4,247 research outputs found

    Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    Get PDF
    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends

    STEER: Exploring the dynamic relationship between social information and networked media through experimentation

    Get PDF
    With the growing popularity of social networks, online video services and smart phones, the traditional content consumers are becoming the editors and broadcasters of their own stories. Within the EU FP7 project STEER, project partners have developed a novel system of new algorithms and toolsets that extract and analyse social informatics generated by social networks. Combined with advanced networking technologies, the platform creates services that offer more personalized and accurate content discovery and retrieval services. The STEER system has been deployed in multiple geographical locations during live social events such as the 2014 Winter Olympics. Our use case experiments demonstrate the feasibility and efficiency of the underlying technologies

    Progressive Caching System for Video Streaming Services Over Content Centric Network

    Get PDF
    This paper presents a metafile-based progressive caching system over the content-centric networking (CCN) tree that supports seamless video streaming services with a high network utilization. In the proposed caching system, each CCN node uses a metafile made by a scalable caching algorithm for efficient and fast chunk caching management, and the reserved area of the CCN interest/data packet headers is used to deliver caching information among the CCN nodes. Based on this caching information, the proposed caching system determines the caching range of video data to minimize the required peak bandwidth for each link. The proposed caching system is implemented using the NS-3 based named data networking simulator. Furthermore, a real cellular wireless network testbed is realized with C/C++, open sources such as CCNx and Ubuntu MME, and a Raspberry PIs to examine the performance of the proposed caching system. The experiment results demonstrate the performance improvement achieved by the proposed caching system.11Ysciescopu
    • 

    corecore