177 research outputs found

    Penguins Search Optimisation Algorithm for Association Rules Mining

    Get PDF
    Association Rules Mining (ARM) is one of the most popular and well-known approaches for the decision-making process. All existing ARM algorithms are time consuming and generate a very large number of association rules with high overlapping. To deal with this issue, we propose a new ARM approach based on penguins search optimisation algorithm (Pe-ARM for short). Moreover, an efficient measure is incorporated into the main process to evaluate the amount of overlapping among the generated rules. The proposed approach also ensures a good diversification over the whole solutions space. To demonstrate the effectiveness of the proposed approach, several experiments have been carried out on different datasets and specifically on the biological ones. The results reveal that the proposed approach outperforms the well-known ARM algorithms in both execution time and solution quality

    Penguins Search Optimisation Algorithm for Association Rules Mining

    Full text link

    Editorial for Vol 24, No 2

    Get PDF
    Editorial for Vol 24, No

    Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration Versus Algorithmic Behavior, Critical Analysis Recommendations

    Get PDF
    In recent algorithmic family simulates different biological processes observed in Nature in order to efficiently address complex optimization problems. In the last years the number of bio-inspired optimization approaches in literature has grown considerably, reaching unprecedented levels that dark the future prospects of this field of research. This paper addresses this problem by proposing two comprehensive, principle-based taxonomies that allow researchers to organize existing and future algorithmic developments into well-defined categories, considering two different criteria: the source of inspiration and the behavior of each algorithm. Using these taxonomies we review more than three hundred publications dealing with nature- inspired and bio-inspired algorithms, and proposals falling within each of these categories are examined, leading to a critical summary of design trends and similarities between them, and the identification of the most similar classical algorithm for each reviewed paper. From our analysis we conclude that a poor relationship is often found between the natural inspiration of an algorithm and its behavior. Furthermore, similarities in terms of behavior between different algorithms are greater than what is claimed in their public disclosure: specifically, we show that more than one-third of the reviewed bio-inspired solvers are versions of classical algorithms. Grounded on the conclusions of our critical analysis, we give several recommendations and points of improvement for better methodological practices in this active and growing research field

    A Binary Grey Wolf Optimizer with Mutation for Mining Association Rules

    Get PDF
    In this decade, the internet becomes indispensable in companies and people life. Therefore, a huge quantity of data, which can be a source of hidden information such as association rules that help in decision-making, is stored. Association rule mining (ARM) becomes an attractive data mining task to mine hidden correlations between items in sizeable databases. However, this task is a combinatorial hard problem and, in many cases, the classical algorithms generate extremely large number of rules, that are useless and hard to be validated by the final user. In this paper, we proposed a binary version of grey wolf optimizer that is based on sigmoid function and mutation technique to deal with ARM issue, called BGWOARM. It aims to generate a minimal number of useful and reduced number of rules. It is noted from the several carried out experimentations on well-known benchmarks in the field of ARM, that results are promising, and the proposed approach outperforms other nature-inspired algorithms in terms of quality, number of rules, and runtime consumption

    An experimental study of a fuzzy adaptive emperor penguin optimizer for global optimization problem

    Get PDF
    Emperor Penguin Optimizer (EPO) is a recently developed population-based meta-heuristic algorithm that simulates the huddling behavior of emperor penguins. Mixed results have been observed on the performance of EPO in solving general optimization problems. Within the EPO, two parameters need to be tuned (namely f and l ) to ensure a good balance between exploration (i.e., roaming unknown locations) and exploitation (i.e., manipulating the current known best). Since the search contour varies depending on the optimization problem, the tuning of f and l is problem-dependent, and there is no one-size-fits-all approach. To alleviate these problems, an adaptive mechanism can be introduced in EPO. This paper proposes a fuzzy adaptive variant of EPO, namely Fuzzy Adaptive Emperor Penguin Optimizer (FAEPO), to solve this problem. As the name suggests, FAEPO can adaptively tune the parameters f and l throughout the search based on three measures (i.e., quality, success rate, and diversity of the current search) via fuzzy decisions. A test suite of twelve optimization benchmark test functions and three global optimization problems (Team Formation Optimization - TFO, Low Autocorrelation Binary Sequence - LABS, and Modified Condition/Decision Coverage - MC/DC test case generation) were solved using the proposed algorithm. The respective solution results of the benchmark meta-heuristic algorithms were compared. The experimental results demonstrate that FAEPO significantly improved the performance of its predecessor (EPO) and gives superior performance against the competing meta-heuristic algorithms, including an improved variant of EPO (IEPO)

    Fuzzy adaptive emperor penguin optimizer for global optimization problems

    Get PDF
    The Emperor Penguin Optimizer (EPO) is a recently developed population-based metaheuristic algorithm that simulates the huddling behaviour of emperor penguins. Mixed results have been observed in the performance of EPO in solving general optimization problems. Within the EPO, two parameters need to be tuned (namely f and l) to ensure a good balance between exploration (i.e., roaming unknown locations) and exploitation (i.e., manipulating the current known best). Since the search contour varies depending on the optimization problem, the tuning of parameters f and l is problem-dependent, and there is no one-size-fits-all approach. To alleviate this parameter tuning problem, an adaptive mechanism can be introduced in EPO. This research work proposes a fuzzy adaptive variant of EPO, namely FAEPO, to solve this problem. As the name suggests, FAEPO can adaptively tune the parameters f and l throughout the search based on three measures (i.e., quality, success rate, and diversity of the current search) via fuzzy decisions. A test suite of twelve benchmark test functions and three global optimization problems: Team Formation Optimization (TFO), Low Autocorrelation Binary Sequence (LABS), and Modified Condition/ Decision coverage (MC/DC) test case generation problem were solved using the proposed algorithm. The respective solution results of the competing metaheuristic algorithms were compared. The experimental results demonstrate that FAEPO significantly improved the performance especially of its predecessor (EPO), an improved variant of EPO (i.e., IEPO), and a fuzzy-based variant of ChOA (i.e., FChOA) and gives superior performance against the competing metaheuristic algorithms. Moreover, the proposed FAEPO requires 50% less fitness function evaluation in each iteration than the ancestor EPO and exhibits competitive performance in terms of convergence and computational time against its predecessor (EPO) and other competing meta-heuristic algorithms with a 90% confidence level

    Bio-inspired optimization in integrated river basin management

    Get PDF
    Water resources worldwide are facing severe challenges in terms of quality and quantity. It is essential to conserve, manage, and optimize water resources and their quality through integrated water resources management (IWRM). IWRM is an interdisciplinary field that works on multiple levels to maximize the socio-economic and ecological benefits of water resources. Since this is directly influenced by the river’s ecological health, the point of interest should start at the basin-level. The main objective of this study is to evaluate the application of bio-inspired optimization techniques in integrated river basin management (IRBM). This study demonstrates the application of versatile, flexible and yet simple metaheuristic bio-inspired algorithms in IRBM. In a novel approach, bio-inspired optimization algorithms Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) are used to spatially distribute mitigation measures within a basin to reduce long-term annual mean total nitrogen (TN) concentration at the outlet of the basin. The Upper Fuhse river basin developed in the hydrological model, Hydrological Predictions for the Environment (HYPE), is used as a case study. ACO and PSO are coupled with the HYPE model to distribute a set of measures and compute the resulting TN reduction. The algorithms spatially distribute nine crop and subbasin-level mitigation measures under four categories. Both algorithms can successfully yield a discrete combination of measures to reduce long-term annual mean TN concentration. They achieved an 18.65% reduction, and their performance was on par with each other. This study has established the applicability of these bio-inspired optimization algorithms in successfully distributing the TN mitigation measures within the river basin. Stakeholder involvement is a crucial aspect of IRBM. It ensures that researchers and policymakers are aware of the ground reality through large amounts of information collected from the stakeholder. Including stakeholders in policy planning and decision-making legitimizes the decisions and eases their implementation. Therefore, a socio-hydrological framework is developed and tested in the Larqui river basin, Chile, based on a field survey to explore the conditions under which the farmers would implement or extend the width of vegetative filter strips (VFS) to prevent soil erosion. The framework consists of a behavioral, social model (extended Theory of Planned Behavior, TPB) and an agent-based model (developed in NetLogo) coupled with the results from the vegetative filter model (Vegetative Filter Strip Modeling System, VFSMOD-W). The results showed that the ABM corroborates with the survey results and the farmers are willing to extend the width of VFS as long as their utility stays positive. This framework can be used to develop tailor-made policies for river basins based on the conditions of the river basins and the stakeholders' requirements to motivate them to adopt sustainable practices. It is vital to assess whether the proposed management plans achieve the expected results for the river basin and if the stakeholders will accept and implement them. The assessment via simulation tools ensures effective implementation and realization of the target stipulated by the decision-makers. In this regard, this dissertation introduces the application of bio-inspired optimization techniques in the field of IRBM. The successful discrete combinatorial optimization in terms of the spatial distribution of mitigation measures by ACO and PSO and the novel socio-hydrological framework using ABM prove the forte and diverse applicability of bio-inspired optimization algorithms

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications
    • …
    corecore