7,138 research outputs found

    Convex optimization over intersection of simple sets: improved convergence rate guarantees via an exact penalty approach

    Full text link
    We consider the problem of minimizing a convex function over the intersection of finitely many simple sets which are easy to project onto. This is an important problem arising in various domains such as machine learning. The main difficulty lies in finding the projection of a point in the intersection of many sets. Existing approaches yield an infeasible point with an iteration-complexity of O(1/ε2)O(1/\varepsilon^2) for nonsmooth problems with no guarantees on the in-feasibility. By reformulating the problem through exact penalty functions, we derive first-order algorithms which not only guarantees that the distance to the intersection is small but also improve the complexity to O(1/ε)O(1/\varepsilon) and O(1/ε)O(1/\sqrt{\varepsilon}) for smooth functions. For composite and smooth problems, this is achieved through a saddle-point reformulation where the proximal operators required by the primal-dual algorithms can be computed in closed form. We illustrate the benefits of our approach on a graph transduction problem and on graph matching

    Multidimensional Constrained Global Optimization in Domains with Computable Boundaries

    Full text link
    Multidimensional constrained global optimization problem with objective function under Lipschitz condition and constraints generating a feasible domain with computable boundaries is considered. For solving this problem the dimensionality reduction approach on the base of the nested optimization scheme is used. This scheme reduces initial multidimensional problem to a family of one-dimensional subproblems and allows applying univariate methods for the execution of multidimensional optimization. Sequential and parallel modifications of well-known information-statistical methods of Lipschitz optimization are proposed for solving the univariate subproblems arising inside the nested scheme in the case of domains with computable boundaries. A comparison with classical penalty function method being traditional means of taking into account the constraints is carried out. The results of experiments demonstrate a significant advantage of the methods proposed over the penalty function method

    Implementation of novel methods of global and nonsmooth optimization : GANSO programming library

    Get PDF
    We discuss the implementation of a number of modern methods of global and nonsmooth continuous optimization, based on the ideas of Rubinov, in a programming library GANSO. GANSO implements the derivative-free bundle method, the extended cutting angle method, dynamical system-based optimization and their various combinations and heuristics. We outline the main ideas behind each method, and report on the interfacing with Matlab and Maple packages. <br /

    Index Information Algorithm with Local Tuning for Solving Multidimensional Global Optimization Problems with Multiextremal Constraints

    Full text link
    Multidimensional optimization problems where the objective function and the constraints are multiextremal non-differentiable Lipschitz functions (with unknown Lipschitz constants) and the feasible region is a finite collection of robust nonconvex subregions are considered. Both the objective function and the constraints may be partially defined. To solve such problems an algorithm is proposed, that uses Peano space-filling curves and the index scheme to reduce the original problem to a H\"{o}lder one-dimensional one. Local tuning on the behaviour of the objective function and constraints is used during the work of the global optimization procedure in order to accelerate the search. The method neither uses penalty coefficients nor additional variables. Convergence conditions are established. Numerical experiments confirm the good performance of the technique.Comment: 29 pages, 5 figure
    corecore