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Cyclic prefix (CP) in multicarrier modulation systems has been considered as an alternative to the training sequences to track
channel estimates. In this paper, two new algorithms are developed that exploit CP from their data detection part and employ
systolic block Householder transformation recursive least squares (SBHT-RLS) algorithms for channel tracking in multicarrier
systems. The new methods are compared with the existing CP exploiting correlation matrix based block RLS (CMB-RLS) channel
tracking approach to outline their relative advantages. Aspects of computational complexity and parallel implementation are
addressed, and the algorithms are tested in terms of their channel estimation and tracking capabilities. Performance of the
algorithms is also evaluated for varying forgetting factor parameter values, constellation size, and word lengths. Floating-point
and fixed-point simulations are tailored to illustrate pertinent tradeoffs.

1. Introduction

Over the last two decades, multicarrier modulation has
received considerable interest for its use in wireless and
wireline communication systems [1–4]. It has been adopted
in many communication standards, including digital audio
broadcasting (DAB) [5], digital video broadcasting (DVB)
[6], high-speed modems over digital subscriber lines (xDSLs)
[4], and local area mobile wireless broadband [7].

Most multicarrier systems use coherent detection of data
symbols, which requires reliable estimation of channel at
the receiver. Channel state information is also necessary
for techniques such as channel shortening [8], adaptive
modulation/loading, and/or power control [9]. In applica-
tions such as discrete multitone (DMT) xDSL [4], channel
is estimated through some initial training process, and
retraining is required to track the channel variation. To avoid
the system overhead due to retraining and thus to track
the channel more efficiently, in [10], a correlation matrix
based block recursive least-squares (CMB-RLS) algorithm
is proposed. The algorithm takes advantage of the inherent
redundancy introduced by the cyclic prefix (CP) to blindly
estimate the channel. In [11], performance of the algorithm
is analyzed considering both the effect of channel noise

and decision error. The algorithm is further explored in
[12], where its performance is analyzed considering the
impact of exponential forgetting factor values, constellation
size, and channel nulls. Also, in [13], the method is used
in single-carrier (SC) modulation with frequency domain
equalization (FDE) to maintain both system performance
and throughput.

While CP-based CMB-RLS approach is standard com-
plaint, there are two basic problems that make it unsuitable
for real-time implementation. First, it relies on computation
of inverse of the correlation matrix Φ per time update.
The computational cost of performing the required matrix
inversion in real time can be prohibitively high for a system
with a large channel length (To reduce the computational
complexity and thus processing power, this inversion cannot
be done recursively using Matrix inversion Lemma (such
as in conventional RLS (CRLS) algorithm [14]).). Second,
the direct inversion and recursive inversion approaches are
known to severely limit parallelism and pipelining that can
effectively be applied in the practical implementation.

Usually, to minimize the round off error, matrix inver-
sions are done with general-purpose digital signal processing
(DSP) devices/processors using floating-point arithmetic. A
disadvantage of this approach, however, is severe processing
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power limitation due to small number of floating-point
processing units commonly available per device. Specialized
hardware with high-processing power is therefore required
to execute requisite computations in real time. An appealing
alternative for implementation is not to do this inversion
explicitly and solve the problem through a computationally
cheaper approach that works directly with data matrix
and is realizable on the systolic array architecture offering
large amounts of parallelism for high-speed very large scale
integration (VLSI) implementation. In VLSI implementa-
tion, floating-point arithmetic units are more complex than
those of fixed-point arithmetic, involving extra hardware
overhead and more clock cycles [15]. Hence, the bit-level
systolic architecture must be implemented with fixed-point
arithmetic.

The QR decomposition (QRD) approaches for RLS
problem have played an important role in adaptive signal
processing, adaptive equalization, and adaptive spectrum
estimation [16]. It is generally agreed that QRD-RLS algo-
rithms are one of the most promising RLS algorithms, due
to their numerical stability [17, 18] and suitability for VLSI
implementation [19, 20]. There are three approaches to
QRD-RLS problem, namely, Givens rotation (GR), modified
Gram-Schmidt (MGS), and Householder transformation
(HT) method. These methods have been successfully applied
to the development of the QRD-RLS systolic array [16, 21–
24]. Because HT generally outperforms GR and MGS meth-
ods under finite precision computations (see the references in
[16]), and in the context of our application the channel needs
to be updated for each block input data matrix, we focus
our attention to the QRD-RLS algorithm based on block
HT. Notice that HT is a well-known rank-v update approach
and is one of the most efficient methods to compute QRD
(Rank-1 updating fast QRD-RLS algorithms (where QRD
is updated after the original data matrix has been modified
by the addition and deletion of a row or column) [14]
are not suitable here in particular due to high throughput
(here the term throughput is used to indicate total number
of data vectors at the input of the RLS algorithm) and
speed requirements.). In [24, 25], Liu et al. investigated one
such QRD-RLS algorithm using block HT. The work in
[24] describes the block HT implementation on a systolic
array and its application to RLS algorithm called systolic
block HT-RLS (SBHT-RLS). So far, SBHT-RLS is used in
beamforming and linear predication applications but has
not been applied for channel tracking in high-throughput
multicarrier applications. The algorithm is well known for
its computational efficiency, very good numerical properties,
and parallel processing implementation advantages.

In this paper, we develop two new CP exploiting SBHT-
RLS approaches for adaptive channel estimation in multicar-
rier systems.

The first approach is based on SBHT-RLS approach of
Liu et al.. In its original form, the SBHT-RLS does not pro-
vide access to channel weights, as its use has been limited to
the problem seeking an estimate of output error signal. In the
context of our application, the proposed approach finds the
channel explicitly. In order to differentiate between the two
techniques, the new method will be referred to as CP-based

Direct SBHT-RLS approach. The proposed scheme is compu-
tationally efficient and can be mapped to triangular systolic
arrays for efficient parallel implementation. Unfortunately,
the scheme suffers from a major drawback, namely, back
substitution, which is a costly operation to perform in array
structure [26, 27].

The second approach relies on inverse factorizations to
calculate least squares channel coefficients (weight vector)
without back substitution. This approach also employs
SBHT to recursively update the channel coefficients and
thus preserves the inherent stability property of SBHT-RLS
approach. The derivation of the inverse factorization method
in this paper is done by generalizing the Extended QRD-
RLS algorithm to block RLS case [28]. For this reason, this
method will be referred to as CP-based Extended SBHT-
RLS approach. We underscore here that this simple and
straightforward derivation is different than the previous
challenging work on block RLS using inverse factorizations
in [29, 30]. Computational complexity of this scheme is
equivalent to the first proposed scheme, but unlike the first
scheme it is fully amenable to VLSI implementation and also
results in improved steady-state performance.

For the sake of brevity, in the rest of this paper, we refer to
the CP based CMB-RLS as CPE1, Direct SBHT-RLS as CPE2,
and Extended SBHT-RLS as CPE3. Also, for uniformity, we
closely follow the notation that appears in [10].

The paper is organized as follows. In the next section,
we provide an overview of the DMT system model [10].
Section 3 explains the newly proposed algorithms, followed
by a discussion on their computational complexity and
systolic array implementation in Section 4. In Section 5,
illustrating floating- and fixed-point simulations are con-
ducted, while conclusions are drawn in Section 6. Some
results contained in this paper have been presented/accepted
for presentation in [31, 32].

Notation. (·)T , (·)∗, and E[·] denote transpose, complex
conjugate, and expectation operation. The Matlab notation
X(:,m : m′) is used to to denote the submatrix of X
that contains the columns m to m′. x(n : n′) denotes the
subvector of x comprising of entries n through n′. In denotes
identity matrix of size n, 0 denotes the all zeros matrix of
appropriate dimensions, and j = √−1. The meaning of other
variables will be clear from the context.

2. System Model

We consider a high-speed DMT data transmission system
over digital subscriber lines, shown in Figure 1. The system
has m/2 complex parallel subchannels and illustrates the
typical CP based adaptive channel estimation task, which is
our main concern in this paper. Let {sn} represent the data
sequence to be transmitted over the channel. This input data
is buffered to blocks, and each data block is divided into
m/2 bit streams and then mapped to quadrature amplitude
modulation (QAM) constellation pointsXi,k, i = 0, . . . ,m/2−
1 at time k. After m-point inverse fast Fourier transform
(IFFT) on the kth DMT block Xk = [X0,k,X1,k, . . . ,Xm−1,k]T
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Figure 1: Multicarrier system with CP-based adaptive channel estimation.

(here the last m/2 samples are just the conjugates of
the first m/2 samples), the modulated real valued time

domain signal is xk = [x0,k, x1,k, . . . , xm−1,k]T . A CP x
( f )
k =

[xm−v,k , . . . , xm−1,k]T , where x−i,k = xm−i,k and i = 1, . . . , v, is
then appended in front of xk before transmission through
the channel H(z) = ∑v

l=0 hl,kz
−l, having impulse response

hk = [h0,k,h1,k, . . . ,hv,k]T of length r = v + 1. At the receiver,

the prefix part y
( f )
k = [y−v,k, . . . , y−1,k]T is removed.

The relationship between prefix part y
( f )
k and the trans-

mitted signal may be expressed as [10]

y
( f )
k = Akhk + n

( f )
k , (1)

where

Ak=

⎡⎢⎢⎢⎢⎢⎣
x−v,k xm−1,k−1 · · · xm−v,k−1

. . .
. . .

. . .
...

. . .
. . .

. . .
...

x−1,k · · · x−v,k xm−1,k−1

⎤⎥⎥⎥⎥⎥⎦=
[
a0,k, a1,k, . . . , av,k

]
,

(2)

a j,k is the jth column of Ak, n
( f )
k = [n−v,k, . . . ,n−1,k]T , and

ni,k ∼ N (0, σ2) is the channel noise.

After the FFT operation on yk = [y0,k, y1,k, . . . , ym−1,k]T ,
the demodulated signal is Yk = [Y0,k,Y1,k, . . . ,Ym−1,k]T . The
CP removes interblock interference (IBI) between Xk’s. The
received symbols can thus be written as

Yi,k = Xi,kHi,k + Ni,k, i = 0, . . . ,m− 1, (3)

where Hi,k =
∑v

l=0 hl,ke
− j((2πil)/m) is the channel frequency

response and Ni,k = (1/
√
m)
∑m−1

l=0 nl,ke− j((2πil)/m) ∼ N (0, σ2)
is the noise of the ith subchannel.

To get the estimation of Xi,k from Yi,k, a one-tap
minimum mean square error (MMSE) equalizer wi,k =
(Γ1/2

i H∗
i,k)/(Γi‖Hi,k‖2 + σ2

i ), where i = 0, . . . ,m − 1 and
Γi = E[‖Xi,k‖2], is then employed at the ith channel. The
estimated data is then X̂i,k = Yi,kwi,k. The decision is then
made on X̂i,k to get the final output Xi,k = q(X̂i,k), where
q(·) is the decision operation.

3. CP-Based SBHT-RLS Algorithms

3.1. CP-Based Direct SBHT-RLS Algorithm (CPE2). Based on
the CP data model (1), we define nv×r weighted data matrix
and the nv×1 weighted received vector in a recursive manner
as

Ȧk = Λ

⎡⎢⎢⎢⎢⎣
Ak−(n−1)

Ak−n
...

Ak

⎤⎥⎥⎥⎥⎦ =
⎡⎣λ1/2Ȧk−1

Ak

⎤⎦, (4)

ẏ
( f )
k = Λ

⎡⎢⎢⎢⎢⎢⎢⎣
y

( f )
k−(n−1)

y
( f )
k−n
...

y
( f )
k

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎣λ

1/2ẏ
( f )
k−1

y
( f )
k

⎤⎥⎥⎦, (5)
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where Λ is an nv×nv block-diagonal forgetting matrix of the
form

Λ =

⎡⎢⎢⎢⎢⎣
λ(n−1)/2Iv · · · 0 0

...
. . .

...
...

0 · · · λ1/2Iv 0
0 · · · 0 Iv

⎤⎥⎥⎥⎥⎦, (6)

with forgetting factor across blocks 0 < λ ≤ 1. The forgetting
factor λ is incorporated in the scheme to avoid overflow
in the processors as well as to facilitate nonstationary data
updating [25].

Suppose that at the (k − 1)th update we have QRD

Qk−1Ȧk−1 =
⎡⎣Rk−1

0

⎤⎦, (7)

where Qk−1 is an (n− 1)v × (n− 1)v orthogonal matrix and
Rk−1 is a r × r upper triangular matrix.

Now by denoting Qk−1 =
⎡⎢⎣ Qk−1 0

0
T

Iv

⎤⎥⎦, we then have

Qk−1Ȧk =

⎡⎢⎢⎢⎣
Rk−1

0

Ak

⎤⎥⎥⎥⎦. (8)

A n× n HT matrix T is of the form T = In− βvvT , where
β = 2/vTv = 2/‖v‖2. When a vector x = [x1, x2, . . . , xn]T

is multiplied by T, it is reflected in the hyperplane defined
by span{v}⊥. Choosing v = x ± ‖x‖2e1, where e1 =
[1, 0, 0, . . . , 0]T , then x is reflected onto e1 by T as: Tx =
±‖x‖2e1.

A series of HTs are then used to zero out Ak in the right-

hand side of (8). Let Hk = H(r)
k H(r−1)

k · · ·H(1)
k (a sequence

of r-ordered matrix multiplications), where H(i)
k denotes the

ith HT matrix (which zeroes out ith column of updated Ak)
given as

H(i)
k =

⎡⎢⎢⎢⎢⎢⎣
H(i)

k,11 0 H(i)
k,12

0 I(n−1)v−r 0

H
(i)

k,21 0 H
(i)

k,22

⎤⎥⎥⎥⎥⎥⎦, (9)

where H(i)
k,11 is r×r identity matrix except for the ith diagonal

entry, H(i)
k,12 is r×v zero matrix except for the ith row, H(i)

k,12 =
H(i)

k,21, and H(i)
k,22 is a symmetric v × v matrix.

It is thus we have HkQk−1Ȧk =
⎡⎣ Rk

0

⎤⎦ and Qk =

HkQk−1. Now with

Qk

[
Ȧk ẏ

( f )
k

]
=
[

Rk uk

0 vk

]
, (10)

Table 1: CP-based Direct SBHT-RLS algorithm (CPE2).

Input: y
( f )
k , y

( f )
k−1,. . ., y

( f )
k−2(v) and Yk

Known parameters: Γi and σi

Selecting parameters: λ (with 0 < λ ≤ 1)

Initialization: k = 0, an initial training process is used to initialize

ĥ0 and R0 = δI (with 0 < δ	 1 is small positive scalar).

Algorithm:k = 1, 2, 3, . . .

(1) H̃i,k−1 = (1/
√
m)
∑v

l=0 ĥl,k−1e− j(2πil)/m, i = 0, . . . ,m− 1

(2) wi,k−1 = (Γ1/2
i H∗

i,k−1)/(Γi‖Hi,k−1‖2 + σ2
i ), i = 0, . . . ,m− 1

(3) X̂i,k = Yi,kwi,k−1, i = 0, . . . ,m− 1

(4) xi,k = (1/
√
m)
∑m−1

l=0 q(X̂l,k)e j(2πil)/m, i = m− v, . . . ,m− 1

(5) Ȧk =
⎡⎣ √λRk−1

Ak

⎤⎦, ẏ
( f )
k =

⎡⎢⎢⎣ λy
( f )
k−2(v)√
λy

( f )
k−1

y
( f )
k

⎤⎥⎥⎦ =
⎡⎣ √λẏ

( f )
k−1

y
( f )
k

⎤⎦
(6) Hk

[
Ȧk ẏ

( f )
k

]
=
⎡⎣ Rk uk

0 vk

⎤⎦,

where Hk = H(r)
k H(r−1)

k , . . . , H(1)
k ,

with H(i)
k = Ip−i+1 − βvvT , p = 2v + 1, β = 2/vTv,

v = x± ‖x‖2e1,

e1 = [1, 0, . . . , 0]T , and x = Ȧk(i : p, i).

(7) Solve uk = Rkĥk through back substitution.

where uk = [u0,k,u1,k, . . . ,uv,k]T and

Rk =

⎛⎜⎜⎜⎜⎝
r(0,0),k r(0,1),k · · · r(0,v),k

0 r(1,1),k · · · r(1,v),k
...

...
. . .

...
0 0 · · · r(v,v),k

⎞⎟⎟⎟⎟⎠, (11)

the optimal solution is thus obtained by solving the upper

triangular system Rkĥk = uk by back substitution operation
as follows:

ĥi,k =
ui,k −

∑v
j=i+1 r(i, j),kĥ j,k

r(i,i),k
, i = v, . . . , 0. (12)

The matrix Ȧk−1 can be uniquely QR factorized only if
it is full column rank (i.e., rank Ȧk−1 = r). Therefore, the
minimum number of rows in Ȧk−1 must be at least large as
the number of columns. To satisfy this requirement and thus
to reduce the number of received blocks needed by CPE2
(and CPE3 in Section 3.2), in step (10), we set

Ȧk =
[
λ1/2Rk−1

Ak

]
,

ẏ
( f )
k = Λ

⎡⎢⎢⎢⎢⎢⎢⎣
y

( f )
k−2(v) = y−1,k−2

y
( f )
k−1

y
( f )
k

⎤⎥⎥⎥⎥⎥⎥⎦ = Λ

⎡⎢⎣ẏ
( f )
k−1

y
( f )
k

⎤⎥⎦. (13)

Based on the above discussion, CPE2 algorithm is
summarized in Table 1.
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Table 2: CP-based Extended SBHT-RLS algorithm (CPE3).

Input: y
( f )
k , y

( f )
k−1,. . ., y

( f )
k−2(v) and Yk

Known parameters: Γi and σi

Selecting parameters: λ (with 0 < λ ≤ 1)

Initialization: k = 0, an initial training process is used to initialize

ĥ0, R0 = δI,

R−T0 = δ−1I (with 0 < δ	 1 is small positive scalar).

Algorithm: k = 1, 2, 3, . . .

(1) H̃i,k−1 = (1/
√
m)
∑v

l=0 ĥl,k−1e− j(2πil)/m, i = 0, . . . ,m− 1

(2) wi,k−1 = (Γ1/2
i H∗

i,k−1)/(Γi‖Hi,k−1‖2 + σ2
i ), i = 0, . . . ,m− 1

(3) X̂i,k = Yi,kwi,k−1, i = 0, . . . ,m− 1

(4) xi,k = (1/
√
m)
∑m−1

l=0 q(X̂l,k)e j(2πil)/m, i = m− v, . . . ,m− 1

(5) Ȧk =
⎡⎣ √λRk−1

Ak

⎤⎦, Ḃk =
⎡⎣ R−Tk−1/

√
λ

0T

⎤⎦,

ẏ
( f )
k =

⎡⎢⎢⎣ λy
( f )
k−2(v)√
λy

( f )
k−1

y
( f )
k

⎤⎥⎥⎦ =
⎡⎣ √λẏ

( f )
k−1

y
( f )
k

⎤⎦
(6) Hk

[
Ȧk Ḃk ẏ

( f )
k

]
=
⎡⎣ Rk R−Tk uk

0 WT
k vk

⎤⎦,

where Hk = H(r)
k H(r−1)

k , . . . , H(1)
k ,

with H(i)
k = Ip−i+1 − βvvT , p = 2v + 1, β = 2/vTv,

v = x ± ‖x‖2e1,

e1 = [1, 0, . . . , 0]T , and x = Ȧk(i : p, i).

(7) hk = hk−1 −Wkvk

3.2. CP-Based Extended SBHT-RLS Algorithm (CPE3). In
this section, we propose an alternative approach by append-
ing one more column to the matrices of CPE2 algorithm. To
simplify the derivation, we combine the first column of (10)
and the new column to construct the formula

Qk

⎡⎢⎣
√
λRk−1 R−Tk−1/

√
λ

Ak 0T

⎤⎥⎦ =
⎡⎢⎣ Rk R−Tk

0 Wk

⎤⎥⎦. (14)

We next define a lemma, known as the matrix factorization
lemma [33] that is very elegant tool in the development of
QRD-RLS algorithms.

Lemma 1. If A and B are any two N ×M(N ≤ M) matrices,
then

ATA = BTB, (15)

if and only if there exists an N×N unitary matrix Q(QTQ = I)
such that

QA = B. (16)

Applying Lemma 1 to (14), we obtain

R−Tk RT
k = R−Tk−1RT

k−1 = Ir . (17)

This shows that R−Tk obtained is the correct inverse trans-
position of RT

k and can be updated by using the same
orthonormal transformation Qk.

Next, we combine the second column of (10) and the new
column to construct the formula

Qk

⎡⎢⎣
√
λẏ

( f )
k−1 R−Tk−1/

√
λ

y
( f )
k 0T

⎤⎥⎦ =
⎡⎢⎣ uk R−Tk

vk WT
k

⎤⎥⎦. (18)

Now by applying Lemma 1 to (18) yields

R−1
k uk + Wkvk = R−1

k−1uk−1. (19)

From (19), we establish a simple recursion to compute the
channel vector

hk = hk−1 −Wkvk. (20)

This recursion can be written in component form as

hi,k = hi,k−1 −wT
i,kvk, i = 0, . . . , v, (21)

where wi,k is the ith column of the matrix WT
k .

Based on the above discussion, CPE3 is formulated in
Table 2.

Remarks. (i) Both algorithms are initialized in a training
mode, the algorithms then switch to a decision-directed
mode for channel tracking. Note that, in step (1), based on

the previous channel estimate ĥk−1, the previous frequency
response H̃k−1 = [H0,k−1, . . . , Hm−1,k−1] is computed. In step
(2), H̃k−1 is then used to compute equalization coefficients.
The decision-directed data vector X̂k is then computed in
step (3). In step (4), symbol estimates are projected onto
the finite alphabet (FA), and the estimated transmitted

CP data x
( f )
k is obtained by performing partial FFT on

the decision-directed projected samples Xk. In steps (5)
through (7), the new channel estimate is then obtained
by treating the resulting symbol estimates as the known
symbols. The process of alternating between channel and
symbol estimation steps is applied repeatedly.

(ii) In [29], Sakai has derived a method for extracting
weight coefficients based on the inverse factorization method
of Pan and Plemmons [34] and Liu’s SBHT-RLS algorithm.
The time updating formula for channel coefficients is
obtained by first generalizing the inverse factorizations for
the block case and then deriving a formula for updating
the channel coefficients. The complicated and challenging
derivation gets rid of matrix operations by exploiting the
relation between a priori and posteriori error vectors. Based
on [35] and suggested by its author, Sakai has also presented
a simpler derivation for updating the channel vector in [30].
In contrast, in the above discussion, the same result is derived
by following a straightforward approach by generalizing the
Extended QRD-RLS algorithm of Yang and Bohme [28] to
the block RLS case.
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4. Computational Complexity and Systolic
Array Implementation

4.1. Computational Complexity. The CPE1, CPE2, and CPE3
algorithms are similar in the CP estimation part (i.e., steps
(1) through (4)), we therefore compare their complexities in
the channel estimation part. The CPE1 channel estimation
stage requires O(r3) computations to update h. In contrast,
due to absence of any matrix inversion as opposed to CPE1,
it is possible to implement channel estimation parts of both
the algorithms with O(r2) operations per time update. This
indicates that the proposed algorithms are computationally
superior than the CPE1.

4.2. Systolic Array Implementation. The detection part of
both proposed algorithms (comprising of steps (1) through
(4)) is particularly simple for which many efficient systolic
array architectures have been proposed. We therefore limit
our discussion to possible implementation architectures for
channel estimation part of the proposed algorithms.

The systolic array implementation of channel estimation
section of CPE2 and its processing cells are shown in
Figure 2, where adaptive filtering triangular update part
(comprising of step (6)) is realized on a triangular vectorial
systolic array as in [24] for Rk and uk extraction. It consists
of two sections: the upper triangular array (shown in part
(a) of Figure 2), which stores and updates Rk and the right-
hand column of cells (shown in part (b) of Figure 2), which
stores and updates uk. The input data are fed from top and
propagate to the bottom of the array. The rotation angles
are calculated in left boundary cells, and propagate from
left to right. The resulting Rk and uk updates in step (6)
are subsequently used in the linear bidirectional systolic
array section [19] (shown in part (c) of Figure 2) to obtain
the channel estimate using back substitution operation.
Unfortunately, a critical obstruction appears because the
process of the triangular-updates runs from the upper-
left corner to the lower-right corner of the array, while
the process of the back substitution runs in exactly the
opposite direction. It is therefore pipelining of the two steps
(the triangular update and back substitution) that seems
impossible on a triangular array. Back substitution may be
implemented as a separate operation on a parallel two-
dimensional array [36]. Nevertheless, the two-dimensional
array can become quite large for long channel lengths,
requiring a substantial area for VLSI implementation. On
the other hand, comparatively simpler linear array structure
shown in Figure 2 is highly sequential, thus involving more
time delay due to increased clock cycles to compute the
channel coefficients. For these reasons, the back substitution
in CPE2 is a costly operation to perform.

The CPE3 approach involves a time recursive QR
solution to compute the channel vector h. The channel
estimation part of CPE3 algorithm can be implemented by a
fully pipelined rhombic systolic array obtained by combining
lower triangular array with an upper triangular array. This
implementation has been performed by Sakai in [29, 30]
and is reproduced in Figure 3. The components of Rk are
updated in the upper triangular part (a) of Figure 3. Also, the

components of uk are updated in part (b) in the same fashion
as the off-diagonal components of Rk, with the input data
yk from the top of this column and the output vk from the
bottom of this column. Notice that systolic implementation
in upper section of part (c) is similar to that in part (a),
except that the array is now lower triangular, and each
element is divided with β = √

λ before updating, and the
input to the array is provided from the top in the form
of a zero vector. A systolic array performing (20) is shown
in lower portion of part (c) of Figure 3, where the cells in
the bottom line, shown by small circles; perform (20) for
calculating the tap coefficients. Each column of the lower
triangular array whose cells are shown by diamonds perform
R−Tk updating. The cells also calculate each column of UT

k ,
appearing from the last diamond cell. Notice that due to
absence of back substitution, the CPE3 algorithm is rich in
parallel operations and therefore leads to more efficient and
simple implementation on systolic processors.

5. Simulation Results
In this section, floating-point and fixed-point simulation
results are presented to examine and compare the per-
formance of the CPE1, CPE2, and CPE3 approaches. All
simulations were carried out in a typical asymmetric digital
subscriber line (ADSL) environment with perfect block
synchronization, FFT size m = 512, the CP length v =
32, λ = 0.75, δ = 1e−3, and 4-QAM constellation for
modulation, unless otherwise stated. For a fair comparison,
for CPE1 we set forgetting factor across blocks μ1 = λ
and forgetting factor within blocks μ2 = 1. The mismatch
performance is evaluated by averaged mean-square-error
(MSE) per subchannel err =∑i∈U ‖Xi− X̂i‖/|U|, where U is
the set of indexes corresponding to the U used subchannels
and |U| is the number of all the used subchannels [10]. The
transmit power of all used subchannels is same (i.e., σ2

i = σ2)
and the noise power was set such that SNR= 30 dB (a typical
value of SNR in ADSL environments).

The discrete channel impulse response with transfer
function H0(D) for carrier service loop area (CSA) loop
# 1 was obtained from the Matlab DMTTEQ Toolbox
[37] and sampled at 2.208 MHz. For simulation purposes,
the shorter channel was generated by subsampling. H0(D)
was perturbed to obtain another test channel H1(D) (to
mimic small variation in H0(D)). Corresponding frequency
responses for the two test channels are shown in Figure 4.
Initially, the channel transfer function is H0(D), which
remains unchanged for the first 400 data blocks. At data
block 401, the channel is switched from H0(D) to H1(D).
For all adaptive schemes, only the first DMT symbol was sent
as pure training sequence to identify the initial channel for
fast convergence. Also, the inverse of the correlation matrix
in CPE1 is initialized to a constant multiple of the identity
matrix.

Example 1. Figure 5 shows typical learning curves of the
three algorithms, with adaptation factor parameter λ values
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ĥn

ĥn

ĥi
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Figure 2: Systolic array implementation of channel estimation section of CPE2 (using Householder transformations) with processing cell
descriptions.

of 0.75 (top plots) and 0.55 (bottom plots), under double-
precision floating-point implementation (using IEEE stan-
dard for floating-point arithmetic (IEEE 754)). It can be seen
that all the schemes are able to converge and can track the
channel variation. The learning curves of CPE1 and CPE2 are
overlaid and both the algorithms converge faster than CPE3.
As compared to CPE3, the two algorithms are also seen
to have greater uneven performance. In contrast, although
CPE3 convergence is slower, it is seen to demonstrate
superior steady-state performance. A close examination of
CEP2 algorithm shows that the back substitution operation
involves decision-feedback computation of channel coeffi-
cients. If a channel coefficient suffers from an error, this
error weights heavily in the estimation of the next and
subsequent channel coefficients. The erroneous estimated
channel causes the next detection error. This decision
error further propagates and causes subsequent decision
errors. Consequently, CPE2 encounters performance loss.
In contrast, channel is recursively updated without back
substitution in CPE3. CPE3 is therefore seen to yield better
performance.

A close observation of top and bottom plots of Figure 5
also indicates that convergence rate and steady-state per-
formance of the three algorithms can be improved by

lowering the value of λ. The price paid in growth is uneven
performance which can be reduced and thus numerical
stability can be improved by increasing the data block size
(i.e., with the increased CP length), while the system latency
is increased.

Example 2. Without giving a rigorous stability analysis,
we verify the stability of the CPE1, CPE2, and CPE3
algorithms experimentally through a long-time simulation
with 5 × 103 data blocks (considerably large number of
samples). Corresponding results in Figure 6 show that the
three algorithms do not show any sign of divergence and have
very stable performance.

Example 3. The more complex the modulation alphabet, the
narrower the gap between the symbol decision space and the
higher the probability of error in detecting the signal [38].
Since the three algorithms rely on the FA property of source
symbols, high-performance degradation is expected as the
constellation size increases. It is therefore the three algo-
rithms that may not be suitable for rate adaptation. To verify
this, in this simulation example, we repeat Example 1 with
16-QAM and 64-QAM constellation sizes. Corresponding
simulation results in Figure 7 show that the three algorithms
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Figure 5: Effect of the forgetting factor λ on performance analysis
curves of CPE1, CPE2, and CPE3 algorithms when tracking
channels H0(D) and H1(D): λ = 0.75 (top plots) and λ = 0.55
(bottom plots).
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Figure 7: Effect of modulation constellation size on algorithm
performance curves (16-QAM (top plots), 64-QAM (bottom plots),
λ = 0.75).

take the same number of data blocks to converge. However, as
expected, their performance degrades when the constellation
size is increased.

Example 4. In this section, due to inherent parallelism and
thus suitability for fixed-point VLSI implementation, we
examine the fixed-point performance of the CPE2 and CPE3
algorithms with 16, 24, and 32 bit data word length WL

implementations for both data and channel coefficients.
These WLs are selected as a reasonable approximation as
these data lengths are suitable for many applications. For
fixed-point simulations, routines in Matlab are developed
to mimic the operations of fixed-point arithmetic, and all
quantities in the algorithms are represented with finite bits.
The fixed-point representation requires WL = (li bits for
integer part) + (l bits for the fractional part) + (1 bit for
sign). For real number x, its quantized value xq is obtained
as follows. With WL bits, the largest integers that can be
represented are±2(WL−1)−1. When the value of x falls outside
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Figure 8: Plots of fixed-point performance of CPE2 (top) and CPE3
(bottom) with three choices of quantization bits (λ = 0.75, 4-
QAM).

the interval [+2(WL−1)−1,−2(WL−1)−1], the saturation occurs,
and the xq is then taken as one of the boundary values,
+2(WL−1) − 1 or −2(WL−1) − 1. On the other hand, if x lies
within the interval [+2(WL−1) − 1,−2(WL−1) − 1], then the li
bits are computed to represent the integer part of x, and the
remaining bits l are used to represent the fractional part of
x. It is important to note here that for the above choice of
WLs, the thresholds are sufficiently larger than signal values
involved in both the algorithms. The quantizer is therefore
always expected to operate on values that are much lesser
than the boundary values, and therefore no saturation errors
are expected. The only errors that are introduced by finite
precision approximations are the round-off errors.

Figure 8 provides performance plots of CPE2 (top) and
CPE3 (bottom) with different WL choices and floating-point
performance. From the performance curves, we infer that
both algorithms are able to track the channel without numer-
ical stability issues with WLs 24 and 32. The performance
curves with WL of 16 bits indicate unacceptable performance
or breakdown caused by quantization errors for both the
algorithms. For both the algorithms, increasing WL above
24 bits does not result in any improvement and performance

curves of their 24-bit and floating-point implementations are
overlaid (there is no visible difference). It is therefore 24-bit
finite word implementation is a reasonable approximation of
their floating-point computation.

6. Conclusion
In this paper, by using numerically robust block HTs, two
CP-based adaptive channel estimation algorithms have been
presented for multicarrier systems. Conceptually, the new
schemes maintain the same spirit of the CP based CMB-
RLS channel tracking scheme. More precisely, the basic
idea is to utilize CP data from the data detection part for
adaptive channel estimation. The new approaches achieve
the same purpose by replacing the computationally expensive
CMB-RLS channel estimation part with the computationally
cheaper SBHT-RLS alternatives. Among the two schemes, the
method called CP based Direct SBHT-RLS is based upon
Liu’s algorithm in the channel estimation part but adaptively
updates channel vector instead of the error vector. The
second method called CP based Extended SBHT-RLS is based
upon Sakai’s algorithm in the channel estimation part but
uses an independent and simpler derivation.

Floating-point performance curves indicate that all
the three schemes are able to converge and can track
channel variation without any stability problems. CPE1
and CPE2 exhibit identical stable performance, whereas
CPE3 outperforms both the CPE1 and CPE2 techniques.
In contrast to CPE1, what is remarkable here is that the
CPE2 and CPE3 algorithms achieve their performance at
lower computational complexity, enhanced parallelism, and
pipelining for systolic array/VLSI implementation. All the
three algorithms are seen to converge faster and perform
better with lower values of forgetting factor parameter λ.
Our simulation results suggest that such advantages come at
the price of greater uneven performance. Hence, moderate
values of forgetting factor would be preferred where a
balance in both performance and stablility is required. The
three techniques also show reduction in performance with
the increase in modulation constellation size. Hence, these
techniques are more appealing when the constellation size is
small and may not be suitable for rate adaptation. It is also
shown that in terms of finite word length behavior, 24-bit
finite word implementation is a reasonable approximation
of their typical floating-point computation (In practice, the
word lengths are optimized with respect to the actual system
requirements (i.e., chip area, latency, power consumption,
FFT size, throughput), noise, channel length, and desired
acceptable performance.).

Systolic array structures that allow efficient parallel
implementations of the schemes with VLSI technology in real
time were considered. The CPE2 approach is partially con-
current due to costly back substitution operation, whereas,
CPE3 approach is highly concurrent due to the absence
of back substitution operation and therefore lead to more
efficient implementation on systolic processors.

The methods proposed in this paper are well suited
for applications where good numerical properties, com-
putational saving, and parallel processing implementation
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advantages (with improved performance (in case of CPE3
only)) are desired. Although a real baseband DMT case is the
main focus of this paper, the proposed approaches can also be
applied to the complex baseband case (wireless multicarrier
systems). In such case, a further improvement in perfor-
mance is possible by including forward error correction
(FEC) decoding in the reliable reconstruction of transmit-
ted symbols. Future interesting directions include studying
hardware implementation problems, fine grain implemen-
tation/architecture of processing elements to workout total
cost of operators (adders, multipliers, dividers, memory
elements (delay elements), etc.) and algorithm latencies,
modifications of the schemes to achieve reduced complexity,
performance improvement, and stable implementations with
reduced word lengths.
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