13,191 research outputs found

    Falloff of the Weyl scalars in binary black hole spacetimes

    Full text link
    The peeling theorem of general relativity predicts that the Weyl curvature scalars Psi_n (n=0...4), when constructed from a suitable null tetrad in an asymptotically flat spacetime, fall off asymptotically as r^(n-5) along outgoing radial null geodesics. This leads to the interpretation of Psi_4 as outgoing gravitational radiation at large distances from the source. We have performed numerical simulations in full general relativity of a binary black hole inspiral and merger, and have computed the Weyl scalars in the standard tetrad used in numerical relativity. In contrast with previous results, we observe that all the Weyl scalars fall off according to the predictions of the theorem.Comment: 7 pages, 3 figures, published versio

    The Asymptotic Falloff of Local Waveform Measurements in Numerical Relativity

    Get PDF
    We examine current numerical relativity computations of gravitational waves, which typically determine the asymptotic waves at infinity by extrapolation from finite (small) radii. Using simulations of a black hole binary with accurate wave extraction at r=1000Mr=1000M, we show that extrapolations from the near-zone are self-consistent in approximating measurements at this radius, although with a somewhat reduced accuracy. We verify that ψ4\psi_4 is the dominant asymptotic contribution to the gravitational energy (as required by the peeling theorem) but point out that gauge effects may complicate the interpretation of the other Weyl components

    Study of noise effects in electrical impedance tomography with resistor networks

    Full text link
    We present a study of the numerical solution of the two dimensional electrical impedance tomography problem, with noisy measurements of the Dirichlet to Neumann map. The inversion uses parametrizations of the conductivity on optimal grids. The grids are optimal in the sense that finite volume discretizations on them give spectrally accurate approximations of the Dirichlet to Neumann map. The approximations are Dirichlet to Neumann maps of special resistor networks, that are uniquely recoverable from the measurements. Inversion on optimal grids has been proposed and analyzed recently, but the study of noise effects on the inversion has not been carried out. In this paper we present a numerical study of both the linearized and the nonlinear inverse problem. We take three different parametrizations of the unknown conductivity, with the same number of degrees of freedom. We obtain that the parametrization induced by the inversion on optimal grids is the most efficient of the three, because it gives the smallest standard deviation of the maximum a posteriori estimates of the conductivity, uniformly in the domain. For the nonlinear problem we compute the mean and variance of the maximum a posteriori estimates of the conductivity, on optimal grids. For small noise, we obtain that the estimates are unbiased and their variance is very close to the optimal one, given by the Cramer-Rao bound. For larger noise we use regularization and quantify the trade-off between reducing the variance and introducing bias in the solution. Both the full and partial measurement setups are considered.Comment: submitted to Inverse Problems and Imagin

    HYPERION: An open-source parallelized three-dimensional dust continuum radiative transfer code

    Full text link
    HYPERION is a new three-dimensional dust continuum Monte-Carlo radiative transfer code that is designed to be as generic as possible, allowing radiative transfer to be computed through a variety of three-dimensional grids. The main part of the code is problem-independent, and only requires an arbitrary three-dimensional density structure, dust properties, the position and properties of the illuminating sources, and parameters controlling the running and output of the code. HYPERION is parallelized, and is shown to scale well to thousands of processes. Two common benchmark models for protoplanetary disks were computed, and the results are found to be in excellent agreement with those from other codes. Finally, to demonstrate the capabilities of the code, dust temperatures, SEDs, and synthetic multi-wavelength images were computed for a dynamical simulation of a low-mass star formation region. HYPERION is being actively developed to include new features, and is publicly available (http://www.hyperion-rt.org).Comment: Accepted for publication in Astronomy & Astrophysics. HYPERION is being prepared for release at the start of 2012, but you can already sign up to the mailing list at http://www.hyperion-rt.org to be informed once it is available for downloa
    • …
    corecore