4,294 research outputs found

    Solutions and Tools for Secure Communication in Wireless Sensor Networks

    Get PDF
    Secure communication is considered a vital requirement in Wireless Sensor Network (WSN) applications. Such a requirement embraces different aspects, including confidentiality, integrity and authenticity of exchanged information, proper management of security material, and effective prevention and reaction against security threats and attacks. However, WSNs are mainly composed of resource-constrained devices. That is, network nodes feature reduced capabilities, especially in terms of memory storage, computing power, transmission rate, and energy availability. As a consequence, assuring secure communication in WSNs results to be more difficult than in other kinds of network. In fact, trading effectiveness of adopted solutions with their efficiency becomes far more important. In addition, specific device classes or technologies may require to design ad hoc security solutions. Also, it is necessary to efficiently manage security material, and dynamically cope with changes of security requirements. Finally, security threats and countermeasures have to be carefully considered since from the network design phase. This Ph.D. dissertion considers secure communication in WSNs, and provides the following contributions. First, we provide a performance evaluation of IEEE 802.15.4 security services. Then, we focus on the ZigBee technology and its security services, and propose possible solutions to some deficiencies and inefficiencies. Second, we present HISS, a highly scalable and efficient key management scheme, able to contrast collusion attacks while displaying a graceful degradation of performance. Third, we present STaR, a software component for WSNs that secures multiple traffic flows at the same time. It is transparent to the application, and provides runtime reconfigurability, thus coping with dynamic changes of security requirements. Finally, we describe ASF, our attack simulation framework for WSNs. Such a tool helps network designers to quantitatively evaluate effects of security attacks, produce an attack ranking based on their severity, and thus select the most appropriate countermeasures

    KALwEN: a new practical and interoperable key management scheme for body sensor networks

    Get PDF
    Key management is the pillar of a security architecture. Body sensor networks (BSNs) pose several challenges–some inherited from wireless sensor networks (WSNs), some unique to themselves–that require a new key management scheme to be tailor-made. The challenge is taken on, and the result is KALwEN, a new parameterized key management scheme that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when bootstrapping or extending a network. One of KALwEN's key features is that it allows sensor devices from different manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other. KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports secure global broadcast, local broadcast, and local (neighbor-to-neighbor) unicast, while preserving past key secrecy and future key secrecy (FKS). The fact that the cryptographic protocols of KALwEN have been formally verified also makes a convincing case. With both formal verification and experimental evaluation, our results should appeal to theorists and practitioners alike

    Key Management in Wireless Sensor Networks, IP-Based Sensor Networks, Content Centric Networks

    Get PDF
    Cryptographic keys and their management in network communication is considered the main building block of security over which other security primitives are based. These cryptographic keys ensure the privacy, authentication, integrity and non-repudiation of messages. However, the use of these cryptographic keys and their management in dealing with the resource constrained devices (i.e. Sensor nodes) is a challenging task. A number of key management schemes have been introduced by researchers all over the world for such resource constrained networks. For example, light weight PKI and elliptic curve cryptography schemes are computationally expensive for these resource constrained devices. So far the symmetric key approach is considered best for these constrained networks and different variants of it been developed for these networks (i.e. probabilistic key distribution approach). The probabilistic key distribution approach consumes less memory than the standard symmetric key approach but it suffers from the connectivity issues (i.e. the connectivity depends on the common shared keys between the nodes). Most of those schemes were proposed by considering static sensor networks (e.g. Industrial process monitoring, Environmental monitoring, movement detection in military applications, forests etc.). However, the use of these existing key management schemes for mobile wireless sensor networks applications introduces more challenges in terms of network connectivity, energy consumption, memory cost, communication overhead and protection of key materials against some well known attacks. Keeping these challenges in mind, previous research has proposed some key management schemes considering the mobility scenarios in ad hoc networks and wireless sensor networks (e.g. vehicular networks, health monitoring systems).However these schemes consume more resource because of a much higher communication packet exchange during the handover phase for the authentication of joining and leaving nodes than the static networks where there is no extra communication for the handover and authentication. The motivation of this research work is to investigate and propose new algorithms not only to improve the efficiency of these existing authentication and key management schemes in terms of connectivity, memory and security by considering the mobility scenario in wireless sensor networks, but also to develop new algorithms that suit these constrained networks than the existing schemes. First, we choose the existing key pool approach for authentication and key management and improve its network connectivity and resilience against some well known attacks (e.g. node capturing attacks) while reduce the memory cost by storing those key pools in each sensor node. In the proposed solution, we have divided the main key pool into two virtual mutually exclusive key pools. This division and constructing a key from two chosen keys, one from each key pool, helps to reduce the memory cost of each node by assigning fewer keys for the same level of network connectivity as the existing key pool frameworks. Although, the proposed key pool approach increases the network resilience against node compromission attacks because of the smaller number of keys assigned to each node, however it does not completely nullify the effect of the attacks. Hence we proposed an online mutual authentication and key establishment and management scheme for sensor networks that provides almost 100\% network connectivity and also nullifies the effect of node compromission attacks. In the proposed online key generation approach, the secret key is dependent on both communicating parties. Once the two communicating parties authenticate each other, they would successfully establish a secret communication key, otherwise they stop communication and inform the network manager about the intruder detection and activity. The last part of the thesis considers the integration of two different technologies (i.e. wireless sensor networks and IP networks). This is a very interesting and demanding research area because of its numerous applications, such as smart energy, smart city etc.. However the security requirements of these two kind of networks (resource constrained and resourceful) make key management a challenging task. Hence we use an online key generation approach using elliptic curve cryptography which gives the same security level as the standard PKI approach used in IP networks with smaller key length and is suited for the sensor network packet size limitations. It also uses a less computationally expensive approach than PKI and hence makes ECC suitable to be adopted in wireless sensor networks. In the key management scheme for IP based sensor networks, we generate the public private key pair based on ECC for each individual sensor node. However the public key is not only dependent on the node's parameter but also the parameters of the network to which it belongs. This increases the security of the proposed solution and avoids intruders pretending to be authentic members of the network(s) by spreading their own public keys. In the last part of the thesis we consider Content Centric Networking (CCN) which is a new routing architecture for the internet of the future. Building on the observation that today's communications are more oriented towards content retrieval (web, P2P, etc.) than point-to-point communications (VoIP, IM, etc.), CCN proposes a radical revision of the Internet architecture switching from named hosts (TCP/IP protocols) to named data to best match its current usage. In a nutshell, content is addressable, routable, self-sufficient and authenticated, while locations no longer matter. Data is seen and identified directly by a routable name instead of a location (the address of the server). Consequently, data is directly requested at the network level not from its holder, hence there is no need for the DNS). To improve content diffusion, CCN relies on data distribution and duplication, because storage is cheaper than bandwidth: every content - particularly popular one - can be replicated and stored on any CCN node, even untrustworthy. People looking for particular content can securely retrieve it in a P2P-way from the best locations available. So far, there has been little investigation of the security of CCNs and there is no specific key management scheme for that. We propose an authentication and key establishment scheme for CCNs in which the contents are authenticated by the content generating node, using pre-distributed shares of encryption keys. The content requesting node can get those shares from any node in the network, even from malicious and intruder ones, in accordance with a key concept of CCNs. In our work we also provide means to protect the distributed shares from modification by these malicious/intruder nodes. The proposed scheme is again an online key generation approach but including a relation between the content and its encryption key. This dependency prevents the attackers from modifying the packet or the key share

    AMISEC: Leveraging Redundancy and Adaptability to Secure AmI Applications

    Get PDF
    Security in Ambient Intelligence (AmI) poses too many challenges due to the inherently insecure nature of wireless sensor nodes. However, there are two characteristics of these environments that can be used effectively to prevent, detect, and confine attacks: redundancy and continuous adaptation. In this article we propose a global strategy and a system architecture to cope with security issues in AmI applications at different levels. Unlike in previous approaches, we assume an individual wireless node is vulnerable. We present an agent-based architecture with supporting services that is proven to be adequate to detect and confine common attacks. Decisions at different levels are supported by a trust-based framework with good and bad reputation feedback while maintaining resistance to bad-mouthing attacks. We also propose a set of services that can be used to handle identification, authentication, and authorization in intelligent ambients. The resulting approach takes into account practical issues, such as resource limitation, bandwidth optimization, and scalability

    On the Security of the Automatic Dependent Surveillance-Broadcast Protocol

    Full text link
    Automatic dependent surveillance-broadcast (ADS-B) is the communications protocol currently being rolled out as part of next generation air transportation systems. As the heart of modern air traffic control, it will play an essential role in the protection of two billion passengers per year, besides being crucial to many other interest groups in aviation. The inherent lack of security measures in the ADS-B protocol has long been a topic in both the aviation circles and in the academic community. Due to recently published proof-of-concept attacks, the topic is becoming ever more pressing, especially with the deadline for mandatory implementation in most airspaces fast approaching. This survey first summarizes the attacks and problems that have been reported in relation to ADS-B security. Thereafter, it surveys both the theoretical and practical efforts which have been previously conducted concerning these issues, including possible countermeasures. In addition, the survey seeks to go beyond the current state of the art and gives a detailed assessment of security measures which have been developed more generally for related wireless networks such as sensor networks and vehicular ad hoc networks, including a taxonomy of all considered approaches.Comment: Survey, 22 Pages, 21 Figure

    Key Management in Wireless Sensor Networks, IP-Based Sensor Networks, Content Centric Networks

    Get PDF
    Cryptographic keys and their management in network communication is considered the main building block of security over which other security primitives are based. These cryptographic keys ensure the privacy, authentication, integrity and non-repudiation of messages. However, the use of these cryptographic keys and their management in dealing with the resource constrained devices (i.e. Sensor nodes) is a challenging task. A number of key management schemes have been introduced by researchers all over the world for such resource constrained networks. For example, light weight PKI and elliptic curve cryptography schemes are computationally expensive for these resource constrained devices. So far the symmetric key approach is considered best for these constrained networks and different variants of it been developed for these networks (i.e. probabilistic key distribution approach). The probabilistic key distribution approach consumes less memory than the standard symmetric key approach but it suffers from the connectivity issues (i.e. the connectivity depends on the common shared keys between the nodes). Most of those schemes were proposed by considering static sensor networks (e.g. Industrial process monitoring, Environmental monitoring, movement detection in military applications, forests etc.). However, the use of these existing key management schemes for mobile wireless sensor networks applications introduces more challenges in terms of network connectivity, energy consumption, memory cost, communication overhead and protection of key materials against some well known attacks. Keeping these challenges in mind, previous research has proposed some key management schemes considering the mobility scenarios in ad hoc networks and wireless sensor networks (e.g. vehicular networks, health monitoring systems).However these schemes consume more resource because of a much higher communication packet exchange during the handover phase for the authentication of joining and leaving nodes than the static networks where there is no extra communication for the handover and authentication. The motivation of this research work is to investigate and propose new algorithms not only to improve the efficiency of these existing authentication and key management schemes in terms of connectivity, memory and security by considering the mobility scenario in wireless sensor networks, but also to develop new algorithms that suit these constrained networks than the existing schemes. First, we choose the existing key pool approach for authentication and key management and improve its network connectivity and resilience against some well known attacks (e.g. node capturing attacks) while reduce the memory cost by storing those key pools in each sensor node. In the proposed solution, we have divided the main key pool into two virtual mutually exclusive key pools. This division and constructing a key from two chosen keys, one from each key pool, helps to reduce the memory cost of each node by assigning fewer keys for the same level of network connectivity as the existing key pool frameworks. Although, the proposed key pool approach increases the network resilience against node compromission attacks because of the smaller number of keys assigned to each node, however it does not completely nullify the effect of the attacks. Hence we proposed an online mutual authentication and key establishment and management scheme for sensor networks that provides almost 100\% network connectivity and also nullifies the effect of node compromission attacks. In the proposed online key generation approach, the secret key is dependent on both communicating parties. Once the two communicating parties authenticate each other, they would successfully establish a secret communication key, otherwise they stop communication and inform the network manager about the intruder detection and activity. The last part of the thesis considers the integration of two different technologies (i.e. wireless sensor networks and IP networks). This is a very interesting and demanding research area because of its numerous applications, such as smart energy, smart city etc.. However the security requirements of these two kind of networks (resource constrained and resourceful) make key management a challenging task. Hence we use an online key generation approach using elliptic curve cryptography which gives the same security level as the standard PKI approach used in IP networks with smaller key length and is suited for the sensor network packet size limitations. It also uses a less computationally expensive approach than PKI and hence makes ECC suitable to be adopted in wireless sensor networks. In the key management scheme for IP based sensor networks, we generate the public private key pair based on ECC for each individual sensor node. However the public key is not only dependent on the node's parameter but also the parameters of the network to which it belongs. This increases the security of the proposed solution and avoids intruders pretending to be authentic members of the network(s) by spreading their own public keys. In the last part of the thesis we consider Content Centric Networking (CCN) which is a new routing architecture for the internet of the future. Building on the observation that today's communications are more oriented towards content retrieval (web, P2P, etc.) than point-to-point communications (VoIP, IM, etc.), CCN proposes a radical revision of the Internet architecture switching from named hosts (TCP/IP protocols) to named data to best match its current usage. In a nutshell, content is addressable, routable, self-sufficient and authenticated, while locations no longer matter. Data is seen and identified directly by a routable name instead of a location (the address of the server). Consequently, data is directly requested at the network level not from its holder, hence there is no need for the DNS). To improve content diffusion, CCN relies on data distribution and duplication, because storage is cheaper than bandwidth: every content - particularly popular one - can be replicated and stored on any CCN node, even untrustworthy. People looking for particular content can securely retrieve it in a P2P-way from the best locations available. So far, there has been little investigation of the security of CCNs and there is no specific key management scheme for that. We propose an authentication and key establishment scheme for CCNs in which the contents are authenticated by the content generating node, using pre-distributed shares of encryption keys. The content requesting node can get those shares from any node in the network, even from malicious and intruder ones, in accordance with a key concept of CCNs. In our work we also provide means to protect the distributed shares from modification by these malicious/intruder nodes. The proposed scheme is again an online key generation approach but including a relation between the content and its encryption key. This dependency prevents the attackers from modifying the packet or the key shares

    QoS Provision for Wireless Sensor Networks

    Get PDF
    Wireless sensor network is a fast growing area of research, receiving attention not only within the computer science and electrical engineering communities, but also in relation to network optimization, scheduling, risk and reliability analysis within industrial and system engineering. The availability of micro-sensors and low-power wireless communications will enable the deployment of densely distributed sensor/actuator networks. And an integration of such system plays critical roles in many facets of human life ranging from intelligent assistants in hospitals to manufacturing process, to rescue agents in large scale disaster response, to sensor networks tracking environment phenomena, and others. The sensor nodes will perform significant signal processing, computation, and network self-configuration to achieve scalable, secure, robust and long-lived networks. More specifically, sensor nodes will do local processing to reduce energy costs, and key exchanges to ensure robust communications. These requirements pose interesting challenges for networking research. The most important technical challenge arises from the development of an integrated system which is 1)energy efficient because the system must be long-lived and operate without manual intervention, 2)reliable for data communication and robust to attackers because information security and system robustness are important in sensitive applications, such as military. Based on the above challenges, this dissertation provides Quality of Service (QoS) implementation and evaluation for the wireless sensor networks. It includes the following 3 modules, 1) energy-efficient routing, 2) energy-efficient coverage, 3). communication security. Energy-efficient routing combines the features of minimum energy consumption routing protocols with minimum computational cost routing protocols. Energy-efficient coverage provides on-demand sensing and measurement. Information security needs a security key exchange scheme to ensure reliable and robust communication links. QoS evaluation metrics and results are presented based on the above requirements
    corecore