27 research outputs found

    Per tone equalization for DMT-based systems

    Full text link

    Resource allocation in DMT transmitters with per-tone pulse shaping

    Get PDF
    International audiencePer-tone pulse shaping has been proposed as an alternative to time domain spectral shaping for DMT transmitters, e.g. VDSL modems. It shapes the spectrum of individual tones such that the stop band energy of each tone can be minimized. This in particular enables transmitter to use more tones without violating the PSD mask constraint for data transmission. In pertone pulse shaping based DMT transmitters a fixed length pulse shaping filter is typically used for every tone. The tones in the middle of the pass band however, contribute less to the overall stop band energy, so that using a high order pulse shaping filter for these tones does not result in a significant reduction of the stop band energy. As a result a significant number of pulse shaping filter taps are wasted on the tones in the middle of the pass band and do not bring any performance gain. Using a variable length pulse shaping filter which is designed such that the PSD mask constraint is not violated can then significantly reduce the total number of pulse shaping filter taps without compromising performance. In this paper, a resource allocation technique is presented for variable length pulse shaping filter design using a dual problem formulation. This optimally solves the problem of pulse shaping filter tap distribution over tones for given PSD mask constraints, with a relatively low complexity

    Single Frequency Network Broadcasting with 5GNR Numerology

    Get PDF
    This paper investigates the possibility of using 5G New Radio (5GNR) OFDM numerology in the deployment of efficient Single Frequency Networks (SFNs) for delivering TV services to user devices. The straightforward approach in the design of the physical layer for broadcasting application is based on the adoption of OFDM signalling with very long OFDM symbol and very low sub-carrier spacing (SCS). This design choice allows to dimension the Cyclic Prefix length to eliminate ISI and ICI induced by the large delay spread with a consequent overhead reduction. The 5GNR numerology is designed for unicast transmission and Cyclic Prefix lengths are not compatible with those required for large SFN networks. In this paper we consider a general receiver based on the channel shortening principle, but in the frequency domain. The receiver consists in a bank of per tone time/frequency 2D filters, possibly followed by Maximum-Likelihood (ML) trellis processing on the shortened channel. We provide promising information theoretic bound showing that the extension of 5GNR numerology to SFN is possible with very small performance loss. Even the simplest detector architecture that does not employ trellis processing provides throughput competitive with those that can be obtained with smaller SCS. We provide end to end simulation results with practical modulation and LDPC encoder confirming that the results predicted by the bounds can be closely matched in practice

    Semi-blind time-domain equalization for MIMO-OFDM systems

    Get PDF
    In this paper, a semi-blind time-domain equalization technique is proposed for general multiple-input-multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems. The received OFDM symbols are shifted by more than or equal to the cyclic prefix (CP) length, and a blind equalizer is designed to completely suppress both intercarrier interference (ICI) and intersymbol interference (ISI) using second-order statistics of the shifted received OFDM symbols. Only a one-tap equalizer is needed to detect the time-domain signals from the blind equalizer output, and one pilot OFDM symbol is utilized to estimate the required channel state information for the design of the one-tap equalizer. The technique is applicable irrespective of whether the CP length is longer than, equal to, or shorter than the channel length. Computer simulations show that the proposed technique outperforms the existing techniques, and it is robust against the number of shifts in excess of the CP length. © 2008 IEEE.published_or_final_versio

    RLS-based initialization for per-tone equalizers in DMT receivers

    Full text link

    CP-Based SBHT-RLS Algorithms for Tracking Channel Estimates in Multicarrier Modulation Systems

    Get PDF
    corecore