
Implementation of novel methods of global and

non-smooth optimization. GANSO programming library

G. Beliakov1 and J. Ugon2

April 24, 2007

1 Faculty of Science and Technology, Deakin University, 221 Burwood Hwy, Burwood
3125, Australia.

email: gleb@deakin.edu.au
2 School of Information Technology and Mathematical Sciences, University of Ballarat,

Mt Helen, 3353 Victoria, Australia.
email: j.ugon@ballarat.edu.au

Abstract

We discuss the implementation of a number of modern methods
of global and non-smooth continuous optimization in a programming
library GANSO. GANSO implements the Derivative-Free Bundle Method,
the Extended Cutting Angle method, Dynamical System-based Opti-
mization and their various combinations and heuristics. This article
outlines the main ideas behind each method, illustrates the syntaxis
and usage of the library, and reports on its interfacing with Matlab
and Maple packages.

Keywords Global optimization, non-smooth optimization, nonlinear pro-
gramming, numerical optimization.

1 Introduction

Large research effort in the field of optimization has resulted in a number of
new powerful methods, capable of solving problems with very complicated ob-
jective functions. Notably, with the objective functions that are not differen-
tiable, and those that possess a large number of local optima. Such functions

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Federation ResearchOnline

https://core.ac.uk/display/213000970?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

frequently arise in applications, for example when using exact penalty func-
tions in constrained optimization, or when calculating molecular structures
(protein folding, docking studies, etc. [11, 17, 20, 21, 30, 32]). Derivative-free
methods are becoming more popular, as exact gradients (and even more so,
subgradients) are typically unknown in the applications.

Various heuristics have become very popular (e.g., simulated annealing
and genetic programming), possibly because of their intuitive interpretation
and easiness of implementation [43]. Even though sometimes their use is
not warranted, as more sophisticated methods deliver substantially better
results, there is generally lack of detailed comparative analysis (with a few
exceptions, see [22, 31]), which lead practitioners to choosing less powerful
but more user friendly methods and relying more on computational power.

One problem is that many modern methods are hidden beyond the wall of
mathematical formulae, and are not easy to implement. In those case where
implementation is available, it is not as generic and as thoroughly tested as
commercial packages, nor it is straightforward to use by practitioners. A
notable exception are the packages by M.J.D. Powell [37,38] and LGO by J.
Pinter [35].

The aim of our work was to collect a number of recent methods of global
and non-smooth optimization, mainly those developed at the University of
Ballarat by A. Rubinov’s group, and implement them in a programming
library with a generic user-friendly interface, which would be attractive to
non-expert users. Our hope is that the easiness of use of such a library would
persuade practitioners to use advanced optimization methods.

The result of this work is the programming library GANSO (which stands
for Global And Non-Smooth Optimization), presented in this article [16].
GANSO implements four different approaches to global non-smooth optimiza-
tion, and also their combinations. For unconstrained local non-smooth opti-
mization it uses the Derivative Free Bundle Method (DFBM), based on finite
difference approximation to the subgradient [2,3]. For global non-convex op-
timization on some compact domain D it uses the Extended Cutting Angle
method (ECAM) [4, 6–8,41], a simple Random start method, and a method
based on trajectories of Dynamical Systems (DSO) [24–26]. There are also
several combinations of these methods.

One of the strengths of the GANSO library is the possibility to use several
combinations of these methods. Research has shown that adequately combin-
ing two optimization methods can lead to greatly improved results [5,10,25].
In GANSO, we implement combinations that have already been shown to

2

work well, and some novel approaches.
In this article we give an overview of the optimization methods imple-

mented in GANSO , and discuss some of the combinations of global and local
search. We illustrate the syntaxis and the usage of GANSO library on simple
examples, and also report on some implementation issues related to interfac-
ing GANSO with popular Matlab and Maple packages.

2 Optimization methods

GANSO library implements a number of methods of global and non-smooth
optimization. These methods aim at solving the following generic optimiza-
tion problem

minimize f(x)

subject to x ∈ D ⊆ Rn. (1)

The feasible domain D is specified by a number of linear constraints
(equalities and inequalities), including box constraints

ai ≤ xi ≤ bi i = 1, . . . , n.

In the case of unconstrained minimization, D = Rn.
The class of objective functions f dealt with in GANSO is very broad. We

do not assume differentiability of f , and only require its Lipschitz conti-
nuity (local or global) for ECAM and DFBM. DSO method can deal with
discontinuous functions. The Lipschitz continuity is expressed as

|f(x)− f(y)| ≤ Ld(x, y),

where x, y are two points in D, d(x, y) is the distance between these points
(e.g., Euclidean distance) and L is some positive number. The inequality
should hold for all x, y ∈ D.

Under such a general condition, the optimization problem is extremely
difficult. The objective function may have many local extrema, and locating
its absolute minimum (global minimum) is very challenging indeed. Com-
putation of the direction of descent at those points where f is not differ-
entiable is also a challenge. Familiar methods, such as quasi-Newton, or
conjugate gradient, may simply not work for this type of problems. There

3

is substantial literature on the subject of global and non-smooth optimiza-
tion. The references section lists a few popular books and overviews, e.g.,
[11, 17–19,23,29,33,36,42].

GANSO implements three different approaches to global non-smooth opti-
mization, and also their combinations, as well as random start heuristic.

• Derivative-Free Bundle Method (DFBM) of non-smooth optimization;

• Extended Cutting Angle Method (ECAM) of global Lipschitz optimiza-
tion;

• Dynamical System - based Optimization (DSO) - a method of global
optimization.

2.1 Non-Smooth Local Optimization

There are many practically relevant mathematical models that involve non-
smooth functions, i.e. continuous functions that have a discontinuous gra-
dient. Within the broad class of non-smooth functions, the set of locally
Lipschitz-continuous functions, and in particular the class of convex func-
tions, is of special interest. The notion of subdifferential (see [40]) is a general-
ization of the gradient for non-smooth convex functions. Different approaches
to the generalization of this notion have been proposed subsequently: the
Clarke subdifferential (see [12]) and the quasidifferential (see [13–15]) are the
most important among these from the numerical point of view.

In the optimization methods based on descent, an essential step is estimat-
ing the direction of descent using some information about the subdifferential.
In the DFBM method, implemented in GANSO , we use a special finite differ-
ence approximation to the subdifferential, called the discrete gradient [2].

The DFBM method is derivative-free, which means that it only uses the
values of the objective function, but not its derivative (or its generalization)
in explicit form. In essence the implemented algorithm iterates between two
steps: calculation of the descent direction from the approximation to the
subdifferential, and a line search along this direction.

While the DFBM is a local method (i.e., it converges to a locally optimal
solution, from any starting point x), the fact that it uses an approximation
to the subdifferential, allows it to converge to a sufficiently “deep” local
minimum in multiextremal problems, i.e., “skip” through many annoying

4

shallow local minima [9]. This is an important advantage of this method over
other competing approaches that converge to the nearest local minimum.

2.2 Random start

In many practical problems the objective function f(x) possesses many (some-
times myriads of) local minima. The goal is to locate the global minimum.

Random start is a very simple approach which involves execution of any
local optimization method from a large number of “starting” points. The
starting points are chosen in a random way, so that they cover the whole
feasible domain. The smallest local minimum is selected as a substitute for
the global minimum. There is no guarantee of the quality of the solution,
but in many applications this approach delivers good results.

In GANSO we use Sobol quasirandom sequence of starting points. We
apply the DFBM from each of these starting points. The algorithm returns
the best local minimizer found in this way. The combination with DFBM
gives an advantage of systematically converging to deeper local minima than
with other local methods [9].

2.3 Extended Cutting Angle Method (ECAM)

Under Lipschitz continuity assumption, it is possible to estimate the small-
est possible minimum of the objective function, from its recorded values at
various points. It follows from the Lipschitz condition that

f(x) ≥ max
k=1,...,K

f(xk)− Ld(xk, x) =: H(x), (2)

where xk are the points with the recorded values of f(xk), and L is the
Lipschitz constant of f . The expression on the right is called the (saw-tooth)
underestimate of f . By using a large number of points xk, it is possible
to approximate f closely by its underestimate H, and then use the global
minimum of the underestimate to approximate that of f .

It turns out that minimizing the underestimate H is a structured opti-
mization problem, and all its local (and the hence global) minimizers can be
found explicitly. This is the basis of the ECAM [1,4,6–8,41]. It uses a com-
putationally efficient representation of local minimizers of H in a tree data
structure, and computes the global minimum of f from this information. The
method guarantees the globally optimal solution.

5

It should be noted that this method requires a very large number of
function values even in problems with moderate dimension (n ≤ 5). The issue
here is not the computational algorithm, but the very fact that the points in
n-dimensional space are very sparse. To build an accurate underestimate of
f , the points should cover the feasible domain densely. What ECAM does
however, is choose the points xk adaptively, only in the “promising” regions,
and thus improves the accuracy in the regions near deep local minimizers.
ECAM employs the technique of fathoming, similar to branch-and-bound
algorithms.

At the end of its execution, ECAM algorithm calls local search (DFBM)
a specified number of times to improve the solution. DFBM uses the starting
points supplied by ECAM.

2.4 Dynamical Systems - Based Optimization

The idea of this method (DSO) is to build a dynamical system using a number
of values of the objective function, and associating with these data certain
“forces”. The evolution of such a system yields a globalized descent trajec-
tory, which leads to lower values of the objective function. The DSO method
typically starts with a box domain, samples the objective function within
this search domain, and chooses a number of these values to define the sys-
tem evolution rules. The algorithm continues sampling the domain until it
converges to a stationary point [24–26].

2.5 Combination of methods

As we mentioned, in practice none of the generic global optimization algo-
rithms alone is capable to find the global minimum of all continuous (or even
Lipschitz) functions,1 although many methods do exhibit nice theoretical
convergence properties. It is a usual practice to combine two or more tech-
niques to take advantage of combined power of several methods. Examples
of this approach are numerous, e.g., multistart local search, or running local

1Take for example the function f(x) = min{1,M ||x−a||}, where a ∈ Rn is some vector,
and M > 0 is the Lipschitz constant of f . Systematic exploration of any box domain
requires an astronomical number of function evaluations even for a moderate dimension
n, while the success of stochastic methods and heuristics depends on the luck of choosing
x in the neighborhood a (in the ball of radius 1

M).

6

search at the final steps of a global optimization method. Below we detail
some of the combinations implemented in GANSO library.

2.5.1 DFBM + ECAM

This combination of the local DFBM method with a special version of ECAM
is designed to improve line search used in DFBM, as well as to facilitate
leaving shallow local minima [5]. It works as follows.

DFBM is started with a suitable initial point and runs until it converges,
i.e., it does not find any direction of descent from a point xk. Then the
algorithm chooses a specified number of promising ascent directions, and
defines a bounded domain in the affine linear subspace of Rn, in which the
global search is performed, typically an m-dimensional simplex. Using an
estimate of the Lipschitz constant of f , the algorithm performs global search
in this low-dimensional part of the domain using ECAM. ECAM runs a
specified number of iterations, and if successful, finds a point with a smaller
value of the objective function.

The dimensionality of the subdomain m < n, and there is no guarantee
that global search will help escape the current local minimum. There is a
trade-off between the effectiveness of this method and its numerical efficiency
(as global search is numerically expensive).

We note that the line search used in DFBM can be completely substituted
with the global search by ECAM in the m-dimensional simplex, as for m < 5
ECAM is numerically very efficient.

2.5.2 ECAM + DFBM

This is a combination of ECAM with local search [5]. At every iteration of
ECAM, instead of calculating the value of the objective function f(x), the
algorithm executes the DFBM local optimization routine, thus taking a local
minimum to which the DFBM converges when x is the starting point. Thus
the objective function is replaced with an auxiliary underestimate f̂(x), such
that all local minima of f and f̂ coincide. ECAM searches for the global
minimum of f̂ , which will also be the global minimum of f .

However f̂ is discontinuous. It is necessary to ensure that ECAM, which
is applicable to Lipschitz functions, will not loose its global convergence
properties if applied to an objective function from a wrong class. This may
happen, for instance, when ECAM fathoms parts of feasible domain.

7

We have demonstrated in [10] that the underestimate H in (2), con-
structed using the values f̂(xk) rather than f(xk) will remain an underes-
timate of f , and thus no global minimizer of f can be fathomed. Thus
convergence to the global minimum is preserved. On the other hand, this
combination allows one to reduce the number of iterations of ECAM, re-
quired to locate the global minimum (although not to confirm it), as we have
shown in [10] on a challenging molecular conformation problem.

2.5.3 ECAM + DSO

In this combination ECAM performs global search and builds a crude model
of the objective function. It runs a relatively small number of iterations, and
builds an underestimate H in (2). This underestimate is used to select a
number of “promising” regions to thoroughly sample with another method,
in this case DSO.

The algorithm selects a number of box domains based on the model H in
(2), and then calls DSO method for each of these boxes. DSO performs local
search within each box, and returns the best solution, which is subsequently
improved by using local search DFBM.

2.5.4 Iterative DSO

This combination consists of using DSO method in a number of stages, each
time reducing the search domain by some factor, using the optimal solution
found in a previous stage. The natural search domain for DSO method is
a box, which initially comprises the whole feasible domain. Once the first
stage of DSO has converged to some solution, a smaller box around this
minimizer is chosen as the search domain for the next stage. This way DSO
algorithm tries to improve its results by concentrating search in a smaller
neighbourhood of the current optimal solution.

An approximation to a globally optimal solution provided by a global
method is usually improved by a local search (DFBM) at the final stage.

2.6 Constraints

GANSO allows one to specify linear equality and inequality constraints on the
feasible domain D, as

D = {x ∈ Rn : Ax = b, Cx ≤ d},

8

where A, C are matrices with n columns and mA and mC rows, and b and
d are vectors with mA and mC elements respectively. It is assumed that the
rows of matrices A and C are linearly independent.

GANSO performs preprocessing of the constraints. The inequality con-
straints (except box constraints) are transformed into equality constraints
with the help of mC non-negative slack variables. Then the feasible domain
is expressed as

D = {y ∈ Rn+mC : Ãy = b̃}.
Following, n+mC −mA independent variables are identified (basic variables
yB). The rest of the variables are expressed as an affine combination of the
basic variables yNB = GyB +g, where the matrix G and vector g are obtained
from the original parameters A, b, C, d using linear algebra operations. The
choice of the basic variables is governed by numerical stability of the matrix
inversion operation when computing G and g (we use LU factorization with
pivoting).

Box constraints on the basic variables are dealt with by the algorithms
directly (they are natural in global optimization, whereas the DFBM adapts
its approximation to the subdifferential), while box constraints on the non-
basic variables are dealt with using an exact penalty function, calculated
internally). All these procedures are transparent to the user, who only needs
to provide the arrays containing the elements of A, b, C, d to the algorithm.

Nonlinear equality and inequality constraints are generally dealt with
using exact penalty functions. The penalty parameters depend very much
on the type of the constraints, and should be implemented by the user. It
involves modifying the value of the objective function by using an additive
penalty term, such as

objf = f(x) + P ||c(x)+||,

where P is the penalty parameter, c(x) denotes the vector of constraint
violations, and c+ denotes its positive part (i.e., its i-th component is not
zero only when the i-th constraint is violated. The norm is arbitrary, see [11].

It should be noted that none of the optimization methods alone (or in
combination) cannot guarantee the best optimal solution in a practical set-
ting (global convergence can be proved in theory, but it requires astronomical
computing time). Therefore the user should experiment with different meth-
ods in order to choose the one most suitable for her particular problem.

9

3 Implementation of the library

3.1 GANSO library

The described methods of optimization are implemented in the programming
library GANSO in C++ language. The algorithms can be accessed via class
interface or via a number of C-style procedures. These procedures allow one
to call GANSO methods from other programming languages, like Fortran, as
well as other packages like Matlab and Maple, as described in the following
sections.

C++ class interface involves one main class called Ganso, which provides
the interface to all the optimization methods. There is also a number of C-
style procedures, which simply call the relevant member functions of Ganso
class. The description of all the methods and parameters is beyond the scope
of this paper, and it is done in GANSO manual [16]. Here we just illustrate
these methods on two examples, the DFBM method and a combination of
DFBM with ECAM.

class Ganso {
public:

// various optimization methods
int MinimizeDFBM(int dim, double* x0, double *val, USER_FUNCTION f,

int lineq, int linineq, double* AE, double* AI, double* RHSE,
double * RHSI,double* Xl, double* Xu, int* basic, int maxiter);

int MinimizeDFBMECAM(int dim, double* x0, double *val, USER_FUNCTION f,
int lineq, int linineq, double* AE, double* AI, double* RHSE,
double * RHSI, double* Xl, double* Xu, int* basic, int maxiter,
int iterECAM, int dimECAM);

// other methods...
...
};

The minimization methods require a reference to the user supplied pro-
cedure for calculation of the objective function, as well as the number of
variables (dimension), matrices of constraints, upper and lower bounds on
the variables and also the parameters of the algorithms, such as the maximal
number of iterations. The reference to the objective function procedure is
defined as

typedef void (*USER_FUNCTION)(int *n, double *x, double *f);

10

where the first argument is the dimension, second argument is the array
of size n containing the coordinates of x, and f is the value of f(x) to be
calculated.

Note that most of the parameters are standard for all the methods in
GANSO library, but a few are method-specific. This allows one to substitute
one method for another with little programming effort. There are also a num-
ber of simplified methods, which do not require matrices of linear constraints
(in cases where only box constraints are provided).

Procedural interface is useful for calling GANSO methods from languages
like C and Fortran, and also from packages like Matlab and Maple. These
C-type functions have exactly the same names and lists of arguments as
their Ganso class counterparts, and in fact are nothing but wrappers. This
means that the user has two options: to declare an instance of the class
Ganso and call its member functions, or to call the C procedures with the
same name. Class interface provides more flexibility though, as the user can
access member variables and call various member functions without deleting
an instance of the class.

The following example illustrates the use of GANSO by a C++ program.

int main() {
...

// declare an instance of Ganso class
Ganso G;

// call its members
int retcode=G.MinimizeECAM(2,x0,&val,myfunction,0,0,40,

NULL,NULL,NULL,NULL, boundsL, boundsU, NULL,3000);

retcode=G.MinimizeECAMDFBM_0(2,x0,&val,myfunction,40,
boundsL, boundsU,100);

// call C functions
retcode = MinimizeECAM(2,x0,&val,myfunction,0,0,40,

NULL,NULL,NULL,NULL, boundsL, boundsU, NULL,3000,10);

retcode=MinimizeECAMDFBM_0(2,x0,&val,myfunction,40,
boundsL, boundsU,100);

return 0;
}

GANSO provides all its functions in a special syntax suitable for calling
from Fortran. They mimic all the methods of Ganso class (the description of
parameters is almost identical), and differ only in how they pass parameters.

11

3.2 Interfaces with Matlab and Maple

Many scientists use such systems as Matlab, Maple and Mathematica to do
their routine calculations. These systems provide only a few basic nonlin-
ear optimization methods [27,28,34,36,39,44], although there are additional
toolboxes that implement more advanced methods of global optimization
(e.g., LGO [34, 35]). Availability of novel optimization methods as subrou-
tines in the mentioned systems is important for their wider dissemination.
However implementation of external libraries is not that straightforward. In
this section we describe our experiences with Matlab and Maple interfaces.

3.2.1 Matlab interface

Matlab is a widely used package, especially in engineering community. It has
a number of internal local optimization routines, such as basic fminsearch,
and more advanced methods available in the Optimization toolbox [28].

Matlab implements mechanisms for calling external functions from dy-
namically linked libraries (dlls), as if they were Matlab’s internal functions.
Thus users see no difference between calling Matlab’s own function fminsearch()

and an external function minimizeDFBM(), except for the list of parameters.
However, a proper interface layer should be implemented by the developer
of such a library. The interface consists of a special wrapper dll, which does
the conversion of the parameters passed from Matlab to another library, such
as GANSO . For instance, conversion of matrices from Fortran column-major
convention adopted in Matlab, to C row-major convention, used in GANSO .

However the most important issue is the interface to the user defined
objective function. All optimization methods make calls to the objective
function, which is supplied as a Matlab procedure. On the other hand,
libraries such as GANSO require a C-type procedure. The wrapper library
provides an interface between GANSO and Matlab, through which GANSO can
call Matlab procedures.

Because of potentially large number of function evaluations, this wrap-
per must be very efficient. In our implementation, we used a number of
programming techniques to achieve maximum efficiency. Matlab’s internal
mexCallMATLAB() procedure [28] provides the most efficient way of calling
Matlab’s functions (i.e., the user defined objective function). In Matlab’s
current implementation this procedure takes on average 2.1 × 10−5 sec to

12

execute the user’s objective function in Matlab 2.
Below is an example of Matlab code calling GANSO .

% declare the objective function in the file myfunction.m
function f = myfunction(x)

f=x(1)*x(1)+x(2)*x(2)-cos(18*x(1))-cos(18*x(2));

% Main Matlab procedure: define vectors of box constraints
% and other parameters

dimension=2;
Lo=[-1,-1];
Up=[1,1];
iter=1000;
LipConst=10.0;
x0=[1,1];

% execute Ganso global ECAM method
[val,x0]=minimizeGanso_0(’ECAM’,dimension,x0,@myfunction,LipConst,Lo,Up,iter);

x0 % Print the solution
val % Print the function value at the solution

% execute local search (DFBM) from a staring vector(0.5,0.5)
x0=[0.5,0.5];

[val,x0]=minimizeGanso_0(’DFBM’,dimension,x0,@myfunction,Lo,Up,iter);
x0 % Print the solution
val % Print the function value at the solution

Our experiments with Matlab show that for global optimization in a few
variables (n < 8) and local non-smooth optimization (for n < 30), Mat-
lab interface to GANSO is an efficient user friendly tool. However for higher
dimension, because of a much larger required number of objective function
evaluations, it does not compete with calling GANSO from a C or Fortran
code.

3.2.2 Maple interface

Maple is another popular scientific package, mostly known for its symbolic
processing capabilities [27]. It also implements a number of classical nu-
merical methods, but its numerical nonlinear optimization methods are very
limited. There are external commercially available optimization toolboxes
(e.g., LGO [34, 35]) which provide access to some modern global optimiza-
tion methods.

2On a Pentium M, 2 GHz processor under MS Windows, Matlab version 7.1.

13

Maple allows one to call C-type subroutines from external dlls directly
using a specific syntaxis, however this method is not suitable when callback
functions are used (calls to the user’s objective function written in Maple’s
language). The alternative approach to implementing the interface to GANSO

methods consisted in using a wrapper dll, which does conversion of parame-
ters (from Maple’s column-major to C row major convention) and provides
a wrapper for a callback function, similar to Matlab.

Here again, calls from GANSO to Maple’s functions are implemented in-
ternally in Maple, and the efficiency of such calls is crucial. Unlike Matlab,
Maple’s developers implemented two alternative ways for doing this (via func-
tions EvalMapleProc() and EvalhfMapleProc()) [27]. The first function is
similar to Matlab’s mexCallMATLAB(), i.e., it provides a generic way to exe-
cute any Maple command. It is general, but numerically inefficient (average
call time was 5.0× 10−5 sec on Pentium M, 2 GHz processor).

The second method uses “hardware floats”, and is very efficient (average
call time was 3.1× 10−7 sec on the same processor). However the drawback
is its limited versatility. All parameters to Maple’s function must be explicit,
no vector notation is allowed, and only a few simplest Maple commands can
be used. For example, to calculate the norm of a vector in 5d one should
define the Maple function as

f := proc(x1,x2,x3,x4,x5)
sqrt(x1^2+x2^2+x3^2+x4^2+x5^2);

end proc;

Thus, for small scale optimization problems, the generic Maple syntaxis
is suitable, as it allows one to use most Maple functions and construction
(such as loops). For larger scale problems, we implemented the alternative
numerically efficient way of evaluating the objective function, but at the
expense of generality and expressivity. The following example illustrates the
use of GANSO in Maple.

definition of an external subrotine found in Ganso
Mindfbm0HF := define_external(’MWRAP_HFMinimizeDFBM_0’,’MAPLE’,

LIB="mwrap_ganso.dll"):

f := proc(x1,x2,x3) #user’s objective function
x1^2+(x2-1)^2+x3^2;

end proc;

14

defining vectors of constraints
dimension:=3;
Lo:=Vector(1..3,datatype=float[8],[-1,-1,-1]):
Up:=Vector(1..3,datatype=float[8],[2,2,2]):
iter:=1000: val:=1.0:

starting point
x0:=Vector(1..3,datatype=float[8],[1,1,1]);

executing local search (DFBM method)
Mindfbm0HF(dimension,x0,val,f,Lo,Up,iter);
print(x0);

We end this section by emphasizing that the most numerically efficient
way of using optimization libraries is to implement the objective function in
C, Fortran, or other “traditional” programming languages. Calling external
optimization methods from other packages involves unavoidable overheads,
which limit the speed of execution. On the other hand, these packages pro-
vide for many users familiar and friendly environment, and also contain their
“legacy” code. We realize that many users need flexibility for some experi-
mentation with their optimization problems, and in this context Matlab and
Maple interfaces to GANSO library provide a suitable access to a number of
modern global and non-smooth optimization methods.

4 Conclusions

The success of any generic optimization method ultimately depends on its
wide acceptance by the users. The acceptance is influenced by a number of
factors. The main one is, of course, the ability to solve specified optimization
problems. However, given that a general non-convex global optimization
problem is mathematically unsolvable, this criterion cannot be fulfilled by
any generic method.

Then additional factors, such as availability, easiness of implementation
and usage, interfaces with popular packages, speed of execution, documen-
tation and examples, etc., play the role. Various heuristics have gained pop-
ularity not so much due to the quality of reported solutions, but to other
mentioned factors. Given that optimization methods based on advanced
mathematical theories (such as abstract convexity, non-smooth analysis) re-
quire a significant effort to implement them, availability of user-friendly pro-
gramming libraries is very important.

15

Many practitioners use integrated packages such as Matlab, Maple and
Mathematica. Provision of a suitable programming interface, so that opti-
mization methods could be executed from these packages with little effort is
also very important.

In this paper we reported on implementation of a number of advanced
global and non-smooth optimization methods that have been recently devel-
oped based on fundamental results in abstract convex and non-smooth anal-
ysis. We presented the main ideas behind each of the implemented methods,
as well as combined methods and treatment of simple constraints. We also
outlined the key implementation issues, such as the programming interface
with C/C++ and Fortran languages, as well as integrated systems Matlab
and Maple. Wide dissemination of modern optimization methods is impos-
sible without addressing these implementation issues.

Our experiences with developing interfaces with Matlab and Maple pack-
ages have been generally positive, and we plan to extend our work to other
packages, such as Mathematica and R. The GANSO library is available for
download from [16].

16

