1,340 research outputs found

    SYMMETRY IN HUMAN MOTION ANALYSIS: THEORY AND EXPERIMENTS

    Get PDF
    Video based human motion analysis has been actively studied over the past decades. We propose novel approaches that are able to analyze human motion under such challenges and apply them to surveillance and security applications. Part I analyses the cyclic property of human motion and presents algorithms to classify humans in videos by their gait patterns. Two approaches are proposed. The first employs the omputationally efficient periodogram, to characterize periodicity. In order to integrate shape and motion, we convert the cyclic pattern into a binary sequence using the angle between two legs when the toe-to-toe distance is maximized during walking. Part II further extends the previous approaches to analyze the symmetry in articulation within a stride. A feature that has been shown in our work to be a particularly strong indicator of the presence of pedestrians is the X-junction generated by bipedal swing of body limbs. The proposed algorithm extracts the patterns in spatio-temporal surfaces. In Part III, we present a compact characterization of human gait and activities. Our approach is based on decomposing an image sequence into x-t slices, which generate twisted patterns defined as the Double Helical Signature (DHS). It is shown that the patterns sufficiently characterize human gait and a class of activities. The features of DHS are: (1) it naturally codes appearance and kinematic parameters of human motion; (2) it reveals an inherent geometric symmetry (Frieze Group); and (3) it is effective and efficient for recovering gait and activity parameters. Finally, we use the DHS to classify activities such as carrying a backpack, briefcase etc. The advantage of using DHS is that we only need a small portion of 3D data to recognize various symmetries

    Pedestrian Recognition Based on 24 GHz Radar Sensors

    Get PDF

    Emotion estimation in crowds:a machine learning approach

    Get PDF

    Emotion estimation in crowds:a machine learning approach

    Get PDF

    Learning representations in the hyperspectral domain in aerial imagery

    Get PDF
    We establish two new datasets with baselines and network architectures for the task of hyperspectral image analysis. The first dataset, AeroRIT, is a moving camera static scene captured from a flight and contains per pixel labeling across five categories for the task of semantic segmentation. The second dataset, RooftopHSI, helps design and interpret learnt features on hyperspectral object detection on scenes captured from an university rooftop. This dataset accounts for static camera, moving scene hyperspectral imagery. We further broaden the scope of our understanding of neural networks with the development of two novel algorithms - S4AL and S4AL+. We develop these frameworks on natural (color) imagery, by combining semi-supervised learning and active learning, and display promising results for learning with limited amount of labeled data, which can be extended to hyperspectral imagery. In this dissertation, we curated two new datasets for hyperspectral image analysis, significantly larger than existing datasets and broader in terms of categories for classification. We then adapt existing neural network architectures to function on the increased channel information, in a smart manner, to leverage all hyperspectral information. We also develop novel active learning algorithms on natural (color) imagery, and discuss the hope for expanding their functionality to hyperspectral imagery
    • …
    corecore