  is a parameter of the algorithm and ns,a the number of times state-

action pair (s, a) has been observed. 

7.2 Uncertainty propagation for exploration 

Using full-matrix uncertainty propagation or DUIPI with the parameter ξ set to a negative 
value it is possible to derive a policy that balances exploration and exploitation: 

 * *( ) argmax ( )( , ).
a

s Q Q s aξπ ξσ:= −   (31) 
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However, like in the quality assurance context, this would allow to consider the uncertainty 
only for one step. To allow the resulting policy to plan the exploration, it is necessary to 
include the uncertainty-aware update of the policy in the iteration as described in section 3. 

Section 3 proposes to update the policy π m using Qm and σQm in each iteration and then 

using π m in the next iteration to obtain Qm+1 and σQm+1. This way Q-values and uncertainties 

are not mixed, the Q-function remains the valid Q-function of the resulting policy. Another 

possibility consists in modifying the Q-values in the iteration with the ξ-weighted 

uncertainty. However, this leads to a Q-function that is no longer the Q-function of the 

policy, as it contains not only the sum of (discounted) rewards, but also uncertainties. 

Therefore, using a Q and σQ obtained this way it is not possible to reason about expected 

rewards and uncertainties when following this policy. Moreover, when using a negative 

ξ  for exploration the Q-function does not converge in general for this update scheme, 

because in each iteration the Q-function is increased by the ξ-weighted uncertainty, which in 

turn leads to higher uncertainties in the next iteration. On the other hand, by choosing ξ and 

γ  to satisfy ξ + γ < 1 we were able to keep Q and σQ from diverging. Used with DUIPI this 

update scheme gives rise to a DUIPI variation called DUIPI with Q-modification (DUIPI-QM) 

which has proven useful in our experiments (section 8.2), as DUIPI-QM works well even for 

environments that exhibit high correlations between different state-action pairs, because 

through this update scheme of mixing Q-values and uncertainties the uncertainty is 

propagated through the Q-values. 

8. Applications 

The presented techniques offer at least three different types of application, which are 
important in various practical domains. 

8.1 Quality assurance and competitions 

With a positive ξ  one aims at a guaranteed minimal performance of a policy. To optimise 
this minimal performance, we introduced the concept of certain-optimality. The main 
practical motivation is to avoid delivering an inferior policy. To simply be aware of the 
quantification of uncertainty helps to appreciate how well one can count on the result. If the 
guaranteed Q-value for a specified start state is insufficient, more observations must be 
provided in order to reduce the uncertainty. 
If the exploration is expensive and the system critical such that the performance probability 
has definitely to be fulfilled, it is reasonable to bring out the best from this concept. This can 
be achieved by a certain-optimal policy. One abandons “on average” optimality in order to 
perform as good as possible at the specified confidence level. 
Another application field, the counter-part of quality assurance, are competitions, which is 

symmetrical to quality assurance by using negative ξ. The agent shall follow a policy that 
gives it the chance to perform exceedingly well and thus to win. In this case, certain-
optimality comes again into play as the performance expectation is not the criterion, but the 
percentile performance. 

8.1.1 Benchmarks 

For demonstration of the quality assurance and competition aspects as well as the properties 
of certain-optimal policies, we applied the joint iteration on (fixed) data sets for two simple 
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classes of MDPs. Furthermore, we sampled over the space of allowed MDPs from their 
(fixed) prior distribution. As a result we achieve a posterior of the possible performances for 
each policy. 
We have chosen a simple bandit problem with one state and two actions and a class of two-
state MDPs with each two actions. The transition probabilities are assumed to be distributed 
multinomially for each start state, using the maximum entropy prior, i.e., the Beta 
distribution with α = β = 1. For the rewards we assumed a normal distribution with fixed 

variance σ0 = 1 and a normal prior for the mean with μ = 0 and σ = 1. Transition probabilities 
and rewards for different state-action-pairs are assumed to be mutually independent. For 
the latter benchmark, for instance, we defined to have made the following observations 
(states s, actions a, and rewards r) over time: 

     s = (1, 1, 1, 1, 1, 2, 2, 2, 2, 2,2),  (32) 

 a = (1, 1, 2, 2, 1, 1, 1, 2, 2,2),  (33) 

          r = (1.35, 1, 1, 1, 1, 1, 0, 0, 1,—1).  (34) 

On the basis of those observations we deployed the joint Bellman iteration for different 

values of ξ, each leading to a policy π 
ξ 
that depends on ξ  only. The estimates for P and R as 

well as the initial covariance matrix C0 are chosen in such a way, that they exactly 

correspond with the above mentioned posterior distributions. Concurrently, we sampled 

MDPs from the respective prior distribution. On each of these MDPs we tested the defined 

policies and weighted their performance probabilities with the likelihood to observe the 

defined observations given the sampled MDP. 

8.1.2 Results 
Figure 1 shows the performance posterior distributions for different policies on the two-
state MDP problem. Obviously, expectation and variance adopt different values per policy. 
The expectation-optimal policy reaches the highest expectation whereas the certain and 
stochastic policies show a lower variance and the competition policy has a wider 
performance distribution. Each of these properties is exactly the precondition for the aspired 
behaviour of the respective policy type. 
The figures 2 left (bandit problem) and 2 right (two-state MDP problem) depict the percentile 
performance curves of different policies. In case of the two-state MDP benchmark, these are 
the same policies as in figure 1 (same colour, same line style), enriched by additional ones. The 
cumulative distribution of the policies’ performances is exactly the inverse function of the 
graphs in figure 2. Thereby we facilitate a comparison of the performances on different 
percentiles. The right figure clearly states that the fully stochastic policy shows superior 
performance at the 10th percentile whereas a deterministic policy, different from the 
expectation-optimal one, achieves the best performance at the 90th percentile. 
In table 1 we listed the derived policies and the estimated percentile performances (given by 
the Q-function) for different ξ  for the two-state MDP benchmark. They approximately 
match the certain-optimal policies on each of the respective percentiles. With increasing 
ξ  (decreasing percentile) the actions in the first state become stochastic at first and later on 
the actions in the second state as well. For decreasing ξ  the (deterministic) policy switches 
its action in the first state at some threshold whereas the action in the second state stays the 
same. These observations can be comprehended from both the graph and the table. 
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Fig. 1. Performance distribution for different (stochastic) policies on a class of simple MDPs 
with two states and two actions. The performances are approximately normally distributed. 
The expectation is highest for the expectation-optimal policy whereas the certain and most 
stochastic policy features the lowest variance and the highest percentile performance below 
a certain threshold. 

 
 

Fig. 2. Percentile performance for simple MDPs and joint iteration results. The different 
graphs show the percentile performance curves achieved by different policies (i.e., the 
inverse of the cumulative performance distribution). The grey scale value and the line style 
depict what action to choose on the state/both states. The dots show the estimated Q-values 
for the derived certain-optimal policies at the specified percentile. Q-values are distributed 

normally. The percentiles have been specified by values of ξ ∈ {2, 1 (certain policy), 2/3, 0 
(expectation-optimal policy), —2/3, —1 (competition policy), —2} for the bandit problem and 

ξ ∈ {2, 1.5 (very certain policy), 1, 2/3 (certain policy), 0 (expectation-optimal policy), —2/3, —1, 
—1.5 (competition policy), —2} on the simple two-state MDP. 
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ξ Percentile Performance π(1,1) π(1,2) π(2,1) π(2,2) Entropy

4 − 0.663 0.57 0.43 0.52 0.48 0.992
3 − 0.409 0.58 0.42 0.55 0.45 0.987
2 − 0.161 0.59 0.41 0.60 0.40 0.974
1 0.106 0.61 0.39 0.78 0.22 0.863

2/3 0.202 0.67 0.33 1 0 0.458
0 0.421 1 0 1 0 0

− 2/3 0.651 1 0 1 0 0
− 1 0.762 1 0 1 0 0
− 2 1.103 1 0 1 0 0
− 3 1.429 0 1 1 0 0
− 4 1.778 0 1 1 0 0  

Table 1. Derived certain-optimal policies for different values of ξ on the above mentioned 
dataset (equations (32), (33) and (34)) and the assumed prior for the two-state MDP 
benchmark problem. In addition the estimated percentile performances and the policies’ 
entropies are given. The results are consistent with figure 2 (right), i.e., the derived policies 
approximately match the actually certain-optimal policies on the respective percentiles. 

8.2 Exploration 

As outlined in section 7 our approach can also be used for efficient exploration by using a 

negative ξ. This leads to a policy that explores state-action pairs where ( , )uQ s aξ  is large more 

intensively, since the estimator of the Q-value is already large but the true performance of 

the state-action pair could be even better as the uncertainty is still large as well. 
To demonstrate the functionality of our approach for exploration we conducted experiments 
using two benchmark applications from the literature. We compare the full-matrix version, 
classic DUIPI, DUIPI with Q-function modification, and two established algorithms for 
exploration, R-Max (Brafman & Tennenholtz, 2003) and MBIE-EB (Strehl & Littman, 2008). 

Furthermore, we present some insight of how the parameter ξ  influences the agent’s 
behaviour. Note that the focus here is not only gathering information about the environment 
but also balancing exploration and exploitation in order to provide good online 
performance. 

8.2.1 Benchmarks 
The first benchmark is the RiverSwim domain from Strehl & Littman (2008), which is an 
MDP consisting of six states and two actions. The agent starts in one of the first two states 
(at the beginning of the row) and has the possibility to swim to the left (with the current) or 
to the right (against the current). While swimming to the left always succeeds, swimming to 
the right most often leaves the agent in the same state, sometimes leads to the state to the 
right, and occasionally (with small probability) even leads to the left. When swimming to 
the left in the very left state, the agent receives a small reward. When swimming to the right 
in the very right state, the agent receives a very large reward, for all other transitions the 
reward is zero. The optimal policy thus is to always swim to the right. See figure 3 for an 
illustration. 
The other benchmark is the Trap domain from Dearden et al. (1999). It is a maze containing 
18 states and four possible actions. The agent must collect flags and deliver them to the goal. 
For each flag delivered the agent receives a reward. However, the maze also contains a trap 
 

www.intechopen.com



 Robot Learning 

 

80 

0 1 2 3 4 5

(1,0.3,0)

(0,1,0)
(1,0.1,0)

(1,0.3,0)

(0,1,0)
(1,0.1,0)

(1,0.3,0)

(0,1,0)
(1,0.1,0)

(1,0.3,0)

(0,1,0)
(1,0.1,0)

(1,0.3,0)

(0,1,0)
(1,0.7,0)

(1,0.7.0)
(0,1,5) (1,0.6,0) (1,0.6,0) (1,0.6,0) (1,0.6,0) (1,0.3,10000)

 

Fig. 3. Illustration of the RiverSwim domain. In the description (a, b, c) of a transition a is the 
action, b the probability for that transition to occur, and c the reward. 
 

S F

T

G

 
Fig. 4. Illustration of the Trap domain. Starting in state S the agent must collect the flag from 
state F and deliver it to the goal state G. Once the flag is delivered to state G, the agent 
receives a reward and is transferred to the start state S again. Upon entering the trap state T 
a large negative reward is given. In each state the agent can move in all four directions. With 
probability 0.9 it moves in the desired direction, with probability 0.1 it moves in one of the 
perpendicular directions with equal probability. 
 

state. Entering the trap state results in a large negative reward. With probability 0.9 the 
agent’s action has the desired effect, with probability 0.1 the agent moves in one of the 
perpendicular directions with equal probability. See figure 4 for an illustration. 
For each experiment we measured the cumulative reward for 5000 steps. The discount factor 
was set γ = 0.95 for all experiments. For full-matrix UP, DUIPI, and DUIPI-QM we used 
Dirichlet priors (section 5). The algorithms were run whenever a new observation became 
available, i.e., in each step. 

8.2.2 Results 

Table 2 summarises the results for the considered domains and algorithms obtained with 
the respective parameters set to the optimal ones found. 
For RiverSwim all algorithms except classic DUIPI perform comparably. By considering 
only the diagonal of the covariance matrix, DUIPI neglects the correlations between 
different state-action pairs. Those correlations are large for state-action pairs that have a 
significant probability of leading to the same successor state. In RiverSwim many state-
action pairs have this property. Neglecting the correlations leads to an underestimation of 
the uncertainty, which prevents DUIPI from correctly propagating the uncertainty of Q-
values of the right most state to states further left. Thus, although Q-values in state 5 have a 
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                                                 RiverSwim        Trap  

R-Max 3.02 ± 0.03 × 106
 469 ± 3 

MBIE-EB 3.13 ± 0.03 × 106
 558 ± 3 

full-matrix UP 2.59 ± 0.08 × 106
 521 ± 20 

DUIPI 0.62 ± 0.03 × 106
 554 ± 10 

DUIPI-QM 3.16 ± 0.03 × 106
 565 ± 11 

Table 2. Best results obtained using the various algorithms in the RiverSwim and Trap 
domains. Shown is the cumulative reward for 5000 steps averaged over 50 trials for full-
matrix UP and 1000 trials for the other algorithms. The used parameters for R-Max were C = 

16 (RiverSwim) and C = 1 (Trap), for MBIE-EB β = 0.01 (RiverSwim) and β = 0.01 (Trap), for 

full-matrix UP α = 0.3, ξ = —1 (RiverSwim) and α = 0.3, ξ = —0.05 (Trap), for DUIPI α = 0.3, 

ξ = —2 (RiverSwim) and α = 0.1, ξ = —0.1 (Trap), and for DUIPI-QM α = 0.3, ξ = —0.049 

(RiverSwim) and α = 0.1, ξ = —0.049 (Trap). 

large uncertainty throughout the run, the algorithm settles for exploiting the action in the 
left most state giving the small reward if it has not found the large reward after a few tries. 
DUIPI-QM does not suffer from this problem as it modifies Q-values using uncertainty. In 
DUIPI-QM, the uncertainty is propagated through the state space by means of the Q-values. 
In the Trap domain the correlations of different state-action pairs are less strong. As a 
consequence, DUIPI and DUIPI-QM perform equally well. Also the performance of MBIE-
EB is good in this domain, only R-Max performs worse than the other algorithms. R-Max is 
the only algorithm that bases its explore/exploit decision solely on the number of executions 
of a specific state-action pair. Even with its parameter set to the lowest possible value, it 
often visits the trap state and spends more time exploring than the other algorithms. 

8.2.3 Discussion 

Figure 5 shows the effect of ξ  for the algorithms. Except DUIPI-QM the algorithms show 

“inverted u”-behaviour. If ξ  is too large (its absolute value too small), the agent does not 

explore much and quickly settles on a suboptimal policy. If, on the other hand, ξ  is too 

small (its absolute value too large), the agent spends more time exploring. We believe that 

DUIPI-QM would exhibit the same behaviour for smaller values for ξ, however, those are 

not usable as they would lead to a divergence of Q and σQ. 

Figure 6 shows the effect ξ using DUIPI in the Trap domain. While with large ξ  the agent 

quickly stops exploring the trap state and starts exploiting, with small ξ  the uncertainty 

keeps the trap state attractive for more time steps, resulting in more negative rewards. 

Using uncertainty as a natural incentive for exploration is achieved by applying uncertainty 

propagation to the Bellman equation. Our experiments indicate that it performs at least as 

good as established algorithms like R-Max and MBIE-EB. While most other approaches to 

exploration assume a specific statistical paradigm, our algorithm does not make such 

assumptions and can be combined with any estimator. Moreover, it does not rely on state-

action pair counters, optimistic initialisation of Q-values, or explicit exploration bonuses. 

Most importantly, when the user decides to stop exploration, the same method can be used 

to obtain certain-optimal policies for quality assurance by setting ξ  to a positive value. 
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Fig. 5. Cumulative rewards for RiverSwim obtained by the algorithms for various values of 

ξ. The values for full-matrix UP are averaged over 50 trials, for the values for DUIPI and 
DUIPI-QM 1000 trials of each experiment were performed. 
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Fig. 6. Immediate rewards of exemplary runs using DUIPI in the Trap domain. When 
delivering a flag, the agent receives reward 1, when entering the trap state it receives —10. 

While with ξ = —0.1 after less than 300 steps the trap state does not seem worth exploring 

anymore, setting ξ = —0.5 makes the agent explore longer due to uncertainty. With ξ = —1 
the agent does not stop exploring the trap state in the depicted 1000 time steps. 

 

 full-matrix UP DUIPI DUIPI-QM 

time 7 min 14 s 14 s 

Table 3. Computation time for 5000 steps in the RiverSwim domain using a single core of an 
Intel Core 2 Quad Q9550 processor. The policy was updated in every time step. 
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While the full-matrix UP is the more fundamental and theoretically more sound method, its 
computational cost is considerable (see table 3). If used with care, however, DUIPI and 
DUIPI-QM constitute valuable alternatives that proved well in practice. Although our 
experiments are rather small, we expect DUIPI and DUIPI-QM to also perform well on 
larger problems. 

8.3 Increasing the expected performance 

Incorporating uncertainty in RL can even improve the expected performance for concrete 
MDPs in many practical and industrial environments, where exploration is expensive and 
only allowed within a small range. The available amount of data is hence small and 
exploration takes place in an, in part extremely, unsymmetrical way. Data is particularly 
collected in areas where the operation is already preferable. Many of the insufficiently 
explored so-called on-border states are undesirable in expectation, but might, by chance, 
give a high reward in the singular case. If the border is sufficiently large this might happen 
at least a few times and such an outlier might suggest a high expected reward. Note that in 
general the size of the border region will increase with the dimensionality of the problem. 
Carefully incorporating uncertainty avoids the agent to prefer those outliers in its final 
operation. 
We applied the joint iteration on a simple artificial archery benchmark with the “border 
phenomenon”. The state space represents an archer’s target (figure 7). Starting in the target’s 
middle, the archer has the possibility to move the arrowhead in all four directions and to 
shoot the arrow. The exploration has been performed randomly with short episodes. The 
dynamics were simulated with two different underlying MDPs. The arrowhead’s moves are 
either stochastic (25 percent chance of choosing another action) or deterministic. The event 
of making a hit after shooting the arrow is stochastic in both settings. The highest 
probability for a hit is with the arrowhead in the target’s middle. The border is explored 
quite rarely, such that a hit there misleadingly causes the respective estimator to estimate a 
high reward and thus the agent to finally shoot from this place. 
 

0.06 0.17 0.28 0.17 0.06

0.17 0.28 0.39 0.28 0.17

0.28 0.39 0.5 0.39 0.28

0.17 0.28 0.39 0.28 0.17

0.06 0.17 0.28 0.17 0.06

 

Fig. 7. Visualisation of the archery benchmark. The picture shows the target consisting of its 
25 states, together with their hitting probabilities. 
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Setting Model Discr. # Obs. ξ = 0 ξ = 0.5 ξ = 1 ξ = 2

Archery Frequentist 100 0.14 0.16 0.13 0.05
02.071.0005)citsahcotS( 0.25 0.22

1000 0.21 0.26 0.29 0.27
2500 0.27 0.29 0.31 0.31

Archery Deterministic 100 0.35 0.38 0.23 0.17
(Deterministic) Dirichlet Prior 500 0.32 0.38 0.39 0.41

∀i : αi = 44.014.053.000010 0.45
2500 0.44 0.46 0.48 0.49

Turbine Frequentist coarse 104 0.736 0.758 0.770 0.815

medium 104 0.751 0.769 0.784 0.816

fine 104 0.767 0.785 0.800 0.826

Turbine Maximum Entropy coarse 104 0.720 0.767 0.814 0.848

Dirichlet Prior medium 104 0.713 0.731 0.749 0.777

∀i : αi = 1 fine 104 0.735 0.773 0.789 0.800
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In table 4 the performance, averaged over 50 trials (two digits precision), for the frequentist 

setting (in the stochastic case) and the deterministic prior (in the deterministic case) for the 

transition probabilities are listed.  

The table shows that the performance indeed increases with ξ until a maximum and then 

decreases rapidly. The position of the maximum apparently increases with the number of 

observations. This can be explained by the decreasing uncertainty. The performance of the 

theoretical optimal policy is 0.31 for the stochastic archery benchmark and 0.5 for the 

deterministic one. They are achieved in average by the certain-optimal policy based on 2500 

observations with 1 ≤ ξ ≤ 2 in the stochastic case and for 3 ≤ ξ ≤ 4 in the deterministic case. 

8.4 An industrial application 

We further applied the uncertainty propagation together with the joint iteration on an 

application to gas turbine control (Schaefer et al., 2007) with a continuous state and a finite 

action space, where it can be assumed that the “border phenomenon” appears as well. We 

discretised the internal state space with three different precisions (coarse (44 = 256 states), 

medium (54 = 625 states), fine (64 = 1296 states)), where the high-dimensional state space has 

already been reduced to a four-dimensional approximate Markovian state space, called 

“internal state space”. A detailed description of the problem and the construction of the 

internal state space can be found in Schaefer et al. (2007). Note that the Bellman iteration and 

the uncertainty propagation is computationally feasible even with 64 states, since P and 

Cov((P,R)) are sparse. 

We summarise the averaged performances (50 trials with short random episodes starting 

from different operating points, leading to three digits precision) in table 4 on the same 

uninformed priors as used in section 8.3. The rewards were estimated with an uninformed 

normal-gamma distribution as conjugate prior with σ = ∞ and α = β = 0. 

In contrary to the archery benchmark, we left the number of observations constant and 

changed the discretisation. The finer the discretisation, the larger is the uncertainty. 

Therefore the position of the maximum tends to increase with decreasing number of states. 

The performance is largest using the coarse discretisation. Indeed, averaged over all 

discretisations, the results for the frequentist setting tend to be better than for the maximum 

entropy prior. The overall best performance can be achieved with the coarse discretisation 

and the frequentist setting with ξ = 5, but using the maximum entropy prior leads to 

comparable results even with ξ = 3. 

The theoretical optimum is not known, but for comparison we show the results of the 

recurrent Q-learning (RQL), prioritised sweeping (RPS), fuzzy RL (RFuzzy), neural rewards 

regression (RNRR), policy gradient NRR (RPGNRR), and control neural network (RCNN) 

(Schaefer et al., 2007; Appl & Brauer, 2002; Schneegass et al., 2007). The highest observed 

performance is 0.861 using 105 observations, which has almost been achieved by the best 

certain-optimal policy using 104 observations. 

9. Conclusion 

A new approach incorporating uncertainty in RL is presented, following the path from 

awareness to quantisation and control. We applied the technique of uncertainty propagation 
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(awareness) not only to understand the reliability of the obtained policies (quantisation) but 

also to achieve certain-optimality (control), a new optimality criterion in RL and beyond. We 

exemplarily implemented the methodology on discrete MDPs, but want to stress on its 

generality, also in terms of the applied statistical paradigm. We demonstrated how to 

realistically deal with large-scale problems without a substantial loss of performance. In 

addition, we have shown that the method can be used to guide exploration (control). By 

changing a single parameter the derived policies change from certain-optimal policies for 

quality assurance to policies that are certain-optimal in a reversed sense and can be used for 

information-seeking exploration. 

Current and future work considers several open questions as the application to other RL 

paradigms and function approximators like neural networks and support vector machines. 

Another important issue is the utilisation of the information contained in the full covariance 

matrix rather than only the diagonal. This enhancement can be seen as a generalisation of 

the local to a global measure of uncertainty. It can be shown that the guaranteed minimal 

performance for a specific selection of states depends on the covariances between the 

different states, i.e., the non-diagonal entries of the covariance matrix. 

Last but not least the application to further industrial environments is strongly aspired. 

Definitely, as several laboratory conditions, such as the possibility of an extensive 

exploration or the access on a sufficiently large number of observations, are typically not 

fulfilled in practice, we conclude that the knowledge of uncertainty and its intelligent 

utilisation in RL is vitally important to handle control problems of industrial scale. 
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Appendix 

Theorem 1 Suppose a finite MDP M = (S,A,P,R) with discount factor 0 < γ < 1 and C0 an arbitrary 
initial symmetric and positive definite covariance matrix. Then the function 
 

 ( ) ( )1 1 1 1, = , ( )m m m m m m TQ C TQ D C D− − − −   (35) 

 

provides a unique fixed point (Q*,C*) almost surely, independent of the initial Q, for policy evaluation 
and policy iteration. 

Proof: It has already been shown that Qm = TQm-1 converges to a unique fixed point Q* 

(Sutton & Barto, 1998). Since Qm does not depend on Ck or the Jacobi matrix Dk for any 
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iteration k<m, it remains to show that C* unambiguously arises from the fixed point iteration. 
We obtain 
 

 
1 1

0

=0 =0

= ( )
m m

m i i T

i i

C D C D
− −

∏ ∏  (36) 

 

after m iterations. Due to convergence of Qm, Dm
 converges to D* as well, which leads to 

 

 * * *
conv

=0 =0

= ( )T

i i

C D C D
∞ ∞

∏ ∏  (37) 

 
with Cconv the covariance matrix after convergence of Q. By successive matrix multiplication 
we obtain 

 

* * * * *
, , , , ,

=0 =0

*

( ) ( ) ( ) ( ) ( )

( ) = 0 I 0

0 0 I

n n
n i i
Q Q Q Q Q P Q Q Q R

i i

n

D D D D D

D

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑
 (38) 

 
eventually leading to 
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 (40) 

 
since all eigenvalues of (D*)Q,Q are strictly smaller than 1 and I — (D*)Q,Q is invertible for all 

but finitely many (D*)Q,Q. Therefore, almost surely, (D*)∞exists, which implies that C* exists as 
well. We finally obtain 
 

 ( )* * 1 * *
, , , ,= (I ( ) ) ( ) ( )Q Q Q Q Q P Q RC D D D−−  (41) 

 ( )
*

, * 1
,*

,

Cov( , ) Cov( , ) ( )
(I ( ) ) .

Cov( , ) Cov( , ) ( )

T
TQ P

Q QT T
Q R

P P P R D
D

P R R R D
−⎛ ⎞⎛ ⎞

−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (42) 
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The fixed point C* depends on the initial covariance matrices Cov(P), Cov(R), and Cov(P,R) 
solely, but not on Cov(Q,Q), Cov(Q,P), or Cov(Q,R) and is therefore independent of the 
operations necessary to reach the fixed point Q*.                                                                            □ 
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