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Abstract

Before 1830, no one really felt emotions. Instead, they felt ’passions’, ’accidents
of the soul’, ’moral sentiments’, and explained them very differently from how
we conceive emotions today. We then began to unveil the inner workings of
human affects and their strong impact on behavior, evidencing the fundamental
role of emotions in understanding crowds. With cities and urban areas growing
at an increasing pace, the development of intelligent systems capable to identify
emotions in crowds will prove to be of great value in ensuring safety, stability
and efficient management of crowds in public areas.

Incorporating our current knowledge in the fields of machine learning, crowd
behavior analysis, and psychology, this research presents a method to infer the
emotional states of individual pedestrians and the crowd as a whole by analyz-
ing walking trajectories captured via surveillance cameras. This is accomplished
by first building data-driven behavior models capable of describing the dynam-
ics of both pedestrians and the crowd, and second, by learning the contextual
association between the observed behavior and the underlying emotion. The
behavior models are constructed using dynamic Bayesian networks that capture
the influence between the detected movement and the motivation driving such
actions. The emotional state of either the pedestrian or the crowd is inferred by
identifying its motivation and quantifying the deviation between observed and
expected behavior.

A series of experiments are conducted at different stages of development for
the pedestrian and crowd model to assess their validity and accuracy. Chap-
ter 5 presents the first iteration of the pedestrian model and an experiment is
conducted employing a simulation tool to produce a virtual crowded environ-
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ment where pedestrians interact in a complex environment to reach a particular
destination. In this first experiment, our model is evaluated for its predictive ca-
pability to infer the desired destination (i.e., motivation) and short term move-
ment of individual pedestrians. In chapter 6, the elements of expectation and
emotion are incorporated; and an experiment combining both real-world and
simulated datasets is conducted to confirm the model’s capability to infer pedes-
trian emotions. Our first version of the crowd model is introduced in chapter
7 where an experiment using a real-world dataset evaluates the model’s ability
to describe the behavior of multiple pedestrians as a single entity. Finally in
chapter 8, an improved version of the crowd model is provided, accompanied
by an experiment that tests our model in a wide variety of scenarios.

The models developed in this thesis provide several contributions. The
pedestrian model presents a data-driven model based on hierarchical Bayesian
networks that includes multiple levels of abstraction to account for behavioral
and psychological factors, and is capable to generalize to different contexts in a
supervised way; it introduces a distance-to-motivation (distance-to-motivation
(DTM)) measurement which helps to form an association between observable
behavior and emotions with strong foundation in psychological principles; and
finally, we develop an emotion annotation scheme for automatic labeling of
pedestrian trajectories based on learned motivations and expectations. Simi-
larly, the crowd model implements a data-driven model based on hierarchical
Bayesian networks capable to generalize to ambulatory crowds in multiple con-
texts, and that expands the concepts of motivation, expectation and emotions
from the individual pedestrian to a collective level in a consistent and equiv-
alent way for both the pedestrian and the crowd; it incorporates a method to
describe crowds and sub-crowds based on spatial-temporal interactions learned
from partial observation of pedestrian trajectories; and it accounts collective
emotion of crowds and sub-crowds measured in a continuum valence axis, in a
way that is representative and consistent with the emotions experienced by the
pedestrians member of the crowd.

Future work in the direction of emotion estimation in crowds can be fo-
cused in addressing limitations encountered throughout our research. The first
and foremost limitation is that the models presented in this thesis apply only
to crowds with a predominantly ambulatory behavior, as is the case of casual
crowds, queues, acquisitive, mobs, riots, and panic crowds. Since we employ
surveillance cameras to observe the crowd due to their ubiquitousness in public
spaces, we depend on the performance of crowd counting and pedestrian de-
tection & tracking algorithms. This entails that in the presence of highly dense
crowds, pedestrian detection & tracking algorithms will deliver fragmented tra-
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jectories, tampering the performance of the pedestrian model. Another relevant
limitation concerns the absence of context-awareness in our method, i.e., the
association of learned behavior to an emotion label is dependent on the context
of the situation. For this reason, models of behaviors learned unsupervisedly
need to be empirically labeled by a human operator.
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Chapter 1
Introduction

1.1 Motivation

On July 14, 1789, after enduring long years of calamity and heavy taxation
schemes, a crowd of Parisians stormed the Bastille, marched towards Versailles,
and overthrew king Louis XVI, initiating the French Revolution [12]. In the fol-
lowing years, crowds where at the center of numerous violent events, yet these
crowds were not composed by soldiers or militia, nor criminals, but by every-
day people who ignited by the amplified emotions in the collective, willingly
engaged in acts of brutality. Later studies of these and similar events started to
point to the notion that people feel and behave differently when they become
part of a crowd. Gustav Le Bon shares this thought in his famous book The
Crowd, A Study of the Popular Mind [74]: “The most striking peculiarity pre-
sented by a crowd is the following: Whoever be the individuals that compose it,
however like or unlike be their mode of life, their occupations, their character,
or their intelligence, the fact that they have been transformed into a crowd puts
them in possession of a sort of collective mind which makes them feel, think,
and act in a manner quite different from that in which each individual of them
would feel, think, and act were he is in a state of isolation”. It was also Le
Bon among the first scholars to point out that crowds can be prompted into ac-
tions of heroism and goodness as much as to destruction and violence, the main
driver in behavior is their underlying emotions. This assertion that emotions
play an essential role in regulating the behavior of crowds is strongly supported
by a vast amount of research in the field of social psychology, with prominent
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exponents in the likes of Le Bon [74], McDougall [66], and Freud [54].
The advancement in our knowledge of emotions and human affects had a

journey similar to that of crowds, coming from obscure hypothesis to formally
defined and widely accepted theories. T. Smith eloquently says, "No one re-
ally felt emotions before about 1830. Instead, they felt other things-’passions’,
’accidents of the soul’, ’moral sentiments’-and explained them very differently
from how we understand emotions today" [122]. In the contemporary liter-
ature regarding emotions, three leading contenders prevail among the many
proposed theories: (a) Discrete emotion theories, (b) dimensional theories, and
(c) appraisal theories [114]. Over the past decades, we have witnessed a sig-
nificant departure from theoretical to empirical research, helping us to paint a
more clear picture of the inner workings of emotions, up to the point where we
can dissect, measure, and test for emotions. Some examples in this direction are
Paul Ekman’s facial action coding system [46] aiming to explain the universality
of emotions expressed in facial expressions, Antonio Damasio’s somatic marker
hypothesis [60] attempting to understand how emotions and their underlying
biology influence decision making, and many others.

Having this knowledge of emotions and their influence in crowds at our
disposal started to prove beneficial as we were able to plan better strategies
to manage crowds at big gatherings [13] [140] and prevent fatal incidents as
it has been the case with numerous examples in the past [42]. Another critical
leap forward in producing practical applications came with the birth of Affective
Computing, outlined by Rosalind Picard’s 1995 paper on this topic. A relatively
new branch of computer science that aims to breach the boundaries among the
fields of psychology, neuroscience, and computer science. In its purest form, af-
fective computing employs our current understanding of emotions, not limited
to crowds, and attempts to build models capable of identifying, process, and
mimic human affect. Useful examples under this branch of science allowed us
to automate tasks of recognizing emotions from facial expressions, body lan-
guage, and even by the voice of people [132]. Under the scope of crowds, the
area of Crowd Analysis is already mature enough to accomplish the tasks of
counting and tracking pedestrians, modeling crowd dynamics, and identifying
abnormalities, up to far more complex concepts like recognizing interactions
and predicting their behavior [34] [141]. Looking into the future, smart cities,
ambient intelligence, and advanced cognitive dynamic systems are starting to
go beyond safety concerns to the enhancement of people’s experience in smart
environments [33] [9].

At the intersection of affective computing and crowd analysis, with a foun-
dation in psychology, this research aims to address the gap in the literature
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regarding appropriate methods to infer emotional states of individual pedestri-
ans and the crowd as a whole by analyzing walking trajectories captured via
surveillance cameras. This is accomplished by first building data-driven be-
havior models capable of describing the dynamics of both pedestrians and the
crowd, and second, by learning the contextual association between the observed
behavior and the underlying emotion. The behavior models are constructed
using dynamic Bayesian networks that capture the influence between the de-
tected movement and the motivation driving such actions. The emotional state
of either the pedestrian or the crowd is inferred by identifying its motivation
and quantifying the deviation between observed and expected behavior. Hav-
ing methodologies of this nature at our disposal has and will be valuable as
we move towards bigger and more crowded cities, enabling us to better de-
sign spaces and systems capable of procuring a positive and safe experience in
crowded environments.

1.2 Theoretical Framework

The method proposed in this research operates under the premise that pedestri-
ans travel across an environment motivated by the desire to reach a destination,
and the cognitive process determining how to navigate towards their intended
motivation is influenced by their emotional state, interaction with other people,
and situational constraints. In this manner, the ambulatory actions exhibited
by a person can be considered as emotional responses to (internal or external)
stimuli, comparable to the way physiological changes like sudden cheek blush,
variations in perspiration, or shifts in heart rate are acknowledged to be linked
to emotional states.

The first point of reference for the work presented in this thesis comes from
Behaviorism, proposing the idea of interpreting observable behavior as a rela-
tion between stimuli and responses. More specifically, Behaviorism is the school
of thought in psychology that pertained to see human behavior as automatic
responses to stimuli over which emotions had an important role. Near the year
of 1863, Ivan Sechenov steered this line of inquiry under the presumption that
these "automatic" behavioral responses were part of a protective mechanism for
our body [22]. Years later, Ivan Pavlov would add significant contributions fur-
thering our knowledge in classical conditioning, a learning process by which a
biologically potent stimulus is paired to a neutral stimulus up until the point
where the neutral stimulus alone is capable of eliciting a behavioral response
quite similar to the one obtained by the potent stimulus. Many more significant
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contributions would follow, helping to expand the foundation of this theory.
The advantage of Behaviorism resided in its focus on observable behavior, as it
is easy to quantify and collect data from, allowing to provide explanations and
clear evidence for the experiments conducted. On the downside, Behaviorism
is criticized for its superficiality as it only focuses on what is measurable by ob-
servation, failing to account for the complex and still elusive internal processes
in our brain and body.

The second reference to support this view is borrowed from Field Theory,
developed by Kurt Lewis and Gestald [20]. This theory aims to explain the
mechanisms of interaction between individuals and the field they currently oc-
cupy (i.e., their environment). In this context, the individual is conceptualized
to have motivations driven by personal needs, beliefs concerning its own state
as well as the state of the environment, and abilities to interact with the en-
vironment and other individuals. The environment is the physical space and
the context a person perceives and acts on. Behavior encompasses the set of
actions a person performs, which causes a change in the environment and other
people, contemplating that perceived changes in the environment will, in turn,
influence the subsequent behavior of that same person, in what is known as the
perception-action cycle [32]. A consequential element to behavior and motiva-
tion is expectation, which provides an assessment of the effort required to meet
a person’s motivations. The framing of this theory is suitable for our study as it
provides the building blocks of behaviors, motivations, and expectations.

The final point of support concerns the study in the cognitive process of
Decision Making [97]. In its purest form, decision making is a continuous cog-
nitive process that enables a person to interact with the environment utilizing
perceiving changes in the environment and responding accordingly by identify-
ing and selecting beliefs, decisions, and potentially take actions. Differing from
Behaviorism, decision making accounts for internal factors like biases, person-
ality traits, constrains by social normative, and emotions. Presented with con-
stant uncertainty about the choices that are beneficial or harmful to us, emo-
tions appear to take a central role in facilitating the decision-making process
that will ensure our survival. In the particular case of crowded environments,
the complex and apparently chaotic interaction among a high number of peo-
ple prevents single individuals from perceiving enough information about their
surroundings. Such conditions prompt our brain to make use of Affect Heuris-
tics, a subconscious process, a mental shortcut that allows us to make decisions
quickly with limited understanding of the context. Emotions remain a constant
guardian of our behavioral responses, from the subtle and mundane moments
of our daily life to the more extreme situations like panic crowds running away
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from a violent event or spectators crowds bursting into excitement at a sport
event.

The composition of our theoretical foundation argues that emotions play a
central role in guiding a person’s behavior in a way that is consistent to personal
beliefs and motivations. However, the above presented references draw knowl-
edge from apparently conflicting stands. The first prospect attempts to explain
emotions as a mechanistic product between received stimuli and the expressed
behavioral responses, pointing towards a radical behaviorism approach. The
second and third points of reference address the importance of personal beliefs
and motivations in the elicitation of emotions, leaving us with a perspective
captured by intentional psychology. Previous contributions have proposed reso-
lutions to this conflict, namely, Foxall [53] and Goleman et al. [84] appeal to
the complementary role between these two notions as they both, to a certain ex-
tent, have explanatory merits. The consensus stems from the acknowledgement
that whereas behavior is an important facet of emotions, its interpretation can
differ depending on the circumstances around each individual, hence we also
require an understanding of the context presented to the individual before we
can confidently proceed to identify emotions. This allusion to contextual rela-
tion between behavior and emotion is a concern accounted for throughout this
thesis where our proposed methodology learns behavioral models in an unsu-
pervised way but the association to emotions requires supervised intervention.
Consequently, an inherent limitation is that models are built and applicable
only for a specific environment and context. Another relevant limitation in our
approach, lies in the fact that we account only for emotions manifested in be-
haviors where the corresponding motivations relate to reaching a destination
in the environment. Conversely, the emotions elicited by factors unrelated to
the individual’s presence and interaction with the environment are not iden-
tifiable by our approach. Despite this theoretical argument and the identified
limitations, the fundamental issue is then whether embodied behaviors provide
sufficient enough cues to infer emotions, and to this point existing literature
provides numerous precedents of in our favor. For instance, the work presented
in [81] explores how can emotions be grounded in the embodiment of robots
to facilitate interaction with humans. Another example is found in [100] where
the sentiment and engagement of patients with moderate and advanced demen-
tia is inferred by Laban analysis of movement as sufferers of this condition can
not self-reflect, and some rarely speak.

After careful consideration of the previously presented and other relevant
literature to be introduced in the following chapters, we believe to have a
solid theoretical foundation to propose a methodology for inferring emotions
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of pedestrians at the individual and collective levels from observable behav-
ior. However, as new research expands the body of knowledge, we continue to
confirm the complexity of the human psyche; therefore it is vital to recognize
the limitations in using the literature of Field Theory, Behaviorism and Decision
Making as the basis for our study of crowds. With this consideration in mind,
our approach in this thesis aims to provide a restricted but reasonable approx-
imation of the emotional state of pedestrians and the crowd given the limited
information we can observe and measure.

1.3 Crowd

Due to the central role that crowds take in the research presented here, this
section aims to clearly establish the characteristics and concise definition to be
used in this work.

1.3.1 Previous Definitions

The term crowd is loosely used to denote a large group of people, taking for
granted what does and does not constitute a crowd. This is the case even in
academic literature, where scholars appear to disagree on a single concise defi-
nition. To illustrate this lack of consensus, we list several definitions previously
used:

• Le Bon, 1897 [74]: “an agglomeration of men presents new characteristics
very different from those of the individuals composing it. The sentiments and
ideas of all the persons in the gathering take one and the same direction, and
their conscious personality vanishes.”

• Tilly, 1978 [126]: "people acting together in the pursuit of common inter-
ests."

• Lofland, 1985 [80]: "a large number of people in the same place at the same
time.”

• McPhail, 1991 [87]: "two or more persons engaged in one or more behaviors
judged common or concerted in one or more dimensions.”

• Musse & Thalmann, 1997 [94]: "a large group of individuals in the same
physical environment, sharing a common goal (e.g., people going to a rock
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show or a football match). The individuals in a crowd may act in a different
way than when they are alone or in a small group.”

• Brown & Lewis, 1998 [19]: "a compact gathering or collection of people with
connotations of homogeneity of characteristics and unanimity of behavior.”

• Sharma, 2000 [118]: "they are present in a common environment, and all
the individuals present in the crowd usually share a common goal.”

• Myers, 2005 [95]: "two or more people who, for longer than a few moments,
interact with and influence one another and perceive one another as ‘us’.”

• Willems et al. [2]: "A (typically large) number of people in one place at the
same time. It is possible that a physical crowd contains one or more psycho-
logical crowds (e.g. football fans in a transport hub with commuters)..”

1.3.2 Features

On a closer examination of the proposed definitions, it soon comes to the real-
ization of a series of common features for defining what we mean when we talk
about crowds [24]. As follow, we list these key features in alphabetical order
along with their corresponding definition.

• Collectivity: It encompasses social identity, goals, interests, and behav-
iors. It is this feature that sparks interest in studying collective behav-
ior, collective emotions, and other aspects in the field of Social Psychol-
ogy. More importantly, this criteria draws a distinction between physical
crowds and psychological crowds [44,107]. A Physical crowd, sometimes
referred to as a mass, expresses no collectivity among its members. Oppo-
sitely, collectiveness is a fundamental part of psychological crowds.

• Density: The size of a crowd becomes relevant only under a certain den-
sity level. A hundred people spread across a large park (low density)
would not constitute a crowd, but the same number assembled in few
meters of that same park (high density) would. As outlined in [63, 98],
we identify three density levels under which an aggregate of people can
rightfully be considered a crowd. Each of these density levels is illustrated
in Figure 1.1.

• Interaction: The capability of its members to interact, in some form and
to some extent, with other members of the crowd. That is to say, individ-
uals who happen to be at the same time and place with other individuals
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but cannot interact with others due to physical or visual/auditory con-
strains would not be considered members of the crowd.

• Level of Service: This concept encompasses multiple aspects of the in-
dividual’s motion behavior, such as walking speed, ease of mobility, and
navigability. This concept was thoroughly explored by Fruin [55] where
he describes six levels of service which we present in Table 1.1 along with
its corresponding illustrations in Figure 1.2.

• Locality: Are individuals required to be at the same physical location to
be considered members of a crowd? From a psychological perspective, the
answer is ’not necessarily’ as first stated by Le Bon [74]. Le Bon illustrates
this answer with an example of tragic news broadcasted across a country,
evocating a common feeling and disposition to adopt a similar behavior
among its citizens.

• Novelty: This concerns a crowd’s members’ ability to behave in a coher-
ent fashion despite their possible unfamiliarity towards the environment
and other members, and their lack of proper channels of communication
among all its members [106, 127]. This further diminishes the impor-
tance of size as a crucial factor to define crowds; for example, an army
would not constitute a crowd since their members are well aware of their
hierarchy and clear established ways to organize and communicate.

• Size: There is no real consensus as to what size constitutes a crowd.
Proposing figures is particularly challenging because crowds emerge in
different types and environments. However, it is widely accepted to sug-
gest that a crowd should be a sizeable gathering of people [25].

• Temporality: Crowds are temporal in the sense that individuals come
together at a specific location for a particular purpose and for a measur-
able amount of time. Again in this respect, there is no consensus as some
types of crowds (e.g., sports events) remain assembled for a relatively pro-
longed period, whereas other types of crowds (e.g., transport station) see
members join and leave at a constant pace. However, it is agreed that
permanence should be longer than just momentarily for an individual to
be considered a member of a crowd.
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Level of Service Description

A

Flow rate of less than 23 people per meter per minute.
Virtually unrestricted choice of walking speed.
Minimum manoeuvring needed to pass fellow pedestrians.
Unrestricted crossing and reverse movements.

B

Flow rate of between 23 and 33 people per meter per minute.
Normal walking speeds, restricted only occasionally.
Occasional interference in passing fellow pedestrians.
Occasional interference in crossing and reverse movements.

C

Flow rate of between 33 and 49 people per meter per minute.
Partially restricted walking speeds.
Restricted passing movements, but possible with manoeuvring.
Restricted crossing and reverse movements, with significant
manoeuvring needed to avoid conflict.
Reasonably fluid flow.

D

Flow rate of between 49 and 66 people per meter per minute.
Restricted and reduced walking speeds.
Passing fellow pedestrians rarely possible without conflict.
Severely restricted crossing and reverse movements, with
multiple conflicts.
Momentary flow stoppages possible when critical densities
are intermittently reached.

E

Flow rate of between 66 and 82 people per meter per minute.
Restricted walking speeds, occasionally reduced to shuffling.
Passing fellow pedestrians impossible without conflict.
Severely restricted crossing and reverse, with unavoidable
conflicts.
Flow achieves maximum capacity under pressure, but with
frequent interruptions and stoppages.

F

Flow rate variable.
Walking speed reduced to shuffling.
Passing movements are impossible.
Crossing and reverse movements are impossible.
Frequent and unavoidable physical contact.
Sporadic flow, on the verge of complete breakdown and
stoppage.

Table 1.1: Description of Fruin’s levels of service.
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1.3.3 Types of Crowds

The dynamics exhibited by a crowd depend to a large extent on the type of
crowd one is dealing with. As pointed out in [25], A limited amount of research
has previously addressed the systematic classification of crowds into types, al-
beit not to a complete consensus. One widely adopted typology, is the one
proposed by Berlonghi in [13] where 11 types are outlined. The work presented
in this thesis is applicable to three of these types:

• Ambulatory Crowd: A type of crowd composed of pedestrians whose pri-
mary intention is to travel across an environment.

• Panic Crowd: A type of crowd where pedestrians engage in competitive
behavior to enter/exit a venue due to a perceived threatening situation.

• Queuing Crowd: A type of crowd where pedestrians display a sequence-
like formation to obtain a good/service or to enter/exit a venue.

1.3.4 Working Definition

With a better understanding of the characteristics present in crowds, we come
to the realization that not all crowds are created equal, and therefore a relevant
distinction is necessary: A crowd that shares a sense of mental unity where a
common motivation is shared, a coherently collective behavior is displayed, and
the contagion and amplification of emotions occurs, is denominated a psycho-
logical crowd. Conglomerates lacking mental unity, as is the case of numerous
people in a train station who simply happen to be gathered in the same place but
for different reasons, are referred as physical crowds [66]. Physical crowds may
potentially turn into psychological crowds, dictating a different pattern in the
dynamics of the crowd. However, having mental unity or not, people present in
the same environment are prompt to be influenced by others, triggering emo-
tional responses to cope with the context they experience, and the research
presented here is generalized to account for both types. On a final remark, the
methodology proposed in this work applies only to crowds that exhibit ambu-
latory; this includes casual crowds, queues, aggressive mobs and panic crowds.
The working definition employed throughout this thesis is presented as follow:

Definition 1. Crowd: A sizeable group of people gathered in the same place and
with enough proximity among its members to convey a sense of togetherness. Mem-
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bers express collectivity (e.g. common goals, interests, sentiments) and behave co-
herently despite its possible unfamiliarity to the environment or other members.
Individuals of this crowd are capable of interacting with other members to some
extent, display an ambulatory behavior that is primarily non-static, and retain
membership for a period of time longer than just momentarily.

1.4 Emotion

This term came into circulation around 1570 in the French language as esmotion,
derived from the Latin word emovere with the original meaning of ’to set in mo-
tion’. In its contemporary usage, it is employed to denote several human affects
and is frequently interchanged with feelings, moods and personality traits. On
an academic context, this term is much more well defined, although a widely ac-
cepted consensus is yet to be achieved. As follow, we present its most commonly
accepted features, predominant theories of emotion, measurement approaches,
and a working definition to be used in the context of this work.

1.4.1 Features

In the ongoing debate about what an emotion is, several features are agreed
upon by many prominent figures in the field of Psychology and Neuroscience.

• Emotions pertain the appraisal of stimuli: Emotions are evoked by events
that are relevant to the well-being of a person. In a continuous evaluation
of the surrounding environment as well as of internal factors (needs, mo-
tivations, values, etc.), emotions aid in producing an adequate behavioral
response to cope with the present situation.

• Emotions are driven by motivations: Events that trigger emotions fre-
quently require actions to be taken, thus interrupting an ongoing behavior
as the priority in our motivations change. This dynamic change in mo-
tivations driven by the emotion evoked helps produce a state of action
readiness useful in adapting to relevant events.

• Emotions affect the whole person: Given the importance of the event, we
are prompted to take action, for which a series of preparations take place.
Consequently, our attention and appraisal are redirected, and systems in
our body, such as motor and somatovisceral are tuned in anticipation for
behavioral responses.
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• Emotions demand priority: Emotions synchronously claim control on our
state of readiness and body systems, limiting our attention and awareness
to the matter at hand.

1.4.2 Theories of Emotion

In the field of psychology, several theories and models have been proposed aim-
ing to describe the mechanism by which human emotions arise in the brain.
Among the most prominent contributions, there are three predominant groups
of emotional theories [114] commonly discussed:

Discrete Emotion Theories

Developed from the work of Paul Ekman [46] where he identified six basic emo-
tions (anger, disgust, fear, happiness, sadness, and surprise). These emotions
are said to be universal, or discrete, as they appear to be innate to us all, and
have an essential role in procuring our survival. Although it is acknowledged
that a higher number of human emotions can be identified, these basic emo-
tions are thought to be the building blocks for more complex emotions. Crit-
icism against this theory lies mainly in the lack of empirical evidence from a
neurological perspective, where conducted studies have failed to clearly depict
dedicated systems for these discrete emotions in the human brain. Although,
Ekman himself and other supporters have shifted their views over time, this
theory remains relevant in several fields of inquiry.

Dimensional Theories

A family of theories that gained traction due to the contributions of James Rus-
sell among other authors [109]. This theory proposes that emotions emerge in
a continuum of one or more dimensions, with the classical view on two axes;
valence for capturing the goodness or averseness of the emotion, and arousal
used to describe its intensity. Under this description, emotions can be repre-
sented at any level of valence-arousal or a neutral level in one or both of these
dimensions. Theories in this school of thought suggest that a common neuro-
physiological system is responsible for all the emotions we experience. Some
of the major arguments opposing this view are concerned with the universal-
ity of emotions, particularly from ethnographic and cross-cultural studies that
evidence discrepancies in the way emotions are conveyed and regulated.
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Appraisal Theories

Pioneered by Magda Arnold and Richard Lazarus, these theories follow the idea
that an appraisal, the process of assessing the significance of an event, trig-
gers an emotional process involving appropriate physiological responses and
the conscious experience of emotions. A characterization of this nature implies
that emotions are determined by the subjective appraisal of a stimulus, where
two types of appraisals are identified, a primary appraisal determining the rele-
vance of a stimulus and a secondary appraisal devising a way to cope with the
potential consequences. Unlike the two previous theories, appraisal theories do
account for differences in people’s emotional responses to the same situation.
The main drawback for these theories pertains the actual implementation of ap-
praisal mechanisms in the brain, where no conclusive evidence has been found
of the ties between neural substrates and specific appraisal components [90].

In the context of crowds, where we analyze ambulatory movement patterns
of pedestrians to understand the underlying emotions of people and the crowd,
the family of discrete emotion theories poses a convenient and straightforward
representation due to its discrete set of emotions, but the behavioral expression
of these emotions in crowds may appear undistinguishable, causing ambiguity
in the inference of emotions. Appraisal theories place important attention to
the subjective cognitive process of assessing stimuli. However, this process is
unobservable from a visual perspective, for which the necessary measurements
are not available in crowded environments. Dimensional theories with mea-
surements of valence and arousal in a continuoum appear to be a better match
as several studies show the viability to identify these dimensions from visually
observed behaviors [147] [17].

1.4.3 Measurement

Under the dimensional theories of emotions, measurements of valence and
arousal allow us to produce an inference about the emotions experienced. Due
to the limited information that can be extracted from ambulatory patterns, the
approach presented here is limited to estimate the valence as related to the mo-
tivations and expectations driving pedestrian’s actions. Arousal is not accounted
for in this method due to the inexactness of its manifestation. As a consequence,
the representation of emotion used in this thesis encompasses only the valence
dimension. Furthermore, emotions are described at two levels of abstraction,
pedestrian and crowd.
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Pedestrian Emotion

At the microscopic level, we look at emotions experienced by single pedestrians,
where their affective state is characterized by a measurement in the valence
axis. In the first iteration of the pedestrian model presented in chapter 5, the
emotion of the pedestrian is described by one of three possible discrete states
(positive, neutral, negative), as opposed to a continuous scale in its formal def-
inition, due to the constraints in the model presented. In chapter 6, we extend
the model’s capability to account for valence as a continuous value in the range
of 0 for negative, 0.5 for neutral, and 1 for positive valence.

Crowd Emotion

At a macroscopic level, we present a description of emotion that is representa-
tive of the emotions experienced by the pedestrians present in a specific sub-
region of the observed environment, characterized by a measurement in the
valence axis. The first iteration of the crowd model in chapter 7 focuses on
modelling behavior and motivations, leaving to the second iteration in chapter
8 to address the inference of crowd emotions, measured by a continuous value
in the range of 0 for negative, 0.5 for neutral, and 1 for positive valence.

1.4.4 Working Definition

Despite a lack of consensus among leading researchers, Scherer in [114] takes
on the task of blending agreed upon commonalities to offer a definition consis-
tent to the existing body of literature. We borrow this definition as part of the
theoretical foundation for the work presented in this thesis:

Definition 2. Emotion: A processes focused on specific events (and thus always
have an object); it involves the appraisal of intrinsic features of these objects or
events, of their conduciveness with respect to specific need or goals and of their
compatibility with norms and values; it affects most or all bodily subsystems in
a coherent fashion leading to an integrated mental representation of an episodic
emotional quality; is subject to rapid changes due to the constant unfolding of
many types of events and the resulting reappraisals of the potential consequences
(which in turn change the response pattern); and it has a substantial impact on
behavior due to the generation of action readiness (although the actual behavior
is also strongly determined by other factors, e.g., situational constraints) [114].
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It is essential to mention that throughout this entire research, we employ
the above definition of emotion; however, the emotion will be measured in two
cases: pedestrian emotion and crowd emotion. This decision to account for
both pedestrian and crowd emotions is intended to provide a more comprehen-
sive view of the observed crowd, while at the same time, both the pedestrian
and crowd models are designed to preserve consistency with one another. A
dualistic view of the crowd leaves the door open for further exploration into
several related phenomena, like contagion and regulation of emotions across
members of a crowd, and the interaction and influence between single pedes-
trians and the crowd they conform. Additionally, it expands the adaptability of
our research to a broader range of environments and situations.

1.5 Pedestrians and Crowds

Throughout the content presented in this thesis, we will refer to the pedestrian
and the crowd (or sub-crowd) as separate entities that share common elements.
These elements are analogous from one another but are defined in a different
way. To help in this clarification, table 1.2 provides a list of terms with their
corresponding definitions for pedestrians and crowd.

1.6 Research Questions and Objectives

The research presented in this thesis aims to incorporate knowledge in the fields
of emotional theories, crowd psychology and crowd behavior analysis to enrich
the literature addressing the analysis of behavior and emotion estimation in
crowded environments. The main research question in this thesis is:

Main Research Question:
How to design a model capable to infer emotions of people in crowded envi-
ronments?

We begin to address this question in chapter 2 by a careful examination of
affective cues used in the existing literature as well as models intended to an-
alyze crowds. Estimation of human emotions have been successfully addressed
using physiological measurements collected from specialized sensors that are
not yet readily available in wearable devices that could enable the collection
of data in crowded environments as shown in [133]. A second alternative is
the observation of facial expressions and body postures which can be extracted
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from widely available surveillance cameras, however, visual cues of this nature
are frequently occluded in crowds due to high density of people or the position
of pedestrians with respect to the surveillance camera. A suitable alternative is
the use of the pedestrian motion patterns as we count with existing methods
capable to detect and track pedestrian with high accuracy. In this direction, we
have devised two main objectives: firstly, to produce a method capable to infer
the emotions of individual pedestrians in a crowded environment from observ-
ing their ambulatory movement; and secondly, to provide a method to infer the
emotions of pedestrians in a collective fashion, also from observing their ambu-
latory behavior, but with special care to preserve consistency between individual
and collective inference of emotions.

Research Question 1.1:
How to model the individual pedestrians in a way that allows to associate
their walking movement to their underlying emotions?

This question is explored in chapters 5 and 6 where we propose a pedestrian
model based on a hierarchical Bayesian network capable to learn ambulatory
patterns to foresee the motivations and expectations of individual pedestrians
that allow us to infer their emotion according to the context of the situation.
More specifically, in chapter 5 we conduct an experiment where we test our
pedestrian model and its capability to predict short term movements as well
as its intended destination. Subsequently in chapter 6 we conduct a second
experiment where we extend the pedestrian model to formally incorporate the
elements of motivations, expectations and the way in which these relate to the
inferred emotion.

Research Question 1.2:
How to produce an inference of the collective emotion of pedestrians in a way
that is consistent with their individual emotions?

In chapters 7 and 8 we present the crowd model, sharing a hierarchical
Bayesian network similar to that of pedestrian model capable to capture the
elements of motivations and expectations in an aggregated way to produce an
estimation of the emotion of pedestrians found in close proximity. Approaching
the estimation of emotions at two levels of abstractions provides a more compre-
hensive view of the dynamics of a crowd, and enable us to investigate further the
interaction between single pedestrians and the crowd they belong. Additionally,
considering this research relies on surveillance cameras to observe the crowd, a
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dualistic way to view the crowd helps to cope with different environmental chal-
lenges. For instance, pedestrian detection & tracking algorithms function well
in crowds with low density and minimal occlusion, but their performance de-
cays rapidly as the number of people increases, causing the detected trajectories
to be fragmented. To deal with high-density crowds, we apply crowd counting
algorithms that provide an estimation of the number of people in the scene. Tak-
ing advantage of these two types of algorithms, the pedestrian model is better
suited for sparse crowds where unfractured trajectories can be extracted, while
the crowd model is less susceptible to the density level because it requires only
partial trajectories and counting estimations.

1.7 Research Approach

In this thesis, we propose a method capable to analyze the walking trajectories
of pedestrians present in crowded environments to produce an estimation of
their corresponding emotions. The proposed method consist of two models: a
pedestrian model focused on delivering a estimation of individual pedestrian’s
emotions, and a crowd model centered on estimating the emotion experienced
by multiple pedestrians in close proximity. For both the pedestrian and crowd
model, an experiment is conducted on each stage of development to test its
validity and accuracy.

Concerning the selection of a suitable approach to observe the crowd, three
options were evaluated: physiological measurement, facial and body expres-
sions, and walking trajectories [129]. Sensors capable to obtain physiological
measurements for inferring emotions have a good record in the existing lit-
erature but for this case were dimmed impractical, firstly due to the lack of
publicly available datasets capturing physiological measurements in crowded
settings; secondly because collecting data would require careful calibration of
sensors, add cost and increase complexity in preparing experiments with a sig-
nificant number of participants; and finally, ethical principles would limit the
naturalness and the potential scenarios to explore. Facial and body expressions
can be captured with widely available surveillance cameras, however the com-
putational cost increases rapidly when dealing with medium to large crowds;
additionally, faces and bodies can be occluded depending on the position of
pedestrians and density levels, hence this option was also judged not suitable.
Walking trajectories can be easily extracted via surveillance cameras, preserving
the naturalness of the observed situation; on the downside, walking trajectories
introduce higher ambiguity in its relation to the emotion experienced by the
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pedestrians. After a careful consideration of the above mentioned choices, this
method opted to use surveillance cameras to observe the walking trajectories
of pedestrians. Selecting this approach facilitates the acquisition of data via
currently available and robust techniques developed in the fields of computer
vision and crowd behavior analysis [59]. For example, algorithms for pedes-
trian detection can be used to extract pedestrian trajectories, and crowd den-
sity estimation algorithms provide an approximate measure on the number of
pedestrians present in the scene. In practice, the experiments conducted in this
thesis made use of annotated datasets [144] and social-force based simulation
models [64] [115].

Once the walking trajectories of pedestrians are collected, we proceed to
incorporate the theoretical foundation to formulate a hypothesis on the associ-
ation between walking trajectories and emotions. We start with the assumption
that observable behavior, walking trajectories in this case, bear a relationship
with the pedestrian’s mental and emotional states, as supported by behavior-
ism [22]. Employing field theory [20], a psychological theory examining pat-
terns of interaction between people and their environment, we propose that
pedestrians present in an environment walk in accordance to a motivation, i.e.,
their desire to reach a destination. Expectation then comes into play as an
attempt to foresee the effort required to meet this motivation and guide our
decision making process [97]. An intricate factor in the cognitive process of
decision-making is emotions, aiding to evaluate the perceived stimuli to pro-
duce a behavioral response [32] [11] [120]. The theory of affect heuristics
further supports the central role of emotions, as it proposes that emotions serve
as mental shortcuts to make decisions quickly and efficiently [52]. Emotions
are measured in a continuous-valued valence axis consistent with dimensional
theories of emotion [109]. With the theoretical foundation presented in the pre-
vious lines, our working hypothesis states that walking trajectories result from
the conditional dependence of motivations, expectations, and emotions.

Having identified the key components (i.e., walking trajectories, motiva-
tions, expectations, and emotions), we proceed to design a computational model
using Bayesian networks as we find this a suitable method to our research ques-
tions. Bayesian networks [93] are a type of probabilistic graphical model that
represents conditional dependence among random variables to efficiently pro-
duce inference about other random variable. A variation of this model called
dynamic Bayesian networks are capable to describe the relationship among ran-
dom variables over time, as in the case in this work. Furthermore, this method
accommodates the use of continuous-valued random variables like the sequence
of observations of a pedestrian in a walking trajectory, and discrete-valued vari-
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ables like the motivation of a pedestrian guiding its movement. Since our mod-
els require the use of multiple random variables organized in a hierarchical
way, the approach employed is denominated hierarchical dynamic Bayesian net-
works HDBN. Two HDBN are developed throughout this thesis, one to describe
the pedestrian as a single entity and another one for the crowd to describe mul-
tiple pedestrians.

A series of experiments were conducted at different stages of development
for the pedestrian and crowd model to assess their validity and accuracy. Chap-
ter 5 presents the first iteration of the pedestrian model and an experiment is
conducted employing a simulation tool to produce a virtual crowded environ-
ment where pedestrians interact in a complex environment to reach a particular
destination. In this first experiment, our model is evaluated for its predictive ca-
pability to infer the desired destination (i.e., motivation) and short term move-
ment of individual pedestrians. In chapter 6, the elements of expectation and
emotion are incorporated; and an experiment combining both real-world and
simulated datasets is conducted to confirm the model’s capability to infer pedes-
trian emotions. Our first version of the crowd model is introduced in chapter
7 where an experiment using a real-world dataset evaluates the model’s ability
to describe the behavior of multiple pedestrians as a single entity. Finally in
chapter 8, an improved version of the crowd model is provided, accompanied
by an experiment that tests our model in a wide variety of scenarios.

1.8 Research Contributions

The work presented in this thesis makes several contributions to the fields of
crowd behavior analysis and affective computing. First, it provides a pedestrian
model based on hierarchical Bayesian networks to describe the ambulatory be-
havior of pedestrians in a way that accounts for the motivations and expecta-
tions driving their actions. This same model is further expanded to infer the
emotion of pedestrians in a continuum valence axis, going beyond abnormality
detection or simple behavior classification. Secondly, it proposes a crowd model,
also based on hierarchical Bayesian networks and with a structure equivalent
to that of the pedestrian model, capable to capture the collective ambulatory
behavior of pedestrians, inferring aggregated representations of group motiva-
tions and expectations to produce an estimation of their collective emotion in
a way that is consistent to that of their individual emotions. Furthermore, we
employ a data-driven approach, enabling the pedestrian and crowd models to
learn in unsupervised way and adapt to multiple contexts where ambulatory
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crowds are present. Finally, these models are developed with a solid founda-
tion in psychology literature, an aspect frequently neglected in computational
models.
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(a)

(b)

(c)

Figure 1.1: Three levels of crowd density. (a)Low Density: 20 people per 10
square meters.(b)Medium Density: 40 people per 10 square meters.
(c)High Density: 84 people per 10 square meters. (Pictures taken from
http://www.crowddynamics.com/ Myriad%20II/ Anthropomorphic.htm)
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Figure 1.2: Illustration of Fruin’s levels of service.
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Chapter 2
Literature Review

The matter of emotion recognition and human behavior analysis has gained
a modest interest over the past years, with research conducted in the fields
of neuroscience, general psychology, and computer sciences. The main focus
has concerned the recognition of prototypical expressions, employing the dis-
crete emotion model in most cases, based on data collected in controlled set-
tings. On a more recent trend, the interest has shifted towards recognition of
emotional displays observed in real-world settings where subtle, continuous,
and context-specific interpretations of affective displays can be captured, and in
which multiple modalities for analysis and recognition of human emotion can
be applied [7] [61]. This chapter examines the existing body of literature con-
cerning the estimation of emotions in crowded environments, addressing three
main aspects: crowd modeling techniques, emotion recognition methods, and
relevant datasets.

2.1 Crowd Modeling Techniques

One of the first concerns in the analysis of crowds pertains how to describe a
crowd, cascading into several sub-tasks: detection, localization, and tracking of
pedestrians in crowds. Once developed a proper model of the crowd, subse-
quent behavior analysis can be performed in a more reliable and accurate way.
Broadly speaking, we can group the existing crowd modeling techniques as fol-
low: motion-based techniques, appearance-based techniques, social force mod-
els, and simulation models. Another relevant distinction to be made is between
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data-driven and model-based approaches. Data-driven approaches rely on ma-
chine learning methods to construct a model and require significant amounts of
data; the more available data, the better the model will generalize. Model-based
approaches rely on a deep understanding of the process of interest, benefiting
from scientifically established relationships; however, models of this type can’t
accommodate infinite complexity and usually must be simplified. Appearance
based techniques are data-drive, whereas motion based techniques and social
force models are model-based approaches. Given the scope of this thesis con-
cerns the inference emotions in real-world crowds, we do not explore methods
for simulating emotion-based behaviors in crowds. Finally, as a general assump-
tion, we presuppose the input signals to be visual, with some exceptions as is
the case of social force models.

2.1.1 Motion Based Techniques

Approaches of this nature aim to model the crowd by focusing on the move-
ment caused by pedestrians and their interactions, and the movement can be
described at either macroscopic or microscopic levels. Modeling macroscopic
motions is mainly done with the transformation of movement parameters es-
timation [18]. At the microscopic level, estimating the motion of single indi-
viduals is often used for detecting and tracking pedestrians [146]. Techniques
of this nature are reliable and relatively fast but they presuppose the crowd is
in constant motion, limiting their applicability to ambulatory crowds. Another
important consideration is that environmental conditions such as illumination,
camera stability, and occlusions, significantly affect their performance. Algo-
rithms that rely on background subtraction are usually employed in motion-
based methods for pedestrian detection and crowd behavior modeling. Focus-
ing on microscopic movement, multiple background subtraction methods have
been developed based on Gaussian Mixture Models (GMM) [125], namely [26]
and [138], among others. Others have explored the use of Average of Gaus-
sian’s such as [37] and [148]. Optical flow is a widely employed approach in
the scope of macroscopic movement, with frequent use in estimating the motion
of crowds for behavior analysis, with a particular interest in group behaviors.

2.1.2 Appearance Based Techniques

Techniques in this realm are distinctive due to their capability to detect vi-
sual appearance features, an aspect absent in motion based methods. Focus-
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ing on appearance enables the distinction between motion exerted by pedes-
trians and motion caused by other factors like camera movement. In contrast
to motion based techniques suited for ambulatory crowds, techniques centered
in appearance are highly suitable for behavior analysis in stationary crowds
where little to no motion is observed. On the downside, appearance based tech-
niques must undergo a more extensive training phase with a higher volume
of data in similar environments to yield accurate results [103] [123] [27]. In
crowd detection, several features and descriptors are employed, for instance,
histogram of oriented gradients (HOG) [38], where occurrences of gradient
orientation are counted at specific regions of an image. This is sometimes used
in combination with other descriptors, particularly histogram of optical flow
(HOF) [121], histogram of oriented tracklets (HOT) [92], and color triplet com-
parison (CTC) [75]. When dealing with larger crowds, where density is high,
body-part detectors can be of great help because the performance of full-body
detectors deteriorates rapidly due to the occlusion caused by overlapping pedes-
trians; in these cases, upper body-part detectors [146] tend to perform better.
Lastly, with the advent of machine learning, some methods have been applied
to crowd behavior analysis with great success, e.g., support vector machine
(SVM) [35] for detecting and modeling the appearance of a crowd.

2.1.3 Social Force Models

The social force model (SFM) developed by [65] posed a significant advance in
the study of crowd behaviors from a sociological perspective. This agent-based
model describes the behavior of people in crowds as a result of attractive and
repulsive forces experienced by people in social settings, also influenced by con-
straints in the environment and personal motivations. This model also includes
contextual and social aspects introduced by the individual’s interaction with
other people and objects. The resulting force experienced by each individual
under the social force model is:

F k = F k
d + ∑

h 6=k
F kh

r +∑
A

F k A
a +∑

Q
F kQ

r +ξk (2.1)

where F k
d represents the motion force of every individual guided by their

intended destination. A repulsive force F kh
r is considered due to the individ-

ual’s tendency to mantain a distance from other people to avoid collisions. An-
other repulsive force F kQ

r is included to capture the individual’s intention to
avoid physical obstacles present in the environment. Conversely, an attractive
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force F k A
a is accounted for due to individual’s attraction towards other people

or points of interest. To conclude, the variable ξk is included to account for
unexpected movements of individuals not captured in the previous forces.

2.2 Emotion Recognition Methods

Inspired on neural mechanisms revealed by the recent work of Damasio [39],
the authors of [67] and [15] propose ASCRIBE, an agent-based model to de-
scribe the interplay of mental states (emotions, beliefs and intentions) of individ-
uals in the decision-making process under stressful situations. ASCRIBE is de-
fined as having an external and internal level of operation; at the external level
it incorporates mechanisms for mirroring mental states between individuals, at
the internal level it describes how emotions and beliefs affect each other and
how both affect a person’s intentions. The model was put to the test by simu-
lations and an empirical study case that compared four models and showed the
ASCRIBE model to yield higher prediction accuracy. Expanding the concepts
applied in the ASCRIBE model, the multi-agent-based model presented in [14]
formalizes several concepts of emotion contagion spirals based on fundamen-
tal aspects at the individual level: the senders current emotional state and the
extent to which the sender expresses the emotion; the strength of the commu-
nication channel from sender to receiver; the receiver current emotional state,
its openness or sensitivity for the received emotion, bias to adapt emotions up-
ward or downward and tendency to amplify emotions. Although no empiric
validation is provided, the model is tested with simulations and mathematical
analysis, and it produced interesting emerging patterns identified in psychology
literature such as the upward and downward emotion spirals. Further studying
the role of emotions in the decision-making process under stressful situations,
and with similar concepts to ASCRIBE, an adaptive agent model for affective so-
cial decision making is proposed by Manzoor et al in [119] and later extended
in [83] to account for emotion regulation and contagion. This model incorpo-
rates Hebbian learning principles to adapt the agent’s decision-making process,
but as found in the experiments conducted, it did not yield significant discrimi-
nation in the agent’s decisions. Regulation is approached by antecedent-focused
strategy (regulation before an emotional response has an effect on behavior),
modeling it as a dynamic interaction between internal mental states and conta-
gion is implemented as described in [14].

Focusing on the task of emotion estimation, the framework introduced in
[91] addressed the recognition of individuals’ membership and emotions within
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a group setting by means of multi-modal analysis of facial and body expres-
sions. Faces are represented by facial landmark trajectories and extended vol-
ume Quantised Local Zernike Moments (QLZM) [112], and encoded into Fisher
Vector (FV) [111] representations as input to a GMM classifier to recognize
emotions in arousal and valence dimensions. The framework was tested with a
self-collected dataset of 3 groups of 4 individuals each, monitored while watch-
ing a movie. The proposed approach vQLZM-FV outperformed the compared
methods, namely Facial landmarks, body HOG and body HOF. Although this
approach focused on investigating the affective response of individuals while
watching long-term videos, it is theoretically applicable to crowds under the
assumptions that crowd members’ face and body are visible for a long-enough
interval and within an acceptable resolution.

The authors of [6] summarize their previous work on three bio-inspired
probabilistic algorithms for perception of emotions from crowd dynamics. The
first algorithm starts by partitioning the environment using an Instantaneous
Topological Map (ITM) and a Dynamic Bayesian Network (DBN) is employed to
model conditional interactions occurred in each sub-region. these interactions
are then converted into super states using a Self-organizing map (SOM) and
the occurrence of these super states (events) are encoded by a Gaussian mix-
ture model as positive or negative emotions. The second algorithm starts with
the detection of events, collecting them over time to obtain behavioral patterns
which are then clustered into classes by means of a DBN; the distribution of
these classes are modeled using GMM, building one model for positive and one
for negative emotions, to finally detect the emotional state by a likelihood ratio
test. In the third algorithm the trajectory of single individuals are expressed as
transitions (events) between sub-regions using a DBN and separated models are
constructed for the event sequences labeled with a positive or negative emotion,
to conclude with a log-likelihood test to determine the emotion according to
the movement pattern exhibit by the individual. All three approaches are tested
under a simulated scenario, showing the third algorithm to yield the highest
emotion prediction accuracy according to the experiments conducted.

2.2.1 Methods Comparison

A quantitative or qualitative comparison of methods intended for emotion es-
timation in crowds remains a challenging task due to the lack of a common
dataset with appropriate annotations of pedestrian motion, behavior and emo-
tions in a sufficient variety of scenarios, as it will become evident in the fol-
lowing section. Another difficulty in comparing methods, is the framing of the
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problem, scenarios accounted for, and specific aspects to address. This section
attempts to provide a fair comparison between methods by discussing and con-
trasting the aspects they cover. Again, it is important to mention that we only
consider methods that address the recognition of emotions in physical crowds,
hence methods focused on simulated and online crowds are not included. Sev-
eral methods applicable for emotion recognition in crowded environments are
listed in table 2.1 along with four key aspects used for comparison. This list
of methods is not exhaustive but rather representative of the relevant body of
literature.

The first aspect of comparison, types of crowds allows to establish the con-
text under which the method is applicable, which is a relevant point since no
current method is suitable for all types of crowds. The methods [85] [91] [7]
are appropriate only for crowds where pedestrians remain in a relative fix posi-
tion. On the opposite extreme, the methods [91] [6] strictly require pedestrians
to be in motion. The work in [16] is a particular exception where the authors
study the effect of emotions in crowds as a response of transitioning between
fixed to panic behavior. Our method is suited for crowds with ample movement
as observed in ambulatory and panic crowds, as well as crowds with limited
movement such as queuing crowds.

The inference of emotions in crowded environments is performed at the indi-
vidual and/or collective level. The methods in [91] and [8] study the inference
of individual emotions irrespective of their interaction with other people. [6]
provides individual emotion estimations resulting from the interactions with
other pedestrians and the environment. [16] also accounts for individual emo-
tions with a strong focus on emotion contagion and regulation. [85] and [7]
specifically deal with inferring collective emotions evoked from the interaction
between members of a group. Our methods opts for a dualistic approach were
the emotions are estimated at both individual and collective levels.

The choice of behavioral cue employed to infer emotions is an important
one as it directly impacts on the applicability of the method. For instance, [7]
depends on the observation of faces, which is computationally expensive when
dealing with large crowds, or even unfeasible under low image resolution or
constant occlusion. The use of body postures in [85], [91], and [8] is better
suited than facial expressions in crowded environments with the caveat that
portions of the body may also be highly occluded in medium to large crowds.
Walking trajectories are employed in [16], [6], and our method, which can
be extracted with relative ease employing people detection and tracking algo-
rithms, with minimal impact in accuracy even in crowds with high density;
however, this choice of behavioral cue conveys less emotional significance in
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comparison with facial and body expressions.
Regarding the actual emotions each method is attempting to estimate, the

methods [16], [85], [8], [7], and [6] target a varying list of discrete emotions
based on the discrete emotion theories, whereas [91] applies a continuous-
valued scales of arousal and valence based on the dimensional theories of emo-
tion. Similar to [91], our method uses a continuous-valued scale on a valence
axis as it is less restrictive when addressing the lack of consensus in collective
emotions, and we neglect the arousal component due to its ambiguous associa-
tion to walking trajectories.

Finally, in terms of quantitative performance of emotional inference, a com-
parison is difficult due to the different scope, dataset, metrics and experimental
settings adopted by each method we evaluate, however, as follow we summa-
rize some key results. [16] conducted experiments based on a real-world panic
situation where two variations of their model were tested; the variation of the
model neglecting emotion contagion reported a 0.66 average error rate in de-
tecting fear, while the model accounting for emotion contagion produced an
average error rate of 0.54, providing evidence to the importance of emotion
contagion in panic crowds. The work in [85] produced a series of simulated
scenarios where pedestrians displayed contrasting body postures, an average of
87% of the emotions were correctly identified in a varying size of crowds. The
method presented by [91] evaluated their model employing footage of a small
number of participants seated in front of a camera; arousal was inferred with
a minimal MSE of 0.013 and std of 0.03, and valence with a minimal MSE of
0.014 and std of 0.03. The study conducted in [8] recorded kinematic data using
motion sensors attached to participants while they walk 5m in a straight line;
the interaction between emotion and several body parts was measured with
the strongest and most consistent statistical inference found for fear. The work
of [7] employs the Mars-500 dataset where footage of isolated astronauts cap-
tures their interactions while playing a CT game; their method allowed to find
different response functions that identify events evoking an emotional response,
with the best performance reaching a aggregated score of 13.46 indicating how
well the functions explain the observed dynamics of facial expressions. [6] eval-
uates their model to identify emotions on walking trajectories generated via a
simulation tool, with positive emotions detected with a 94.54% accuracy and
negative emotions with an accuracy of 89.63%. Our approach is presented in
the following chapters with several experiments conducted over each iteration
of our models. In their final iteration, our pedestrian model for inference of
individual emotions achieves a minimal MSE of 0.015 whereas our crowd model
for collective emotions reaches an average MSE of 0.02. A more extensive dis-
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cussions of our results is presented in the remainder of this thesis.

2.3 Datasets

A common test bed is essential to measure and compare performance among
different methods. Within the scope of our research, this section examines two
types of datasets, those designed for affective states recognition and those in-
tended for crowd analysis tasks. The objective is to determine whether the re-
viewed datasets are suited to test computational models dealing with emotion
estimation in crowds. The datasets considered in this section are not exhaustive
but rather representative of the diversity available for these tasks.

2.3.1 Affective Datasets

This subsection considers datasets intended for affective-related tasks using dif-
ferent types of sensors and annotation formats, not limiting to those fitted for
crowds, to provide a comprehensive view of the available options.

Delving in the task of detecting emotional states, facial expressions have
become a popular choice due to their universality and intrinsic relation to emo-
tions [47]. By means of conventional cameras and in a controlled environment,
the datasets CMU [89] [40] and FER-2013 [57] collected static images of facial
expressions from participants who were requested to act different emotional
states following the discrete emotions scheme [46]. CMU data consists of black
and white face images of individuals taken in different poses (straight, left,
right, up), expression (neutral, happy, sad, angry), eyes (wearing sunglasses or
not), and size. Similarly, FER-2013 focuses among other tasks, on the facial
expression recognition task, providing portrait images of single participants act-
ing expressions of happiness, sadness, anger, surprise, and neutral. Aiming to
simplify the collection of static images and to reach a greater number of partici-
pants, the authors of the Gamo dataset [78] made use of a web-based interface
were participants play a game by performing specific facial expressions captured
by a web camera. Each static image captures only one person, focusing on the
facial area. Progressing from static images only, the CK+ dataset [82] provides
22 sequences of images including 27 subjects, where each participant enacts a
series of facial expressions which are later annotated in terms of facial action
units sequences [49], and emotion labels are revised and validated.

Expanding the scope of behavioral markers, the dataset CREMA-D [23] con-
tains short videos of individual participants displaying facial and vocal expres-
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sions for the study of multi-modal emotion expression and perception, whereas
the dataset LIRIS-ACCEDE [10] goes one step further and captures body pos-
tures in addition to facial and vocal expressions. In comparison to similar
datasets that contain few video resources and limited access due to copyright
constraints, LIRIS-ACCEDE consists of 9,800 good quality video excerpts with a
large content diversity. Annotations regarding affective states are achieved by
crowd-sourcing pair-wise video comparison protocol, helping to ensure the an-
notations are consistent, as confirmed by a high inter-annotator agreement, de-
spite the diverse background of the annotators. However, as the authors in [30]
argue, using conventional 2D cameras lacks robustness as this kind of cameras
are subject to poor illumination and changes in lighting conditions. In response,
they propose the use of Kinetic cameras as these are able to capture depth,
and produce a dataset containing 3D models of several participants performing
multiple facial expressions, categorized to a particular emotional label (nor-
mal, happy, ad, surprise, angry). Moving from emotions (brief affective states)
to moods (long term affective states), the work in [69] introduces the EMMA
database which employs both 2D and kinetic cameras, and provides longer in-
tervals of data capture as the dataset is intended for mood recognition. Focusing
on physiological measurements, the DEAP dataset presented in [71] [102] col-
lected the electroencephalogram (EEG), electrooculogram (EOG), Galvanic skin
response (GSR), blood volume pressure (BVP), temperature and respiration sig-
nals of participants. And a frontal video face was recorded for some of those
participants. One-minute long excerpts of music videos were used as the stimu-
lus to elicit emotions along the four quadrants of the arousal-valence plane. All
the above mentioned affective datasets are listed in table 2.2 along with impor-
tant characteristics.

In trying to apply any of the examined affective datasets to the task of emo-
tion estimation in crowded environments, several deficiencies become evident:

(a) Naturalness: An important aspect of collecting behavioral markers concerns
the spontaneity in which these are elicited. When manifesting emotions
in an acted or even induced way, there is no validation of the emotional
labels as these refer to what was requested rather than what was actually
displayed by the participants. For this reason, physiological markers are
preferred as they are involuntary; however, the majority of available affec-
tive datasets rely on behavioral markers elicited in an acted way.

(b) Interaction: Currently, affective datasets focus on the individual, yet no
dataset examines the dynamics of emotions in groups under natural set-
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tings, how interacting with multiple individuals and other psychological
factors influence emotional states.

(c) Applicability: The examined datasets rely on facial, vocal and body expres-
sions as well as physiological markers. In crowded environments faces are
not always visible, and face-based emotion classifiers become computation-
ally expensive as the number of individuals increases. The use of vocal
expressions is subject to environmental noise and it becomes rapidly inef-
ficient with multiple individuals. Depending on the position of the camera
and density level, the body of individuals is unlikely to be visible. Physio-
logical markers require several equipment components, rendering this con-
siderably more challenging for crowds.

From the aforementioned points, it becomes evident that the currently avail-
able affective datasets are not suited for testing methods intended to estimate
emotions in crowded environments where a high number of people is observed.

2.3.2 Crowd Analysis Datasets

The fields of computer vision and crowd analysis are favored with an over-
growing importance and share a common interest in studying crowded envi-
ronments, resulting in multiple datasets produced. In compiling these datasets,
cameras remain the preferred sensor for studying crowds due to the already
widespread use of surveillance cameras in most public spaces. Depending on
the focus of study, datasets are designed to capture the desired circumstances,
for instance, the popular dataset PETS 2009 [51] collected image sequences
from multiple cameras with the aim to serve as a test bed for algorithms in-
tended for people counting, density estimation, people tracking, flow analysis
and event recognition. All the presented situations are mainly poor in terms
of emotional behavior, except for the scenario S3 (event recognition) where an
evacuation (rapid dispersion) is observed and can be associated to an emotional
state of fear. The authors of CAD [62] recreated several normal collective be-
haviors adding the challenges of change in illumination and wavering trees in
the background, however, the captured situations are not representative of any
distinctive emotional behavior. Taking advantage of the large number of peo-
ple attending the World Exposition of 2010 in Shanghai, the massive dataset
Shanghai Expo 10 [142] was gathered. It provided a large amount of annota-
tions at a regional level denoting crowd density, collectiveness and cohesiveness
features under normal situations, but it lacks any relevance for inferring affec-
tive states. Focusing on groups and crowds, the authors of [116] presented the
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Atomic Group Action dataset targeting the dynamics of group formation, yet no
meaningful emotional behavior is exhibit. Rabiee’s dataset [104] provides some
emotional-rich situations such as panic and fight, although in a staged way. Fi-
nally, the S-hock dataset [117] focuses on the behavior of spectator crowds with
rich annotations at the individual level, enabling the addition of further affec-
tive annotations although restricted to this type of stationary crowds. All the
above examined datasets are listed in table 2.3 along with relevant features.

Under realistic conditions, video cameras can suffer of poor illumination and
changes in light conditions. However, as shown by the examined datasets, con-
ventional video cameras remain to be the most practical alternative to observe
crowds. As concluded from the previous inquire on available datasets, those
intended for affect tasks are not suited for evaluating methods intended for
crowded environments. As for the datasets intended for crowd analysis, only
the S-hock presents sufficient relevant data but it is limited to spectator crowds.
A well suited dataset for emotion estimation in crowds needs to capture diverse
and meaningful behaviors accompanied with well validated emotion annota-
tions, ideally for multiple types of crowds and different emotions.
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Dataset Modality
Sensory

Data Annotations Naturalness

3D Face Model [30] Facial expressions Kinetic camera
Normal, happiness,
sadness, surprise,
anger

Acted

CK+ [82] Facial Behavior Image sequences
Anger, disgust, fear,
happiness, sadness,
surprise, contempt

Acted

CMU [89] [40] Facial expressions Static images
Happiness, sadness,
anger, neutral Acted

CREMA-D [23]
Facial and vocal
expressions Camera

Happiness, sadness,
anger, fear, disgust,
neutral

Acted

DEAP [71]
Facial expressions,
physiological
measurements

EEG, EOG, GSR,
BVP, temperature,
respiration

Valence, arousal,
dominance, liking,
familiarity

Induced

EMMA [69]
Facial and body
expressions Camera, kinetic camera Valence, arousal

Induced
and acted

FER-2013 [57] Facial expressions Static images
Happiness, sadness,
anger, surprise, disgust,
fear, neutral

Acted

GaMo [78] Facial expressions Static Images
Anger, disgust, fear,
happiness, neutral,
sad, surprise

Acted

LIRIS-ACCEDE [10]
Facial, vocal and
body expressions Camera Valence, arousal Acted

Table 2.2: Affective Datasets

Dataset Modality
Sensory

Data Annotations Naturalness

Shanghai
Expo 10 [142]

Crowd
movement Camera

crowd density, collectiveness
and cohesiveness natural

Rabiee’s [104]
Crowd
movement Camera

Panic, fight, congestion,
obstacle, neutral behaviors Acted

PETS 2009 [51]
Crowd
movement Image Sequences Pedestrians’ bounding box and location Acted

CAD [62]
Crowd
movement Camera

Bottleneck, departure, lane, arch/ring
and blocking crowd behaviors Acted

S-Hock [117]
Individual
behavior Camera

People detection, head detection, head pose,
body position, posture, locomotion,
action/interaction, supported team,
best action, social relation.

Natural

Atomic Group
Actions [116]

Group
actions Camera

Group-group actions (formation, dispersal,
movement) and group-person actions
(person joining, person leaving)

Natural

Table 2.3: Crowd Analysis Datasets





Chapter 3
Emotion Annotation Schemes

In research related to emotions, it is necessary to establish a standard metric by
which to represent and annotate emotional states. Despite an unfinished debate
over what scheme most accurately captures the essence of emotions [136], the
choice of scheme is usually dependent on the research’s objective and the sig-
nals available for observation. This chapter presents the most commonly used
schemes and the one employed in this research.

3.1 Existing Schemes

In the realm of emotion annotation schemes, the four most common choices are
basic emotions [48], multidimensional [110], positive/negative, and appraisal
schemes [113]. As follow, we present these schemes along with examples of
their usage in previous studies.

3.1.1 Basic Emotions Scheme

This scheme employs Ekman’s Basic Emotions Theory [48] as its foundation to
produce categorical annotations. In this theory, Ekman proposes the existence
of six basic emotions universally recognizable by observation of facial expres-
sions. The basic emotions under this theory are anger, disgust, fear, happiness,
sadness, and surprise. This scheme has gained popularity over time as other
researchers have confirmed Ekman’s findings. Due to the nature of the emotion
theory associated with this scheme, its use is suitable for categorical annotations
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when the observed affective cues are facial expressions as shown by numerous
research [1] [124] [139].

3.1.2 Multidimensional Scheme

Derived from the Multidimensional Theory of Emotions [110], this scheme en-
visions an emotion as a point in a dimensional space, with each dimension cor-
responding to a characteristic of emotion. The most common features are Va-
lence (level of pleasantness), Dominance (level of potency-control), and Arousal
(level of intensity). The effectiveness of each dimension to accurately cap-
tures changes in emotional states remains in a debate with proponents such as
Fontaine placing higher relevance to Dominance. This type of scheme is widely
used in research focused on physiological measurements, as well as behavioral
responses. For example, in the dataset DEAP [71], measurements of electri-
cal activity in the brain (EEG) were highly correlated with reported valence,
whereas skin conductivity (GSR) was a reliable indicator of arousal. Datasets
focusing in visual affective cues have also employed this scheme, that is the case
of HUMAINE [43], SEMAINA [86], and IEMOCAP [21], where speech and fa-
cial expressions along with body postures are observed to produce annotations
in a multidimensional affective space.

3.1.3 Positive/Negative Scheme

This scheme is a simplification derived from a multidimensional theories of emo-
tions where only one dimension (valence) is accounted for, with two discrete
states (positive and negative), with an third state of neutral in some studies
when there is not enough confidence to produce a positive or negative label.
The need for a scheme with this level of simplicity arises when the source of in-
formation lacks relevant affective cues to make a more informative assessment
of the underlying sentiment. This is particularly well illustrated in research
related to natural language processing [96] [36] [99], where the source of in-
formation is text-based therefore providing hints by the choice of words but
lacking the nuances conveyed by facial expressions, body language, and the
pitch and intonation of the voice. A variation of this scheme is often employed
in crowd behavior analysis where the main objective is to classify the displayed
behavior of a crowd as normal or abnormal [58] [88] [135]. One shortcoming
of this scheme is the absence of labels that reflect differences between mild and
strong agreement towards a positive or negative state.
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3.1.4 Appraisal Scheme

This scheme is based on the appraisal theory of emotion [113] where the elicited
emotion is not only yield from a particular stimulus, but also accounts for con-
textual and environmental changes such as novelty, pleasantness, goal-based
significance, coping potential and compatibility with standards. In short, it
describes the evaluation of the manifested emotional expression as a contin-
uous and changing process of appraisal and reappraisal in time. The work pre-
sented by Barakova et al. in [7] employs this scheme where they analyze video
recordings of facial expressions during collaborative interactions in which time-
dependent components of facial expressions are extracted and interpreted by a
mathematical model of emotional events to find locations, types, and intensities
of the corresponding emotional events.

3.2 Proposed Scheme

3.2.1 Walking Trajectories as Affective Cues

Previous studies [71] [43] show physiological measures to yield more consistent
results over behavioral responses. However, in the study of naturally occurring
crowds, capturing physiological measurements remains still an impractical task
due to reasons discussed in section 1.7. On the other hand, most infrastructures
and spaces intended for crowds are already equipped with surveillance cameras,
and for this reason, the acquisition and use of behavioral cues appear to be more
plausible. However, facial and body expressions aren’t always observable due
to temporal occlusion, high density, or the walking direction of the pedestrians.
In the presence of these restrictions, we have opted to use the walking trajecto-
ries of pedestrians as the behavioral cue over which emotions are inferred and
annotated for this research. This is a reasonable approach, as evidenced by pre-
vious studies [50] [8] [101]. A walking trajectory is presented as a time series
of the positions of a pedestrian over a period of the observation. Considering
the available affective cues, a multidimensional scheme is employed where only
the valence-axis is considered, in a continuous-valued scale from 0 (negative)
to 1 (positive).
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3.2.2 Mapping Walking Trajectories to Labels

To construct an association between walking trajectories and emotional valence,
we focus on environments intended for ambulatory crowds where the primary
motivation of pedestrians is to travel from a point of origin to a (final or par-
tial) destination [77] [25]. The task of labeling trajectories under a valence-axis
scale is made by using the assumption that pedestrians have the motivation to
reach a destination, and their emotional valence is influenced by the deviation
between expected and actual effort involved in fulfilling this motivation. Within
the scope of this research, we refer to expectation as the distance-time expected
to meet a motivation, whereas reality corresponds to the actual distance-time
required. Pedestrian valence leans towards the positive spectrum when the ac-
tual distance-time is equal or less than expected. Conversely, pedestrian valence
inclines in the negative spectrum when the actual distance-time surpasses ex-
pectation.

3.2.3 Labeling Procedure

Labels for pedestrian emotions are produced on a continuous-valued scale from
0 (negative) to 1 (positive). The expectation is quantified by the DTM measure-
ment explained in section 6.2.4 of chapter 6. Based on the findings of [76],
people in ambulatory crowds have the motivation to travel. Motivations can
be further divided into commuting, tourism, business, work, and others, with
each having a different desired waiting time expressed by his or her walking
speed. Under these considerations, emotional annotations are obtained by the
following process:

a. The point of origin or destination of a walking trajectory is associated with a
POI, where the list of all POI’s is provided.

b. Walking trajectories beginning at POI j and arriving at POI k are clustered
to the group ( j ,k).

c. For each trajectory i in the group ( j ,k), the d tmi , j→k is computed using
the algorithm 1 and adjusted to �d tm

i , j→k
with algorithm 2 using the mean

arrival time τ j→k of all trajectories in the group.

d. The expectation for trajectories with origin j and destination k is expressed

by the mean DTM, d tm
j→k

, obtained by computing the mean value at every
time instance t of the time series d tmi , j→k .
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e. For each trajectory i , the deviation between d tmi , j→k and d tm
j→k

is mea-
sured at every time instance t using equation 6.10.

f. The emotional labels {e i
0,e i

1, ...,e i
t } corresponding to pedestrian i are produced

by applying equation 6.11 to the deviation computed in the previous step,
and with eexp selected according to the context of the situation.





Chapter 4
Crowd Simulation Models

A crowd simulation model aims to replicate the behavior of human agents in
physical crowds realistically. This task is of particular interest in crowd psy-
chology, where the focus lies in the movement of the agents and crowd. For
example, in understanding the group dynamics of people in sports events, con-
certs, protests, and daily commuting [16] [17]. Collecting data from real world
crowds poses several practical and ethical constrains that can be overcome with
the use of simulations: (a) reduces the cost and complexity of conducting ex-
periments when a large number of people is required, (b) allows freedom of
choice on the environment by fully controlling the virtual infrastructure where
the crowd will be observed, (c) facilitates the generation of ground-truth labels,
and (d) removes the ethical concerns of recreating situation where pedestrian
may be at risk of physical and psychological harm. These benefits come with the
caveat that simulations may lack the intrinsic naturalness of an actual crowds,
failing to replicate relevant psychological and behavioral aspects, hence chal-
lenging the validity of the generated data. In this chapter, we provide a brief
introduction of existing models and describe the crowd simulation model devel-
oped by us to produce the datasets used in chapters 5, 6, and 8.

4.1 Existing Crowd Simulation Models

A significant number of models have been proposed to address the topic of sim-
ulating crowd. The choice of the type of model depends on the purpose of the
study and the aspects of the crowd that are relevant. However, as concluded by
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previous surveys [145] [45], most crowd simulation models fall in one of three
categories: agent-based models, entity-based models, and flow-based models.

4.1.1 Agent-based Models

In this type of model, crowds are formed by a collection of agents, with each
agent allowed a degree of autonomy to behave and interact with the simulated
environment and other agents as dictated by pre-established rules. Agents in
this model are characterized by a decision-making process that involves only the
information they are capable of observing from their surroundings. A predom-
inant model in this category is the SFM [65], which balances the agents’ need
to comply with both social and physical interactions. The SFM is highly suitable
in several domains as it has been substantially validated [115] to accurately
describe natural human behavior while preserving a degree of unpredictability.

4.1.2 Entity-based Models

Models of this kind aim to implement a set of rules that will shape the behav-
ior of individual agents to replicate a particular social or psychological phe-
nomenon [145]. In this sense, the agents member of the crowd lack autonomy
to decide how to behave. This approach is useful in the study of crowd dynamics
patterns like queuing, flocking and jamming.

4.1.3 Flow-based Models

Models in this group focus on replicating the movement of a crowd as a whole
[145], therefore the agents in this simulation neglect information about their
surroundings when making decisions about their behavior, resulting in a limited
variation in the behavior of all agents. Flow-based models are useful in studying
pedestrian flows of highly dense crowds, for example, in public safety planning
and crowd management.

4.2 Proposed Crowd Simulation Model

Under the scope of this research, we are interested in the behavior of crowds
at the individual and collective level, understanding the autonomous behavior
of pedestrians and the emergence of crowd dynamics. In this sense, we choose
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to base our simulation tool on the SFM [65] and incorporate psychological as-
pects that are relevant for us. The behavior of crowds is generated utilizing an
agent-based SFM, as proposed in [65]. Under this model, two types of forces
govern the motion of an agent: desired direction force and interaction force.
Additionally, the movement of pedestrians is influenced by the infrastructure
of the environment, described by walls and a series of points of interest which
serve to indicate origin or destination points.

4.2.1 Points of Interest

A POI represents a physical space in the environment and is defined as

Pi = {pa , pb} (4.1)

where Pi is the area of the POI i denoted by a bounding box with points
pa and pb , both in IR2. Some POIs are used to represent entry or exit areas,
whereas others can indicate intermediate detours.

4.2.2 Desired Direction Force

This force serves to indicate the motivation of a pedestrian α to reach the des-
tination point ~r 0

α ∈ Pdest following the shortest possible path. A path has the
shape of a polygon with edges ~r 1

α , ...,~r n
α :=~r 0

α . Given the current position ~rα(t )
and next edge ~r k

α of the pedestrian α, the desired direction is defined as

~eα(t ) := ~r k
α −~rα(t )

||~r k
α −~rα(t )|| (4.2)

Without any obstacles, the pedestrian moves in the direction ~eα(t ) with the
desired speed v0

α. Deviating from the desired velocity ~v 0
α := v0

α~eα(t ) to avoid
obstacles lead to a tendency to regain the desired velocity within a relaxation
time τα, hence the acceleration term is given by

~F 0
α := mαv0

α~eα−~vα
τα

+wα (4.3)

where mα is the mass of the pedestrian and wα is Gaussian white noise with
an arbitrarily selected signal-to-noise ratio (SNR) to account for variations in
the pedestrian’s perception of the social forces.
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4.2.3 Interaction Force

This is a repulsive force and helps account for the influence of other pedestrians
β over the movement of pedestrian α and the desired to maintain a certain
personal space. The repulsive force is represented by vectorial quantities

~Fαβ(~rαβ) :=−∇~rαβVαβ[b(~rαβ)] (4.4)

assuming the repulsive potential Vαβ(b) to be a monotonic decreasing func-
tion of b with equipotential lines in an ellipse shape, which accounts to the
space required for the next step, hence b describes the axis of the ellipse by

2b :=
√

(||~rαβ||+ ||~rαβ− vβ∆t~eβ||)2 − (vβ∆t )2 (4.5)

given that ~rαβ :=~rα−~rβ and sβ := vβ∆t is of the order of step width of pedes-
trian β. Additionally, a distance is maintained from walls and other infrastruc-
ture obstacles to avoid a collision or getting hurt. Hence, obstacle B results in a
repulsive force defined in the form

~FαB (~rαB ) :=−∇~rαB UαB (||~rαB ||) (4.6)

with a repulsive and monotonic decreasing potential UαB (||~rαB ||) and a vec-
tor ~rαB :=~rα−~r αB where ~r αB indicates the location of the infrastructure piece B
closest to pedestrian α. The total force exerted on pedestrian α is given by

~Fα(t ) := ~F 0
α (~vα, v0

α~eα)+∑
β

~Fαβ(~eα,~rα−~rβ)+∑
B

~FαB (~eα,~rα−~r αB )
(4.7)

4.2.4 The Pedestrian

While observable, the pedestrian α has a position xα in IR2, entering the envi-
ronment at xα0 ∈ Pentr y aiming to reach a destination point xαk ∈ Pdest within an
expected time, for which it chooses a particular walking speed v0

α. Its change in
position is denoted by

xαt = xαt−1 + vαt∆t (4.8)

and the instantaneous walking speed vαt is given by
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Symbol Name Description

Φ1 Ambulatory
A pedestrian walks towards a destination POI while
maintaining a personal space and
allowing for directional deviation to avoid collisions.

Φ2 Queue
A pedestrian acknowledges and obeys a queueing
structure to be maintained until the destination
POI is reached.

Φ3 Spectator
A pedestrian approaches to a POI and remains in a
spectator area for a random period of time.

Φ4 Panic
A pedestrian approaches to a POI in a fast pace,
neglecting the personal space of other pedestrians
and potential collisions.

Table 4.1: List of walking behavior types employed by pedestrians to reach a POI.

vαt = vαt−1 +
~Fα(t )∆t

mα
(4.9)

where mα is the mass of pedestrian α, and ~Fα(t ) is as defined in equation
4.7. The motivation of pedestrian α at time t is defined as

Mα
t = {Pdest ,∆T,Φk } (4.10)

where Pdest is a POI previously identified, ∆T indicates the maximum amount
of time a pedestrian is willing to pursue a motivation before changing its mind,
and Φk indicates the type of behavior to be employed in reaching Pdest . The
implemented types of behavior are listed in table 4.1. A pedestrian must have
one or more motivations, described by the vector

Mα = {Mα
1 , Mα

2 , ..., Mα
n } (4.11)

where n is the total number of motivations. A pedestrian exerts the desired
direction force in the direction of the current motivation and will continue in
this direction until its destination is reached or the maximum time ∆T to meet
this motivation expires, at which point the pedestrian pursues the next moti-
vation or is removed from the environment if Mα is empty. The pedestrian
parameters considered in this simulation model are summarized in table 4.2.
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Parameter Description

v0 The desired walking speed to maintain with momentary
deviation to avoid collisions.

τ Relaxation time to regain the desired walking speed.
m The mass of a pedestrian, used for instantaneous walking speed.
b Ellipse’s axis of personal space to compute repulsive.

Pentr y Point of entrance in the environment
Mt Current motivation of a pedestrian.

Pdest Desired destination associated to the current motivation.
∆T Maximum time allowed to reach the desired destination.
Φk The type of behavior to employ to reach the desired destination.

Table 4.2: List of pedestrian parameters used in the simulations.

4.3 Conclusions

The models presented in section 4.1 prescribe how crowd behavior emerges by
limiting the autonomy of pedestrians to different degrees of freedom. An agent-
based model sets independent parameters for each agent, relinquishing direct
control on what crowd behavior would emerge. Flow-based models establish
rules to govern the global behavior of the crowd, greatly limiting the autonomy
of the agents member of the crowd. A single framework integrating agent-based
and flow-based aspect results in direct conflict. However, a middle ground can
be found in Entity-based models, where global rules are imposed on agents
while still allowing some degree of freedom. The model introduced in section
4.2 is mainly an agent-based model with a minor entity-based control, handling
the pedestrian’s behavior by independent parameters shown in table 4.2, with
the exception of parameter Φk which guides collective behavior on a subset of
pedestrians.
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PEDESTRIAN MODEL





Chapter 5
A Pedestrian Model for
Emotion Estimation in Crowds

5.1 Introduction

As mentioned in the introductory chapter, the concepts of motivation, expec-
tation, and emotion are the building blocks of this research. The motivation
relates to the pedestrian’s intended destination, the consequent expectation is
an attempt to anticipate the future walking trajectory, and the emotion is evoked
from the dissimilitude between expected and actual walking trajectory. These
building blocks are present in this and all subsequent chapters, albeit in differ-
ent forms. In section 5.2 of this chapter, we introduce the first iteration of the
pedestrian model for emotion inference based on walking behaviors, where we
consider the generic scenario in which pedestrians aim to travel from the point
of origin to a final destination. We assume that we can observe and follow the
trajectory of pedestrians present in the environment using a surveillance cam-
era or other available sensor capable of detecting people and track their position
within an acceptable degree of confidence. We address three main goals in this
first iteration of the pedestrian model: (a) provide a representation of the en-
vironment, (b) build behavior models based on an environment representation
capable of capturing the motivation and expectation of pedestrians, and (c) es-
tablish the association between motivations, expectations, and emotions. We
integrate these goals by the HDBN presented in figure 5.1.

A representation of the environment serves as a mean to describe locomo-
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tive behaviors as a transition between spatial zones in the environment. We
employ a self-organizing map (SOM) for this purpose as this method is capable
of learning in a data-driven and unsupervised way the existing space for pedes-
trians to travel and divide it into zones. Furthermore, it provides the means
to classify individual observations of pedestrians and associate them to a dis-
crete and mutually-exclusive zone. The obtained topological representation,
along with the observed pedestrian trajectories, are used to build a HDBN to
model several aspects of pedestrian behaviors. Multiple levels of abstraction
are defined in this network for the ease in explaining the semantic and dynam-
ics of each component. At the two lower layers, we define continuous-valued
observed and actual states for the pedestrian position in space. At a discrete-
valued super-state level where super-states correspond to spatial zones provided
by the topological representation, the spatial location of pedestrians are repre-
sented in a less granular form, allowing to learn similarity between pedestrian
trajectories. In the next level, we define sequences of super-states and grouped
into words that correspond to particular walking patterns. In the final level, we
assemble sets of words with similar origin-destination into vocabularies, where
each specific destination signifies the pedestrian’s motivation. This construction
of a HDBN allows us to infer relevant aspects of a pedestrian’s behavior, such
as its short-term movement and subsequent path capturing expectations, and
intended destination reflecting his/her motivation. Given the identification of
motivation and estimation of expectation, we proceed to infer the pedestrian
emotion.

In the remaining content of this chapter, we provide a detailed explanation
of the proposed pedestrian model, an experiment to assess the effectiveness of
the model, to finally present our conclusions.

5.2 Method

This section proposes a pedestrian model based on a HDBN which can describe
the behaviors and associated emotional states of pedestrians. In this work, we
define behavior as to how pedestrians transit among different states to achieve
its motivation designated by a final destination. For a pedestrian, a state corre-
sponds to its location (x-y coordinates) in a physical region of the environment.
Behaviors of pedestrians are labeled empirically by a human operator knowl-
edgeable of the environment using the labels of positive, normal, or negative to
denote the emotional state, plus an abnormal state when no label is determined.
In overall, our approach starts by learning the topology of the observed envi-
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ronment from the trajectory of pedestrians using a SOM [72], which divides the
physical space into zones. We represent trajectories of pedestrians as transitions
of zones, and all trajectories with a similar destination are classified to the same
behavior, to build a probabilistic model that describes this behavior finally. The
HDBN for the pedestrian model is presented in figure 5.1. Once the topology of
the environment and behaviors of the pedestrians are learned, we can test the
ability of the model to produce an estimation of emotions.

Figure 5.1: HDBN of the pedestrian model.
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5.2.1 Environment Representation

We first address the problem of obtaining a topological representation of the
environment of interest as this is necessary to describe behaviors of pedestri-
ans. Let us consider an environment monitored by a surveillance camera that
captures the motion of pedestrians, as illustrated in figure 5.2a. By applying
state of the art techniques for multi-target tracking in camera networks [3] [4]
it is possible to obtain the trajectory of each pedestrian as shown in figure 5.2b,
and collect this data into a training set X tr ai n

X tr ai n = {X1, X2, ..., Xn} (5.1)

where Xi = {xt , xt+1, ..., xt+k } is the trajectory of pedestrian i over an observa-
tion period from t to t +k, for a total of n pedestrians. Using X tr ai n we train a
self-organizing map SOMp composed by the following elements

• t is the index of target input data vector xt ∈ Xi in the training set X tr ai n .

• xt ∈ Xi is the target input data vector in the training set X tr ai n .

• S = {s1, s2, ..., sn} is the set of neurons in SOMp .

• V = {v1, v2, ..., vn} is the set of parametric vectors where vk maps to neuron
sk .

• k is the index of best-matching unit (BMU) in SOMp .

The set of nodes S = {s1, s2, ..., sn} is arranged in an hexagonal topology. Hav-
ing an input data space Rn , a parametric vector vk ∈ Rn is learned to group
all similar input vectors X t and map them to a node sk by finding the BMU,
designated to be the node with the minimal Euclidean distance

||X − vk || =mini {||X − vi ||}

sk = argmin
i

{||X − vi ||}
(5.2)

rewritten for simplicity as

si = SOMc (X ) (5.3)
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As a result, the SOM provides a complete topological representation of the
environment, where node sk ∈ S represents a mutually exclusive zone in the en-
vironment, as shown in figures 7.2a and 7.2b. Representing the environment
utilizing a SOM encompasses several advantages including (a) unsupervised
learning of the environment’s topological configuration, (b) clustering and re-
duction of data, and (c) a simpler way to describe pedestrian trajectories.

5.2.2 Pedestrian Behavior

A walking behavior exhibited by a pedestrian constitutes a response to particular
intentions as well as interactions with the environment. To capture this in the
context of the present work, we describe each observed pedestrian i in the
environment with an instance of the HDBN hence in a crowd with n pedestrians
detected we implement a total of n instances. The hierarchical model of the
pedestrian is presented in figure 5.1. Starting at the two lower levels of the
HDBN, we describe the trajectory Xi of pedestrian i as a discrete-controlled
process with continuous-valued state vector xt ∈R2

xt = Ft xt−1 +Bt ut + g t (5.4)

and observation vector zt ∈R2

zt = Ht xt +ht (5.5)

Where Ft is the state transition model applied to the previous state, Bt is
the control-input model applied to the control vector ut , Ht is the observation
model, g t and ht represent the process and observation noise, both assumed
to be independent, Gaussian white. Applying an extended Kalman filter (EKF)
over the observation and state vectors, we obtain an estimation x̂t . Details
on the EKF are presented in section 6.2.2 of chapter 6. The trajectory Xi of
pedestrian i is described as a sequence of estimations

Xi = {x̂t , x̂t+1, ..., x̂t+k } (5.6)

capturing the short-term movement of pedestrians within a zone of the envi-
ronment. Proceeding to the next level in the hierarchy, using the zones of S and
SOMp produced in subsection 5.2.1, we can cluster every estimation x̂t ∈ Xi into
a zone st ∈ S as st = SOMp (x̂t ). This level of abstraction enables us to express
the trajectory Xi as a sequence of transitions among zones
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wi = {st , st+1, ..., st+k } (5.7)

where wi is called a word. Using words to represent trajectories simplifies
the task of finding and clustering similar trajectories and will be of use in the
next subsection to define motivations.

5.2.3 Pedestrian Motivation

In the context of this chapter, the motivation of a pedestrian is conceptualized
as the intent to reach a physical zone sβ ∈ S in the environment. In the top
hierarchical level, words are grouped into a vocabulary k given the condition
that ∀wa , wb ∈ Vk , s1 ∈ wa = s1 ∈ wb and sn ∈ wa = sm ∈ wb where |wa | = n and
|wb | = m, that is, words with similar origin and destination. The notion of words
provides a simplified way to describe trajectories whereas the use of vocabular-
ies allows to group trajectories that correspond to the same origin-destination.
Using the subset of words assigned to a vocabulary k, we can proceed to learn
a transition matrix

Vk =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...
an,1 an,2 . . . an,n

 (5.8)

where ai , j represents the probability of transitioning from zone i to j . From
observing a partial word w̃ = {s1, s2, ..., si , s j } corresponding to the trajectory of
a pedestrian and by applying Bayes rule we can predict the zone where the
pedestrian is most likely to move next

ai , j = Pk (si |s j )

= Pk (s j |si )Pk (si )

Pk (s j )

(5.9)

where Pk is a probability mass function (PMF) based on Vk . The probability
of observing w̃ under Pk is computed by
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P (k, w̃) = P (k|w̃)

= Pk (s1, s2, ..., s j )

= Pk (s j |s1, s2, ..., s j−1)Pk (s1, s2, ..., s j−1)

= Pk (s j |s1, s2, ..., s j−1)Pk (s j−1|s1, s2, ..., s j−2)Pk (s1, s2, ..., s j−2)

= ...

=∏
j

Pk (s j |s j−1)

(5.10)

It follows that the motivation of pedestrian i at time t is mt = k if Vk and Pk

best explain the partially observed word w̃ as determined by the argument of
the maxima.

5.2.4 Pedestrian Expectation

Along with the inclination of a pedestrian to achieve a motivation conceptual-
ized as the arrival to a physical area in the environment, the expectation serves
as the assessment of the effort necessary to accomplish such motivation. In this
iteration of the pedestrian model, we define expectation as the time ∆t required
for pedestrian i to fulfill its present motivation mt . In here, for the sake of
simplicity, we work under the rigid assumption that all pedestrians starting at
a particular zone sα with the intention to reach a destination sβ have a similar
assessment of the time ∆t required to reach sβ. Using the subset of words that
correspond to a particular vocabulary k we can learn Tk

Tk =


µ1,1 µ1,2 . . . µ1,n

µ2,1 µ2,2 . . . µ2,n
...

...
. . .

...
µn,1 µn,2 . . . µn,n

 (5.11)

where µi , j represents the mean transition time pedestrians require to go
from zone i to zone j when their origin-destination corresponds to sα and sβ as
describe by vocabulary k. The expectation ∆t for the trajectory of pedestrian i
expressed as a word wi = {st , st+1, ..., st+n} is computed as

∆t =
n−1∑
t=0

µt ,t+1 (5.12)
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where µt ,t+1 is obtained from Tk to obtain the mean time required to travel
from st to st+1 for all zones in wi . Similarly, when we are presented with a par-
tially observed word w̃i , we make use of equation 5.9 and maximum likelihood
to estimate the word ŵi that better predicts the whole trajectory to be taken by
pedestrian i , and on the sequence of transitions denoted by ŵi , we proceed to
compute its expectation ∆̂t .

5.2.5 Pedestrian Emotion

At this point in our research, the emotion Ei of a pedestrian i is measured by one
of three possible discrete states (positive, negative, and neutral) using the Posi-
tive/Negative scheme introduced in section 3.1.3 of chapter 3. Having empirical
labels of emotional states on all trajectories of the training set corresponding to
the above mentioned discrete states, as provided by a human expert, we pro-
ceed to learn three models as described in equation 5.11:

• T +
k is learned using the trajectories of vocabulary k labeled as positive.

• T ∗
k is learned using the trajectories of vocabulary k labeled as neutral.

• T −
k is learned using the trajectories of vocabulary k labeled as negative.

Given a partially observed word w̃ and its corresponding elapsed time τ, the
expected times ∆+

t , ∆∗
t and ∆+

t derived from each emotional model are computed
as prescribed in equation 5.12. The task of emotion inference is addressed as a
one-versus-all classification problem

Et = argmin
e∈{+,∗,−}

τ−∆e
t (5.13)

where the model yielding the smallest difference between expected and
elapsed time indicates the estimated emotion Et of pedestrian i at time t . It
is import to note that the association between behavior and emotion depends
on the context of the situation; the rules for labeling are to be determined for
each particular scenario.

5.3 Experiments and Results

To validate our proposed model we conducted an experiment employing data
produced by a realistic crowd simulator first introduced in [28] [29], based on
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Training dataset Test dataset
Duration (hours) 5 5
Positive trajectories 978 894
Neutral trajectories 1770 1815
Negative trajectories 252 291
Total trajectories 3000 3000

Table 5.1: Details of training and testing datasets produced from simulations.

the social force model [65] where each pedestrian in the environment is treated
as a particle subject to forces in a two-dimensional space, deriving its motion
equations from Newtons law F = ma and accounting for its motivation as an at-
traction force pulling the pedestrian towards its destination and repulsive forces
from physical objects and other pedestrians in the environment. We have recre-
ated a scenario similar to that of a train station, as shown in figure 5.2a and the
produced trajectories are plotted in figure 5.2b. The information of pedestrian
trajectories is provided directly from the crowd simulator, hence the steps for
pedestrian detection and tracking are omitted. Simulations were carried out un-
der different settings, and details for the training and testing datasets produced
from these simulations are presented in table 5.1.

5.3.1 Model Training

The self-organizing map SOMp is trained with the following configuration: The
set of neurons in SOMp is initialized with random weights and in a hexagonal
arrangement spread across the corresponding input space. Distance between
neurons is calculated by the number of links among them. The initial neighbor-
hood size is 3, with 100 steps for the ordering phase. The training phase is done
over 500 epochs by competitive layer but without bias, updating the winning
neuron and all other neurons within the given neighborhood using Kohonen
rule. The first addressed task is to use the trajectory of pedestrians to obtain a
topological representation of the environment with the help of a self-organizing
map SOMp as shown in figures 7.2a and 7.2b. The distribution of training data
among zones after the clustering process is reflected in the learned topology
where larger zones indicate that more trajectories traverse this area and the op-
posite is also true for smaller zones. The decision of how many zones to employ
to describe trajectories has a direct impact on the reliability of our model to
estimate the emotion of pedestrians; this happens because we represent the be-
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havior of pedestrians by the transition of zones, and with fewer zones, there is
a higher uncertainty of the motion of pedestrians. In these experiments, SOMp

is composed of 100 zones (10 rows and 10 columns) in a hexagonal topology.
After testing our model with different dimensions, we found this size to be a
suitable balance between predictability and topological representativeness. Em-
ploying SOMp , the trajectories of the training set were evaluated, and a total of
41 different behaviors were identified, a few examples of the learned behaviors
are shown in Figure 5.4.

The scenario replicated in the experiments corresponds to that of a train
station. Hence, the criteria for labeling behaviors follows from the assumption
that people aim to reach their destination in the briefest possible time. The
behaviors with the minimum number of state transitions and the shortest tran-
sition time are labeled to correspond to a positive emotion. The behaviors with
a higher frequency of occurrence are associated with neutral emotion. Finally,
the behaviors with the highest number of transitions and longer transition time
are assigned a negative emotion.

5.3.2 Model Evaluation

During the testing phase, to estimate the emotional state of the pedestrians, our
hierarchical model predicts the zones transitions and transition time for each
pedestrian in real time based on the learned behaviors. In our model, the accu-
racy level to estimate the emotion of pedestrians depends on the model’s capa-
bility to predict the pedestrian’s behavior. In figure 5.5a, we show the behavior
prediction accuracy during 100 seconds, where the mean accuracy was 76%.
Throughout the entire length of the simulations, the mean accuracy ranged
between 74% and 82%. A summary of the model’s performance to estimate
emotional states is presented in table 5.2. In figure 5.5b, we offer a snapshot of
the online emotion estimation of pedestrians. The observed results on emotion
estimation show neutral emotion to be the most accurately identified emotion
closely followed the remaining two. The majority of misclassified trajectories
occur between positive and neutral emotions as expected due to their similarity
in behavior and since most of the generated trajectories correspond to these two
groups. Trajectories with negative labels are identified at a similar rate than the
other emotions despite the significantly smaller number of available negative
trajectories in the training and testing phase.
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Positive Neutral Negative
Positive 71% 23% 6%
Neutral 14% 83% 3%
Negative 4% 21% 75%

Table 5.2: Confusion matrix of pedestrian emotion estimation based on behavior classi-
fication.

5.4 Conclusions

In this chapter, we presented the first iteration of the pedestrian model for the
estimation of individual emotions of pedestrians under complex, crowded envi-
ronments. In comparison with [5], our approach provides significant improve-
ments: (1) accounts for scenarios with multiple origin and destination points,
(2) Introduces the concepts of motivations and expectations as the building
blocks to estimate emotions. (3) Presents the idea of representing behaviors in
higher abstractions using words and vocabularies, which helps to reduce data
sparsity. The conducted experiments confirm the viability of this model to es-
timate pedestrian motivations, model their behavior, and make use of this to
produce an estimation of their emotional state. The approach presented here
applies to crowded real-life environments for monitoring automation intended
to identify and prevent dangerous situations as well as to improve crowd con-
trol. Furthermore, contributions of this nature are essential for the development
of robust cognitive dynamic systems intended for smart cities. Shortcomings of
this method include: (1) the hard assumption that all pedestrian following a
particular behavior model has the same expectation and agency, (2) the sce-
nario where pedestrians change their motivation is not accounted for, and (3)
the method for labeling trajectories to an emotional state is restricted to only
three possible states and is not empirically validated. Future development of
this work will focus on extending the model to address the previously men-
tioned limitations and will consider the interaction of pedestrian and crowd
emotions enabling us to explore causality and contagion of emotional states
among pedestrians and its impact in the crowd as a whole.
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(a)

(b)

Figure 5.2: (a) A snapshot of the simulated environment. (b) A plot of pedestrian trajec-
tories with colors assigned randomly.
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(a)

(b)

Figure 5.3: (a) Training data (green) and the self-organizing map SOMp (red edges and
blue nodes). (b) Environment partitioned into zones with colors assigned
randomly.
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Figure 5.4: Examples of learned pedestrian behaviors from the trajectories in the training
phase, a total of 41 different behaviors were identified. Colors are assigned
randomly.
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(a)

(b)

Figure 5.5: (a) Pedestrian behavior prediction accuracy. (b) Snapshot of online pedes-
trian emotion estimation.





Chapter 6
Accounting for Motivations and
Expectations in the Pedestrian
Model

6.1 Introduction

This chapter presents a new iteration of the pedestrian model aiming to enhance
the way we capture the interplay of motivations and expectations in inferring
pedestrian emotions, as supported by the body of literature in the field of psy-
chology. We start by providing the foundation for the design of the pedestrian
model and continue to outline the improvements over the previous iteration of
the model. Field theory describes a person’s behavior to be compound by differ-
ent fields, and for each field, there is a motivation, an attracting force guiding
the movement towards the desired goal as well as (potential) repulsive forces
preventing to reach that goal [20]. In this sense, motivation is the reason for a
person to engage in a given behavior and interact with an environment (field)
to achieve an objective. Consequently, motivations involve expectations [76], a
person’s assessment of the effort required to meet motivation. Emotions play an
essential role as they regulate a person’s behavior in an attempt to make reality
match expectations [114]. In the context of a crowded environment, a pedes-
trian engages in a walking behavior coherent to the intended motivation. The
expectation is conceptualized as the desired conditions to fulfill a motivation
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and the emotion in the individual arising from the departure between expec-
tation and reality, yielding an emotion in the positive spectrum when reality
approaches (or surpasses) expectation or an emotion in the negative spectrum
for the opposite case. Incorporating knowledge from force field theory, prob-
ability theory, expectation psychology and emotional theories, this iteration of
the pedestrian model proposes a data-driven approach capable of inferring the
emotion of pedestrians in crowded environments by estimating individual mo-
tivations and expectations based on observed walking behaviors. Hence, this
method is suited for crowds where pedestrian display ambulatory behaviors.
In this chapter, the pedestrian emotion is measured following a Dimensional
model approach presented in section 3.2 of chapter 3, in which emotions are
expressed as a continuous point in a valence-arousal affect space, however only
the valence component is taking into account here. The revised HDBN of the
pedestrian model is presented in figure 6.1, and it describes the influence of mo-
tivations (as associated with points of interest) on walking behavior of pedestri-
ans, followed by conceptualizing expectations, to finally use these elements to
produce an estimation of the emotional state of individual pedestrians.

Significant improvements over the model described in chapter 5 include: (1)
The super-state and word levels of the HDBN have been removed, and the latent
variable for motivation directly influences the walking trajectory described by
the state and observation vectors, (2) a radial direction field is learned for each
motivation and used to predict walking behaviors (3) a new measurement to
quantify expectation as time and distance traveled is introduced, and (4) the
quantification of emotion is extended from discrete to continuous-valued states
from positive to negative valence.

The remaining content of this chapter provides a comprehensive description
of the pedestrian model along with two experiments aiming to asses the effec-
tiveness of the model on a broader variety of circumstances, and finally, we
present our conclusions.

6.2 Method

The method presented here is shown in figure 6.1. At the two lower levels,
the observation and state vectors are measured as continuous-valued quanti-
ties to represent the short-term movements of the pedestrian. The transition
model that aims to predict the future movement of the pedestrian in the state
vector is constructed from an EKF where a control unit vector is given by a
Radial function, having one separate radial function learned for each POI in
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the environment. The right selection of the EKF model depends on the infer-
ence of the pedestrian motivation represented at the top level of the HDBN. A
conditional probability distribution dictates the transition among motivations.
Outside of the HDBN, the component for expectation is computed according to
each pedestrian specific parameters, and an estimation of its emotional state is
produced at the end of this process. In the training phase, manual annotations
of the environment, POI’s, and a set of trajectories are used to learn the environ-
ment’s representation, walking behaviors, motivation and expectation models,
and emotion estimation parameters. During the testing phase, partial observa-
tions of pedestrian trajectories are feed to the model and inference about their
motivation and expectation being computed as necessary to produce an estima-
tion of their individual emotional state. As a precondition preserved from the
previous iteration of the models, the pedestrian is observed using a pedestrian
detection/tracking technique capable of extracting a significant portion of the
pedestrian’s trajectory. If this condition fails to hold, the performance of the
pedestrian model is considerably affected.

Figure 6.1: HDBN of pedestrian model.



74 Accounting for Motivations and Expectations in the Pedestrian Model

6.2.1 Environment Representation

The scope of this model considers environments intended for crowds where
people predominantly display ambulatory behavior. This entails that the main
objective of people in such surroundings is to travel from one place to another
where each one of these places is called a POI. Formally described, a POI refers
to the physical location of an entity that one or many people find useful or in-
teresting. Common examples of POI’s in a train station, for instance, include
entrance/exit doors, information kiosks, ticketing windows, ATMs and lavato-
ries. A POI i is defined by the following elements:

• Bi ∈ IR2 is a set of points delimiting a bounding box for POI i .

• ~Di (x) = ui is a radial direction field defined as a vector point-function
which takes a point x ∈ IR2 in the space of the environment and returns a
unit vector ui in the direction of POI i

An illustration of the environment representation is shown in figure 6.2
where sub-figure6.2a indicates the labels of the identified POI’s, sub-figure 6.2b
displays the manually annotated bounding boxes, and sub-figure 6.2c presents
an example of a direction field for a particular POI.

6.2.2 Pedestrian Behavior

The state of pedestrian i at time t is described by its position, indicated with the
continuous-valued vector xi

t = [x, y]T in ∈ IR2. Its behavior is modeled as an EKF,
assumed to be influenced by a motivation mi

t = ω where ω is the index of the
destination POI. Hence mi

t is treated as a switching variable, with a different
behavior model for each destination

xi
t = Ft xi

t−1 + v̂ i
0
~Dω(xi

t−1)+uk (6.1)

where Ft is the state transition matrix defined as a unit matrix, v̂ i
0 is a scalar

indicating the estimated desired walking speed, ~Dω the direction field of POI
ω, and ut accounts for the interaction forces exerted on pedestrian i at time
t modeled as Gaussian white noise with covariance Qt : ut ∼ N (0,Qt ). The
observation model is given by

zi
t = Ht xi

t + vt (6.2)
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(a)

(b)

(c)

Figure 6.2: Illustration of Grand Central station in New York city displaying (a) the labels
of all POI’s in the environment, (b) bounding boxes for each POI marked with
red dots, and (c) an example of the direction field for a particular POI.
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where Ht is the observation model defined as a unit matrix, and vt cor-
responds to the observation noise assumed to be zero-mean Gaussian white
noise with covariance Rt : vt ∼ N (0,Rt ). Based on the study presented in [76],
this model assumes that a pedestrian tends to maintain the desired walking
speed v̂ i

0, temporarily affected by its interaction with the environment and other
pedestrians. Hence, the desired walking speed is taken from the mean walking
speed from previous observations. The innovation with respect to the behavior
model ω is defined as

ỹ i ,ω
t = zi

t −Ht x̂i ,ω
t |t−1 (6.3)

where x̂i ,ω
t |t−1 corresponds to the estimation produced using ~Dω.

6.2.3 Pedestrian Motivation

The motivation mi
t =ω describes the intention of pedestrian i at time t to reach

the POI ω and is conceptualized as a discrete latent variable inferred from its
walking behavior. Therefore is modeled as a hidden Markov model (HMM) with
N number of states corresponding to the total number of POI’s and transition
probability

P (mi
t ,∆t |mi

t−1) = P (mi
t |∆t ,mi

t−1)P (∆t |mi
t−1)P (mi

t−1) (6.4)

where the transition probability is conditioned on the previous motivation
mi

t−1 and the elapsed time ∆t until the next transition. The previous motivation
mi

t−1 = α is interpreted as the point of origin and mi
t = ω as the intended des-

tination. This work proposes POI ω to function as an attractor for pedestrian i
when mi

t =ω, hence the behavior model using the direction field ~Dω is expected
to best describe the observed walking behavior. The motivation of pedestrian i
is estimated as

mi
t = argmin

ω∈{1,...,n}

b∑
t=a

ỹ i ,ω
t (6.5)

where a partial observation zi
a:b is used to compute the prediction x̂i

a:b and
innovation ỹ i ,ω

a:b for each available behavior model ω, and the model yielding the
smallest innovation is selected as the current motivation.
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6.2.4 Pedestrian Expectation

Research in the field of Expectation Psychology [76] points to the idea that
a person engages in a particular behavior aiming to fulfill a goal by putting
an amount of effort close to its psychological expectation. Expectations are
formulated according to a person’s previous experience, motivation, and the
context of the environment [70]. This research focuses on ambulatory crowds;
hence, the purpose of pedestrians is predominantly to travel. In this sense,
a pedestrian i starts at a POI α with the motivation to reach the POI ω (i.e.
mi

t = ω), for which from a first-person perspective there is a distance to travel
measured as

Di ,α→ω
act =

√
(xi

f −xi
0)2 (6.6)

That is, the Euclidean distance between a pedestrian’s initial position xi
0 and

xi
f ∈ Bω. The actual time to meet this motivation can be derived as

T i ,α→ω
act = Di ,α→ω

act

v̄ i
(6.7)

Where v̄ i is the mean walking speed throughout the journey. However, from
a pedestrian’s perspective, the expected distance is hypothesized (based on ob-
servation or previous knowledge) as

Di ,α→ω
exp =Di ,α→ω

act + r i (6.8)

Accounting for a perception error, r i assumed to be zero-mean Gaussian
white noise. Consequently, the expected time to reach ω is derived from

T i ,α→ω
exp = Di ,α→ω

exp

v̂ i
0

(6.9)

with a desired walking speed v̂ i
0 chosen according to the level of urgency to

meet that motivation and the amount of effort willing to use.
To depict how a pedestrian i with a path xi approaches towards its desired

motivation over time, a DTM d tmi ,α→ω time series is calculated as described
in Algorithm 1. To learn the expected way in which pedestrians with the same
POI origin α and destination ω reach their target, the mean DTM d tm

α→ω
of

all paths in the group (α,ω) is computed. However, as pedestrians walk at dif-
ferent speed hence producing d tmi ,α→ω with varying arrival times τi ,α→ω

act , the
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d tmi ,α→ω of all pedestrians in the group (α,ω) are first adjusted to �d tm
i ,α→ω

using Algorithm 2 where τα→ω is taken from the mean arrival time. It follows
that d tm

α→ω
shows the normality of how a pedestrian approaches its motiva-

tion, and it will be used in the next section for estimating the emotional state of
a pedestrian.

Algorithm 1 Compute DTM of one trajectory

Input:
1: [xi ] Pedestrian trajectory
2: [xi

f ] Final position
Output:

3: [d tmi ] DTM time series of pedestrian
4: procedure COMPUTE DTM
5: for k = 1 to leng th(xi ) do
6: d tmi

k ←
√

(xi
f −xi

k )2

6.2.5 Pedestrian Emotion

In the presented model, the emotion of a pedestrian is represented in a single-
axis valence with a continuous value ranging from 0 (negative) to 1 (positive).
The central idea to estimate the emotional state of a pedestrian is by measuring
the deviation between expectation and reality for a particular motivation. Ex-
pectation is represented by �d tm

i ,α→ω
which is computed by taking d tm

α→ω
and

adjusting it to an expected arrival time τi ,α→ω
expected obtained from equation 6.9. Re-

ality is given by the actual d tmi ,α→ω computed as time passes. The expectation
is further reduced to a numerical value AUC i

exp by applying the trapezoidal rule

over the curve described by �d tm
i ,α→ω

. In the same way, the actual observed
behavior captured in d tmi ,α→ω is reduced to AUC i

act . The deviation between
AUC i

exp and AUC i
act is measured by

AUC i
∆ =

AUC i
exp − AUC i

act

AUC i
exp

(6.10)

and the emotional state e i
t of pedestrian i at time t is computed as
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Algorithm 2 Adjust DTM of one trajectory to the desired arrival time

Input:
1: [d tmi ] DTM time series of pedestrian
2: [τi ,α→ω

actual ] Actual arrival time of DTM
3: [τα→ω] Adjusted arrival time of DTM
4: [δt ] Size of the time interval

Output:
5: [�d tmi ] Adjusted DTM time series of pedestrian
6: procedure ADJUST DTM
7: n ← τi ,α→ω

actual /δt , m ← τα→ω δt

8: d tm_i d x ← r ound([1 : n]∗ (m/n))
9: d tm_i d x1 ← 1,d tm_i d xn ← m

10: for t = 1 to m do
11: h ← first index value where d tm_i d xh >= t
12: if (t == 1) or (t == d tm_i d xh) then
13: �d tmt ← d tmh

14: else
15: p = (t −d tm_i d xh−1)/(d tm_i d xh −d tm_i d xh−1)
16: �d tmt = d tmh−1 − (d tmh−1 −d tmh)∗p

17: end if
18: end for
19: end procedure
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e i
t = eexp +eexp f (AUC i

∆)

= eexp (1+ f (AUC i
∆))

(6.11)

where eexp is the expected emotion manually associated to this DTM, and
f (x) is a standard logistic regression function with parameters k = 1, x0 = 0, and
L = 1

f (x) = L

1+e−k(x−x0)

= 1

1+e−x

= ex

ex +1

(6.12)

This way of computing pedestrian emotions is constrained by how well the
motivation is estimated but is advantageous in the sense that previous wrong
estimations of mi

t don’t influence future values of e i
t because of the expectation

values �d tm
i ,α→ω

and AUC i
exp are recalculated on each new estimation of mi

t .

6.3 Experiments and Results

To validate the presented model, we proceed to conduct two experiments cov-
ering real-world and simulated data in a wide variety of circumstances to better
explore the adaptability of the proposed model.

6.3.1 Experiment 1: C-Station Dataset

Published by [137], the C-Station dataset captures footage of the main con-
course at Grand Central station in New York City and provides manual annota-
tions of the pedestrians trajectories visible over the period of observation. De-
tails about the date-time of the footage are not provided; however, the observed
conditions appear to correspond to non-peak hours with density predominantly
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Resolution (pixels) 1,920 x 1,080
Total Frame Number 100,000
Frame Rate (fps) 25
Annotated Frame Number 5,000
Annotated Frame Rate (fps) 1.25
Annotated Pedestrian Number 12,684
Average Pedestrian Number per Frame 123
Maximum Pedestrian Number per Frame 332

Table 6.1: Details of C-Station dataset [137].

low. More information about this dataset is summarized in table 6.1, and fig-
ure 6.3 presents the observed environment. In the following evaluation of the
pedestrian model, the annotated trajectories of this dataset are separated in 70%
for training and 30% for testing.

Model Training

During the training phase, 10 POI’s are identified, and a radial direction field
~Di (x) = ui is defined for each POI in the environment, and they will serve for the
walking behavior models. The training set trajectories are clustered by a pair

Figure 6.3: The observed environment in C-Station dataset with POI’s denoted with yel-
low rectangles and sample pedestrian trajectories plotted in randomly col-
ored lines.
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of origin-destination POI’s, and DTM’s are computed as described in subsection
6.2.4, the process is illustrated in figure 6.4. Finally, the expected emotion
eexp = 0.5 is used for each DTM.

Model Evaluation

In the testing phase, the pedestrian model is evaluated by its accuracy to pre-
dict pedestrian motivations which enable the selection of the appropriate DTM,
inference about the desired walking speed, and finally the emotional state esti-
mation. Predicting the pedestrian’s motivation consist in determining the des-
tination POI based on partial observations of a trajectory. Similarly to [137],
10 POI’s are identified as possible origin/destinations, and the first half of each
observed trajectory is taken as input in the experiment. The methods [137]
and [144] are used for comparison.

The proposed method is evaluated using different values of θ arbitrarily se-
lected, where θ represents the number of past observations used to estimate
the motivation. In the case of θ = 0, the innovation ỹ i ,k is accumulated for the
whole observation period whereas, for θ > 0, the innovation is accumulated us-
ing only the last θ number of observations. Results of predicting pedestrians
motivations are presented in figure 6.5. From these results, we can observe the
optimal value of θ = 5 where the maximum accuracy of 72% is achieved, signif-
icantly outperforming the compared methods [137] and [144]. This outcome
evidences that, at least in this dataset, including all observations affects perfor-
mance as pedestrians do not necessarily choose the most optimal path to reach
their destination or may change their motivation. Small values of θ can tamper
accuracy if several POIs are in a similar direction. An optimal value for θ allows
for enough evidence to improve accuracy while ignoring potentially misleading
segments of a pedestrian path.

The estimation of emotion under the proposed hypothesis is subjected to
how well the motivation mi

t and desired walking speed v̂ i
0 are estimated. Once

the motivation is determined, the desired walking speed is taken from the mean
walking speed from previous observations as we assume a tendency on the
pedestrian to oscillate towards the desired walking. The MSE measurement
is adopted to evaluate the emotional state estimation. The results of emotion
estimation are presented in figure 6.6, under different values of parameter θ
for motivation prediction. The minimum MSE is achieved when θ = 50, yet this
difference is not significant compared to θ = 5, which is found to be the opti-
mal value for motivation prediction. We conclude that once the motivation is
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predicted correctly, the emotion estimation consistently improves with an in-
creasing number of observations available.

6.3.2 Experiment 2: Grand Central Station Synthetic Dataset

Aiming to expand the limited diversity of scenarios presented in [137], an
agent-based social force model was implemented in this experiment to accu-
rately replicate the observed environment in experiment 1 and to conduct sim-
ulations that expose the crowd to a broader variety of circumstances. Details
of the crowd simulation model are presented in chapter 4 and the methodology
introduced in section 3.2 of chapter 3 is used in this dataset to produce emo-
tional annotations. The produced dataset captures common scenarios such as
peak and non-peak hours as well as abnormal ones like panic situations. Details
of the SC-Station dataset are summarized in table 6.2, and the simulated envi-
ronment is presented in figure 6.7. All contexts of the SC-Station dataset are
divided into training and test sets for the experiments performed in this section.

Model Training

In the training phase of the pedestrian model, a total of 22 POI’s are identified
from manual annotations as seen from figure 6.7 and a radial direction field
~D is generated for each POI. Different from experiment 1, here we consider
temporal POI’s as pedestrians have intermediate destinations before exiting the
environment (e.g., ticket windows and information kiosks). Trajectories are
grouped by origin-destination POIs to learn DTM’s and expected emotions eexp

are assigned accordingly to each context, with low valence in the panic scenario
(eexp = 0.1), below neutral for peak hours (eexp = 0.4) and neutral for non-peak
hours (eexp = 0.5).

Model Evaluation

In the testing phase, the pedestrian model is evaluated over all four contexts of
the SC-Station dataset, starting with the prediction of pedestrian motivations to
allow the appropriate selection of DTM used to quantify expectation and subse-
quently the estimation of pedestrian emotion. Pedestrian motivation prediction
is made using all past observations of a pedestrian trajectory (θ = 0) as this
parameter value yielded the best results in the first experiment. Figure 6.8a
presents the mean accuracy in predicting pedestrian motivations for each con-
text. In general, all contexts show a lower accuracy with respect to experiment
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1, which is expected as the environment in experiment 1 identifies 10 POI’s in
contrast to the 22 POI’s identitied in experiment 2, leading to a reasonable con-
clusion that an increase in the number of POI’s causes higher similarity between
walking behaviors, directly impacting the motivation prediction accuracy.

Other important factors influencing the accuracy in motivation prediction
can be attributed to the number of pedestrians present in the environment and
their walking speed, this is explained by a pedestrian’s need to frequently and
rapidly change its walking direction to avoid collision with other pedestrians
when density and average walking speed is higher. This insight is confirmed
from observing that the non-peak hours’ context has the highest accuracy (0.60)
in motivation prediction while it also has the lowest mean/max walking speed
(0.38/0.52) and the second lowest density (896). Conversely, the evening peak
hours context yields the lowest accuracy in motivation prediction (0.31) but
counts with the highest number of pedestrians (4559) and the second fastest
mean/max walking speed (1.52/2.01).

The accuracy to estimate pedestrian emotions is measured by computing
the MSE between the labeled emotion e i and the estimated emotion ê i for each
trajectory i . The mean MSE of pedestrians in each test set is presented in figure
6.8b.

In general, higher accuracy in pedestrian motivation should yield a lower
MSE in estimated emotion if pedestrians exhibit a behavior close to their esti-
mated expectation; however, this was not the case for three out of four test sets
as seen from figure 6.8. A possible interpretation of this outcome is that the
panic scenario holds an inverse correlation between motivation prediction ac-
curacy and emotion estimation MSE because, under this scenario, pedestrians
unsurprisingly rush to the closest exit in a more predictable behavior. In the
case of the evening peak hours context it is essential to consider that whereas
the motivation prediction accuracy may be lower, the selected DTM to compute
expectation may not be so different if the distance between the actual and pre-
dicted motivations is small, hence still producing an emotion estimation close
to its labeled emotion.

In summary, the number of POIs in the environment is an important factor in
motivation prediction, whereas density and walking speed greatly influence the
estimated expectation and consequently, the inference of pedestrian emotions.
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6.4 Conclusions

This chapter introduced an improved version of the pedestrian model intended
for estimating individual emotions based on observed walking behavior and
inferred motivations and expectations. The prediction of pedestrian’s motiva-
tion was addressed using direction fields generated for each POI. The emotional
state is derived from the difference between expected and actual observed be-
haviors. A hypothesis of expectation for pedestrians in a train station was pro-
posed and employed to generate emotional state annotations. The results of the
proposed model indicate a significant improvement for predicting motivations
(destinations) over previous works, and to efficiently estimate individual emo-
tions based on the proposed hypothesis for expectations. The assumptions made
on pedestrians’ expectations are crucial for the effectiveness of the method; at
the same time, it highlights the adaptability of the technique to different envi-
ronments and types of crowds.
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(a)

(b)

(c)

Figure 6.4: (a) Time series of DTM for trajectories of one origin-destination POI pair with
actual walking speed. (b) Time series of DTM with walking speed normalized
and expected DTM denoted in yellow color. (c) Heat map of emotional state
with valence from positive (green) to negative (red) and expected emotion
(yellow).
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Figure 6.5: Pedestrian motivation estimation accuracy of the proposed method and com-
parison methods [137] and [144]. The proposed method is evaluated using
diferent number of past observations, whereas comparison methods use all
available observations.

Figure 6.6: MSE of pedestrian emotion estimation evaluated using a different number of
observations for pedestrian motivation estimation.
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Figure 6.7: The observed environment in SC-Station dataset with POI’s denoted by nu-
merated labels.

(a) (b)

Figure 6.8: (a) Mean pedestrian motivation estimation accuracy in the four contexts pre-
sented in SC-Station dataset. (b) MSE of pedestrian emotion estimation in
the four contexts presented in SC-Station dataset.
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Part III

CROWD MODEL





Chapter 7
Cyclic Behaviors in Crowds

7.1 Introduction

An essential goal of this research is to produce a crowd model capable of de-
scribe the dynamics and infer the emotion of a crowd as a whole (macroscopic
level) in an analogous way to how we describe the dynamics and emotions of
individual pedestrians (microscopic level) in order to retain a semantic consis-
tency on both models. The foundation of the crowd model, as in the case of
the pedestrian model, lies in the concepts of behaviors, motivations, expecta-
tions, and emotions. In this chapter, we begin to explore an appropriate way to
model the dynamics of a crowd by understanding the life cycle of a crowd. To
this end, we use a broad definition of the crowd as merely a group of people
in proximity, independent of the existence or absence of mental unity [134].
Figure 7.1 illustrates the HDBN proposed to model the crowd. At the lower two
levels and using the environment representation (SOMp) introduced in chapter
5, we start by defining an observation and state vectors that capture the density
levels in each zone of the environment at discrete time intervals. In the third
level of the HDBN, the state vector is clustered into a superstate vector using a
second self-organizing map (SOMc) with the purpose to obtain a smaller set of
possible states. The behavior of the crowd is conceptualized as a sequence of
discrete superstate transitions over time with different sequences corresponding
to a particular cycle (motivation) represented at the top level of the HDBN by
a discrete latent variable. It is important to note that in this iteration of the
crowd model, we do not account for expectations. Also, the emotional state
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of the crowd is not inferred from its macroscopic behavior, but instead, it is a
percentage representation of the discrete emotions inferred by the individual
behaviors as described by the pedestrian model in chapter 5.

The remaining of this chapter is organized as follow: A comprehensive de-
scription of our proposed model is presented in section 7.2. Experiments and
results to validate our model are given in section 7.3. Finally, in section 7.4, we
state our conclusions and future work.

7.2 Method

This section presents the first iteration of the crowd model, as described by the
HDBN in figure 7.1. In this work, we define behavior as to how an entity (pedes-
trian or crowd) transits among different states to achieve its motivation. For a
pedestrian, a state corresponds to its location in a physical region of the envi-
ronment, as we saw in previous chapters, whereas for the crowd, a state corre-

Figure 7.1: Hierarchical Bayesian networks for crowd entity.



7.2 Method 95

sponds to a given configuration of people’s density distribution in the observed
environment. The first step is to learn the topology of the perceived environ-
ment from the trajectory of pedestrians using a self-organizing map (SOMp) as
we presented in chapter 5. An observation and state vectors capturing the den-
sity distribution in the environment are computed for the crowd, as seen in the
two lower levels of the HDBN. A second self-organizing map (SOMc) is learned
to cluster state vectors into superstates, and sequences of superstate transitions
are grouped into the same behavioral cycle which is described at the top of the
HDBN.

7.2.1 Crowd Behavior

Supported by the work presented in [108] we argue that a crowd behaves as a
collective minded entity and therefore, we can model behaviors for the crowd
in a similar way to that of the pedestrian. We start our description of the crowd
by defining a state vector X t at time t as

X t = {x1t , x2t , ..., xnt ; xit ∈R2} (7.1)

and observation vector Zt

Zt = {z1t , z2t , ..., znt ; zit ∈R2} (7.2)

where xit and zit are the state and observation vectors of pedestrian i as
defined in chapter 5, for a total of n pedestrians. Similarly, we could define
X̂ t = {x̂it }n

i=1 as an estimation of the state vector of entity crowd, however the
difficulty of using that definition is that X̂ t is prompt to irregular dimensionality
between samples as pedestrians join or leave the crowd. Instead, we redefine
X t as

X t = {d1t ,d2t , ...,dnt } (7.3)

where dkt is the estimated number of pedestrians in zone k at time t , for a
total of n zones as produced by SOMp in chapter 5. In this sense, the crowd’s
state vector is implicitly dependent on the detection of the pedestrian trajec-
tories. This definition of X t is more advantageous as it provides a vector with
uniform dimensionality while maintaining meaningful information. Also, since
the focus of X t is density estimation rather than trajectory tracking, we could
employ crowd density algorithms [31] [105] to achieve this task. We then pro-
ceed to model the observation and state vectors as
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X t = Ft xt−1 +Bt ut + g t (7.4)

and

Zt = Ht xt +ht (7.5)

Where Ft is the state transition model applied to the previous state, Bt is
the control-input model applied to the control vector ut , Ht is the observation
model, and g t and ht represent the process and observation noise, both assumed
to be independent, Gaussian white. Applying an EKF over the observation and
state vectors we obtain an estimation X̂ t and we collect the state vectors X̂ t into
a training set

X tr ai n = {X̂ t , X̂ t+1, ..., X̂ t+k ;k ≥ 1} (7.6)

and use this set to train a second self-organizing map SOMc , that further
reduces dimensionality from Rn to R2. The elements of SOMc are as follow:

• t is the index of target input state vector X̂ t in the training set X tr ai n .

• X̂ t is the target input state vector in the training set X tr ai n .

• S = {s1, s2, ..., sn} is the set of neurons in SOMc .

• W = {w1, w2, ..., wn} is the set of parametric vectors where wk maps to neu-
ron sk .

• k is the index of BMU in SOMc .

The set of nodes S = {s1, s2, ..., sn} is arranged in a hexagonal topology. Having
an input data space Rn , a parametric vector wk ∈Rn is learned to group all simi-
lar input vectors X̂ t and map them to a node sk by finding the BMU, designated
to be the node with the minimal Euclidean distance

||X̂ −wk || =mini {||X̂ −wi ||}

sk = argmin
i

{||X̂ −wi ||}
(7.7)

rewritten in the form of
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si = SOMc (X ) (7.8)

where si is the superstate described in the third level of the HDBN. It is
important to mention that SOMc , unlike SOMp , does not provide topological
or any other semantic information by the arrangement of the nodes in S when
projected to R2. For the crowd model we do not define discrete sequences of
superstates transitions as we did for the pedestrian model in its first iteration
because unlike individual pedestrians where there is a finite trajectory, under
our definition of states and superstates the sequence of transitions in a crowd
emerges as a cyclic process with people continuously joining and leaving the
crowd. As explained at the end of this chapter, we aim to explore the cyclic be-
haviors of a crowd more comprehensively way in future work, but for the work
presented here we describe a crowd behavior simply as a high order Markov
process with a superstate transition matrix

Pk =


p1,1 p1,2 . . . p1,n

p2,1 p2,2 . . . p2,n
...

...
. . .

...
pn,1 pn,2 . . . pn,n

 (7.9)

where pi , j indicates the probability of transitioning from superstate si to s j .
Expressed differently, using Bayes rule we can compute the superstate transition
probability as

pi , j = Pk (si |s j )

= Pk (s j |si )Pk (si )

Pk (s j )

(7.10)

where Pk is a conditional probability distribution (CPD) learned from data,
and k indicates the motivation (cycle) to which this CPD refers. Equation 7.10
is extended to a high order Markov process to account for more evidence to
support our prediction of the next state
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Pk (s1, s2, ..., st ) = Pk (st |s1, s2, ..., st−1)

= Pk (st |s1, s2, ..., st−1)Pk (s1, s2, ..., st−1)

= Pk (st |s1, s2, ..., st−1)Pk (st−1|s1, s2, ..., st−2)Pk (s1, s2, ..., st−2)

= ...

=∏
t

Pk (st |st−1)

(7.11)

Up to this iteration of the crowd model, we focus on the transition of super-
states and do not account for the temporal component of these transitions.

7.2.2 Crowd Motivation, Expectation and Emotion

The definition of behavior in the previous section points to the sequence of su-
perstate transitions to most likely be observed in the crowd when a particular
cyclical behavior is observed. We extend this definition to account for multiple
cycles where each cycle corresponds to a different motivation. Having our train-
ing data X tr ai n manually separated into subsets for each cycle, we can proceed
to learn the same models of equations 7.10 and 7.11 for n cycles. Furthermore,
we can make use of a Bayes classifier to infer the motivation Ct of the crowd
based on previously observed superstate transitions

Ct = argmin
k

n∏
t=1

Pr (k)Pk (st |st−1) (7.12)

where Pr (k) represents the a priori probability of motivation k, n is the total
number of learned cyclic behaviors, and Ct = k indicates the motivation of the
crowd at time t . Given that multiple motivations may be learned from data, we
define the transition of motivations Ct to Ct+1 by a discrete-time Markov chain

P (Ct+1|C1,C2, ...,Ct ) = P (Ct+1|Ct )

= P (Ct |Ct+1)P (Ct+1)

P (Ct )

(7.13)

holding the Markov property that the next motivation Ct+1 depends only
on the current motivation Ct . The description of the crowd model concludes
here, leaving the concepts of expectation and emotions to be addressed in the
following chapters.
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7.3 Experiments and Results

Two experiments are conducted to evaluate the proposed crowd model: the
first experiment uses a dataset generated from a simulation tool [28] [29] and
focuses on evaluating the model’s capability to predict future states of the crowd
within the same cyclic behavior, and the second experiment employs a dataset
containing real-world observations of pedestrians [144] and aims to assess the
inference of crowd motivations by identifying the cyclic behavior model that
best describes the dynamics in the crowd.

7.3.1 Experiment 1: Synthetic Dataset

The experiment described in this section employs the same dataset used in chap-
ter 5, and its details are summarized in table 7.1. The dataset containing pedes-
trian trajectories is divided into a training set Ttr ai n and a testing set Ttest with
equal proportions.

Training dataset Test dataset
Duration (hours) 5 5
Positive trajectories 978 894
Normal trajectories 1770 1815
Negative trajectories 252 291
Total trajectories 3000 3000

Table 7.1: Details of training and testing datasets produced from simulations.

Model Training

We start by learning two SOM’s: SOMp for the topological representation and
partition of the observed environment and SOMc to cluster crowd states into su-
perstates and model the behavior of the crowd as a whole. Both self-organizing
maps SOMp and SOMc are initialized with similar parameters. The set of neu-
rons on each SOM contains 100 neurons (10 rows and 10 columns) is initialized
with random weights and in a hexagonal arrangement spread across the corre-
sponding input space. Distance between neurons is calculated by the number
of links among them. The initial neighborhood size is 3, with 100 steps for the
ordering phase. The training phase is done over 500 epochs by competitive layer
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but without bias, updating the winning neuron and all other neurons within the
given neighborhood using Kohonen rule.

The topological representation of the environment learned by SOMp using
the training dataset Ttr ai n is presented in figure ??. Using the description pro-
vided by SOMc , the sets Ztr ai n and X tr ai n for the observation and state vectors
are computed. Next, the collection of estimated state vectors X tr ai n is used to
train SOMc , enabling us to obtain the set Str ai n containing superstate vectors,
and learn the probabilistic models to describe the crowd’s cyclic behavior and
motivation.

It is crucial to notice that unlike SOMp , a plot of SOMc does not provide
a visual semantic due to the high dimensionality of the state vectors, so an
illustration of the resulting SOMc is not provided.

Model Evaluation

Making use of Ttest and SOMp , we obtain the testing set X test to be employed
in evaluating the model’s ability to predict the behavior of the crowd, that is,
the next state and transitions among states of SOMc .

In figure 7.3a, we can observe the behavior prediction accuracy for the
crowd oscillating more consistently between 50% and 94%, with a mean ac-
curacy of 81%. As the data used in this experiment correspond to only one
type of cyclic behavior, no estimation of the crowd’s motivation is produced but
will be addressed in future chapters. Also, the association between crowd’s be-
havior/motivation and emotion is not defined yet, so we limit to represent the
emotional state of the crowd as a summary of the individual emotions inferred
by the pedestrian model.

In sub-figure 7.3b we present a picture of pedestrian emotion estimations
produced by the pedestrian model introduced in chapter 5. Sub-figure 7.3c
displays the summary of inferred pedestrian emotions in an observation period
of 600 seconds, during which a positive emotion becomes predominant as the
number of pedestrians joining the crowd increases.
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(a)

(b)

(c)

Figure 7.3: (a) Crowd behavior prediction accuracy. (b) Picture of online pedestrian
emotion estimation. (c) Picture of online crowd emotion as a summary of
pedestrian emotions.
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7.3.2 Experiment 2: C-Station Dataset

In the second experiment, we employ the Grand Central Station dataset [144],
which provides manual annotations of 12,684 observed pedestrian trajectories
from a one-hour crowd surveillance video. The dataset is divided into a training
set Ttr ai n containing 70% of trajectories and a testing set Ttest containing the
remaining 30% of trajectories.

Model Training

The environment is learned using Ttr ai n to train the topological map SOMp ,
configured in a hexagonal arrangement with 50 neurons (10 columns and 5
rows) and neurons weights are initialized randomly within the input space, and
the initial neighborhood size is 3 with 100 steps in the ordering phase. The
training phase is performed over 500 epochs by competitive learning without
bias. The resulting topological map SOMp is shown in figure 7.4.

The sets Ttr ai n , and Ttest containing pedestrian trajectories are used in com-
bination with SOMp to compute the collection of state vectors X tr ai n and X test .
The set X tr ai n is then used to train SOMc . This SOM is configured in a hexag-
onal arrangement with 100 neurons (10 columns and 10 rows), the weights
of the neurons are initialized randomly across the input space, and the initial
neighborhood size is 3 with 100 steps in for ordering phase.

The training phase is performed over 500 epochs by competitive layer with-
out bias. Making use of SOMc , we can proceed to convert the sets of state
vectors X tr ai n and X test into sets of superstates Str ai n and Stest .

A total of seven different crowd behaviors are manually labeled and sepa-
rated into training and testing sets, S1

tr ai n ,S2
tr ai n , ...,S7

tr ai n and S1
test ,S2

test , ...,S7
test .

Model Evaluation

The criteria in identifying the different crowd behaviors is characterized by
grouping all detected pedestrians heading to the same direction, in the experi-
ments presented here we employ seven different directions: north-east, north,
north-west, south-west, south, south-east, and mixed directions. Additionally,
three variations of each testing set were used for evaluation where 100%, 75%
and 50% of people act according to the testing set’s intended behavior and the
remaining percentage of people act in different behaviors. A plot of each behav-
ior is presented in figure 7.5.
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The performance of the models’ capability to identify each behavior is re-
corded after various periods of observation: 1 observation, 10 observations, 20
observations, 30 observations. Results are shown in table 7.2, separated into 3
sub-tables for each variation of the testing sets, by rows for each behavior and
by columns for each length of the observation period.

The results in table 7.2a show a low accuracy to identify most behaviors after
only one observation but consistently increase after more observations; this is
reasonable as 100% of people in the testing set moving in the same behavior
is an improbable scenario from the provided data. However, in table 7.2b the
results after just one observation are high as only 75% of people follow the
detected behavior, which is a more typical case.

Results in table 7.2c where only 50% of people follow the intended behavior
are still high for most of the behaviors. A testing set with less than 50% is not
included in the experiment because such a low number of people following the
same behavior would imply that this is not the dominant behavior in the crowd.

A direct comparison between our crowd model and other related methods
would be inaccurate since our method models the predominant behaviors of
the crowd as a whole whereas existing methods model one or several behaviors
based on partial features of the crowd. However, the next chapter will address a
congruent comparison with relevant models. Additionally, a significant portion
of literature that studies crowd behavior is focused on abnormality detection,
which is not covered in the experiments presented here.

It is also relevant to notice that the conducted experiments made use of the
ground truth provided for this dataset; therefore the results displayed do not
account for the accuracy error added by the underlying algorithm employed for
pedestrian tracking and detection.
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Figure 7.4: (a) Footage of New York Grand Central station. (b) Data points of annotated
trajectories. (c) Topology learned with growing neural gas networks. (d)
Environment representation divided by regions.
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Behavior t −1 t −10 t −20 t −30
North-east 0.0560 0.3098 0.4416 0.5337
North 0.0815 0.2732 0.3891 0.4951
North-west 0.5423 0.6259 0.6477 0.6531
South-west 0.0325 0.2006 0.2860 0.3316
South 0.5055 0.5685 0.6446 0.7331
South-east 0.2890 0.4620 0.5689 0.6539
Mixed 0.9600 0.9954 1.0000 1.0000

(a) Test set with 100% of trajectories moving according to each behavior.

Behavior t −1 t −10 t −20 t −30
North-east 0.9730 0.9984 1.0000 1.0000
North 0.9769 0.9989 1.0000 1.0000
North-west 0.9775 0.9969 1.0000 1.0000
South-west 0.9309 0.9914 1.0000 1.0000
South 0.9955 1.0000 1.0000 1.0000
South-east 0.9845 0.9849 0.9934 0.9969
Mixed 0.8980 0.9869 1.0000 1.0000

(b) Test set with 75% of trajectories moving according to each behavior.

Behavior t −1 t −10 t −20 t −30
North-east 0.9870 0.9984 1.0000 1.0000
North 0.9760 0.9989 1.0000 1.0000
North-west 0.9775 0.9969 1.0000 1.0000
South-west 0.9309 0.9914 0.9994 1.0000
South 0.9901 1.0000 1.0000 1.0000
South-east 0.3310 0.3761 0.4406 0.4550
Mixed 0.6620 0.6238 0.5593 0.5449

(c) Test set with 50% of trajectories moving according to each behavior.

Table 7.2: Results of model’s performance to identify learned behaviors after 1, 10, 20,
and 30 observations. Three different test sets are employed where 100%, 75%,
and 50% of the trajectories move according to each behavior.
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7.4 Conclusions

In this chapter, we presented the first iteration of the crowd model aiming to
explore a suitable approach to describe the dynamics of a crowd as a whole,
under realistic crowded environments. Behaviors are modeled by changes in
density distribution in the crowd rather than by observing single trajectories of
pedestrians. This approach is advantageous when crowd density is high as in
such circumstances, people counting methods perform better than pedestrian
tracking techniques. Also, seen the crowd as a whole provides a more compre-
hensive understanding of the crowd’s dynamics. The conducted experiments
support the viability of achieving a macroscopic view of the crowd yielding con-
sistently reliable predictions of its future behavior and identification of motiva-
tion. In particular, the crowd model performs with high accuracy to identify
different behaviors in crowds even when the predominant behavior is exhibited
by as low as only half of the pedestrians in the crowd.

Our approach accounts for scenarios with multiple origin and destination
points, and it explores the idea of the crowd as a separate entity with its cyclic
behavior and motivation. The overall hypothesis is that a crowd can be de-
scribed as a separate entity with its own behavior and motivations in a way that
is consistent with those of the individual pedestrians, as suggested by [41]. In
this particular case, we have a rather simple model that treats the crowd emo-
tion as a sum of the emotions of the pedestrians in the crowd. The approach
presented here is applicable to crowded real-life environments for monitoring
automation intended to identify and prevent dangerous situations as well as to
improve crowd control. Furthermore, contributions of this nature are essential
for the development of robust cognitive dynamic systems intended for smart
cities.

The next iteration of the crowd model will focus on extending the model
to consider a proper definition of expectations and emotions for the crowd and
their association to the already defined behaviors and motivations. We will also
explore the interaction of pedestrian and crowd emotions, enabling us to better
understand causality and contagion of emotional states among pedestrians and
its impact in the crowd as a whole.
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(a)

(b)

Figure 7.2: (a) Training data (green) and the self-organizing map SOMp (red edges and
blue nodes). (b) Environment partitioned into zones with colors assigned
randomly.



108 Cyclic Behaviors in Crowds
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Chapter 8
Crowds Within Crowds: A
Sub-Crowd Model for Emotion
Estimation

8.1 Introduction

An essential facet in the study of crowds lies in understanding the influence
among pedestrians [137] [143]. One relevant study in this area examines the
formation of groups in crowds [73] confirming the intuition that pedestrians in
closer proximity exert a stronger influence than those in a more distant location,
leading to the formation of crowds within crowds. In this chapter, we turn our
attention to this fact, crowds within crowds, and work in enabling the previ-
ously presented crowd model to adequately describe sub-crowds inheriting the
core hypothesis of using behaviors, motivations, and expectations in deriving
emotional states for each sub-crowd in the environment. The previous iteration
of the crowd model provided a starting point in showing the viability to repre-
sent the crowd at a macroscopic level and devise a way to model its behavior
as a transition of states dictated by an associated motivation. Preserving the
topological representation previously introduced, we switch from the idea of
one crowd to multiple sub-crowds in the same location, where each sub-crowd
is comprised by the pedestrians present in the same subregion of the environ-
ment. Also, this iteration improves the selection of features used to represent
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the state of the sub-crowd and its learned behavior model. The crowd model
presented in this chapter is based on the implementation of a HDBN as shown
in figure 8.1, with one instance of the HDBN for each sub-crowd as associated
with a particular subregion of the environment. Furthermore, this version of the
crowd’s HDBN, as it was in the case of the final version of the pedestrian HDBN,
is reduced to its most essential components captured in three hierarchical lev-
els: two continuous-valued observation and state vectors to describe the state of
the sub-crowd based on the PTF measured in its corresponding subregion, and
a discrete-valued variable to identify the sub-crowd’s motivation as associated
to the behavior model that best describes the observed sequence of states. Also,
similar to the pedestrian model, the components of expectation and emotion
are described outside the HDBN and inferred based on sub-crowd’s behavior
and motivation. The expectation of a sub-crowd is quantified as the area un-
der the curve of the predicted PTF according to the behavior model associated
with the estimated motivation. The emotion of a sub-crowd is conceptualized
as a valence-based continuous value derived from the breach between expected
and observed PTF. Two experiments were conducted to evaluate in great detail
the viability of the proposed crowd model. The first experiment makes use of
real-world data to assess the feasibility and accuracy of our model to describe
sub-crowd behaviors and infer its consequent motivations, expectations, and
emotions. The second experiment simulates the environment observed in the
first experiment, and generates synthetic data to allow for broader variation in
conditions, enabling us to measure how well the crowd model adapts to differ-
ent contexts. Both experiments yielded positive results, confirming the viability
of the crowd model to provide a macroscopic representation of the sub-crowd’s
behavior while producing an inference of the sub-crowd’s emotion that is con-
sistent with that of the pedestrians comprising it. For the remaining content of
this chapter, in section 8.2 we provide an in-depth description of the proposed
method. Section 8.3 presents two experiments conducted to evaluate the effec-
tiveness of the proposed method. Finally, section 8.4 postulates the conclusions
drawn.

8.2 Method

This second iteration of the crowd model aims to represent the conglomerate of
pedestrians not as a single crowd as it was the case of the first iteration of the
crowd model, but as a collection of sub-crowds in the environment based on
spatial proximity among pedestrians. The model follows the implementation of
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the HDBN shown in figure 8.1 and one instance of this HDBN is employed to
describe each particular sub-crowd. The topology of the environment is learned
from data and divided into subregions in an unsupervised way as we did in the
previous chapter. The observation and state vectors Zt and X t of sub-crowd i
represented by the two lower levels of the HDBN are computed every time in-
stance t by measuring the PTF of the pedestrians present in the subregion i . The
behavior model k to predict the transition among state vectors is selected ac-
cording to the inferred motivation mt = k. Finally, the expectation is quantified
and used to infer the emotional state of the sub-crowd. In this direction, behav-
ior models, motivations and expectations are learned and estimated for each
subregion, resulting in a single emotion estimation representative of the emo-
tion experienced by the members of that sub-crowd. The crowd model relies on
the detection and partial tracking of pedestrians as extracted from surveillance
cameras as the initial input signal.

Figure 8.1: HDBN for a sub-crowd entity.
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8.2.1 Sub-Crowd Representation

The proposed method aims to split the environment into subregions and com-
pute representative features of the dynamics of the crowd for each subregion.
To divide the environment into subregions, the SOM [72] is a suitable method
as it learns in an unsupervised way to cluster samples from the input space into
a particular neuron, but unlike other clustering methods, it uses a neighborhood
function to maintain the topological properties of the input space. The SOM is
defined by a set of neurons with a weight vector W = {w1, ..., wn} where wi ∈ IR2

is the position of neuron i for a total of n neurons, and a function Q(x) = i
mapping each sample x ∈ IR2 from the input space into a neuron i . The training
phase of a SOM uses competitive learning to adjust the weights W of its neurons
based on a training set xtr ai n = {x1, ..., xk } where xi ∈ IR2 is the detected position
of a pedestrian i . An illustration of this process is provided in figure 8.3. Given
the scope of this method is on ambulatory crowds, the PTF feature proposed
by [56] is a suitable measure to describe the crowd dynamics as it relates crowd
density with movement. Furthermore, the research done by Fruin [56] intro-
duces the LOS standards to asses the quality of PTF based on the nature of the
environment (e.g., walkways, stairways, queuing areas) and the flow orienta-
tion (e.g., unidirectional bidirectional, multi-directional). The LOS values have
been adjusted for the specific characteristics of the environment studied in this
work and are presented in table 8.1. The state of the sub-crowd i at time t is
described by a vector state

X t = st

at
(8.1)

where X t is the PTF measured in pedestrians per meter per minute (pr /m/mi n),
st is the average pedestrian walking speed (m/mi n), and at is the average area
per pedestrian within the traffic stream (m2/pr ). The value of a is calculated
by the time-space (TS) method [56] as follow

a = T Ssuppl y

T Sdemand
= T S

nt
(8.2)

where T is the time of the analysis period (mi n), S is the effective net area
of the analysis space (m2), n is the number of pedestrians currently occupying
the space, and t is the predicted occupancy time of pedestrians. The observation
vector is given by

Zt = Ht X t + vt (8.3)
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LOS
PTF

pr/m/min Description

A 0 - 23
Threshold of free flow, convenient
passing, conflicts avoidable.

B 23 - 33
Minor conflicts, passing, and speed
restrictions.

C 33 - 49
Crowded but fluid movement, passing
restricted, cross, and reverse flows
difficult.

D 49 - 66
Significant conflicts, passing and
speed restrictions, intermittent
shuffling.

E 66 - 82
Shuffling walk reverse, passing and
cross flows very difficult, intermittent
stopping.

F 82 - Max
Critical density, flow sporadic, frequent
stops, contact with others.

Table 8.1: Description of LOS. The PTF is measured in pedestrians per meter per minute
(pr /m/mi n).

where Ht is the observation model mapping the state space into the ob-
served space, and vt is the observation noise assumed to be independent, Gaus-
sian white. Computing the PTF requires the detection and partial tracking of a
pedestrian for which state of the art methods perform well [141]. Details on
the detection and tracking of the pedestrians is out of the scope of this work
and will not be further discussed.

8.2.2 Sub-Crowd Behavior

A sequence of observations of the PTF of a subregion is captured as a discrete
set of data points ordered in time, which fluctuates under different thresholds
according to the context of the situation. Because of the nature of this data,
modeling the dynamics of PTF in a subregion is addressed as a time series re-
gression problem, and a Gaussian process regression model is used:

X t+1 = h(X1:t )Tβ+ f (X1:t )+uk (8.4)

where X t+1 is the PTF of subregion i at time t + 1, the input vector X1:t =



114 Crowds Within Crowds: A Sub-Crowd Model for Emotion Estimation

{X1, X2, ..., X t−1, X t }T is a sequence of past measurements with an observation
window size of t data points, h(X1:t ) is a set of basis functions, β is a vector
of basis function coefficients, f (X1:t ) ∼ GP (0,k(X1:t , X T

1:t )) is a set of latent vari-
ables f (X t ) from a Gaussian process with zero mean and covariance function
k(X1:t , X T

1:t ), and uk represents the noise assumed to be Gaussian white noise
with covariance Qt : ut ∼ N (0,Qt ). A one-step-ahead prediction X̂ t+1 is com-
puted by

X̂ t+1 = P (X t+1| f (X1:t ), X1:t ) (8.5)

where

P (X t+1| f (X1:t ), X1:t ) ∼N (X t+1|h(X1:t )Tβ+ f (X1:t ),σ2) (8.6)

And further n-step-ahead predictions

X̂ t+1:t+n = {X̂ t+1, X̂ t+2, ..., X̂ t+n} (8.7)

are computed recursively adding the previous predictions to the input vector.
To asses the accuracy of predictions, a regression error function is defined

L(X t :t+n , X̂ t :t+n) = 1

n

n∑
k=t

(Xk − X̂k )2 (8.8)

where L(X t :t+n , X̂ t :t+n) computes the MSE between a set of observations
X t :t+n and predictions X̂ t :t+n , both corresponding to the same interval of time
t , t +1, ..., t +n.

8.2.3 Sub-Crowd Motivation

Following the idea of analyzing a crowd by subregions, the pedestrians present
in a subregion have the motivation to reach a (partial or final) destination
within that same subregion, for which they follow a walking behavior. The
combination of these observed walking behaviors produces a particular PTF
pattern under different contexts, for which the motivation of the crowd at that
subregion is to maintain a PTF consistent to the demand of the pedestrians in
it. This PTF pattern may change depending on the context of the situation;
hence, this work proposes that a subregion has a different motivation for each
context. To illustrate the concept of contexts, consider the flow of passengers
in a train station, which is different comparing morning rush hours to quiet
Sunday afternoons, and even more to unusual situations like panic scenarios.
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A sub-crowd behavior model is learned for each manually identified context as
described in the previous section and associated to a particular motivation. For
a set of sub-crowd behavior models 1,2, ...,n, the motivation of subregion i at
time t is

mi
t = k (8.9)

if the model k best describes the observed PTF. As multiple models exist for
the same subregion i , estimating the motivation mi

t is treated as a multi-class
classification problem and a one-versus-all approach is used

m̂i
t = argmin

k∈{1,...,n}
L(X i , X̂ i

k ) (8.10)

where X i is a set of PTF observations in subregion i , X̂ i
k is the PTF prediction

produced by the model k as defined in equation 8.6, for all n models, and L
computes the regression error function between observed and predicted values
as stated in equation 8.8.

8.2.4 Sub-Crowd Expectation

In the presence of uncertainty, expectation comes from our assessment of the
most likely outcome. In the context of a sub-crowd, once a motivation m̂i

t = k is
estimated, expectation is conceptualized as the expected PTF corresponding to
the predictions X̂ i

t :t+n produced by model k. The expectation of sub-crowd i is
quantified using the trapezoidal rule over the curve depicted by the data points
X̂ t :t+n

AUC i
exp =

n−1∑
t=1

X̂ t + X̂ t+1

2
∆t (8.11)

where

|X̂ i
t :t+n | = n (8.12)

and ∆t is the time interval between data points. The actually observed PTF
captured in X t :t+n is quantified in the same way

AUC i
act =

n−1∑
t=1

X t +X t+1

2
∆t (8.13)



116 Crowds Within Crowds: A Sub-Crowd Model for Emotion Estimation

The quantification of expected and actual PTF for a specific sub-crowd pro-
vides a simplified way to measure the deviation from expected behavior and
will be used in the next step of the crowd model.

8.2.5 Sub-Crowd Emotion

The proposed description of emotion for sub-crowd i at time t is a continu-
ous value E i

t , intended to be a reflection of the emotions experienced by the
pedestrians occupying subregion i at time t . Consistent with how pedestrian
emotions are presented in chapter 6, the value E i

t indicates a point in the va-
lence axis restricted to the range from 0 (negative) to 1 (positive). Following
a similar approach to the one used to estimate the emotion of pedestrians, this
method hypothesizes the emotion of sub-crowd i is determined by the deviation
between the expected and observed PTF. Using the values AUC i

exp and AUC i
act ,

the deviation from expected behavior is measured by

AUC i
∆ =

AUC i
exp − AUC i

act

AUC i
exp

(8.14)

and the emotion of sub-crowd i at time t is computed as

E i
t = E i

exp +E i
exp f (AUC i

∆)

= E i
exp (1+ f (AUC i

∆))

(8.15)

Where E i
exp is the expected emotion manually associated with the behavior

model k of sub-crowd i if mi
t = k, and f (x) is a standard logistic regression

function with parameters k = 1, x0 = 0, and L = 1

f (x) = L

1+e−k(x−x0)

= 1

1+e−x

= ex

ex +1

(8.16)
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Analogous to the estimation of pedestrian emotions, this way of computing
crowd emotions relies on a correct estimation of the motivation mi

t , and it pro-
vides the same advantage that prevents previous wrong motivation predictions
from influencing future estimations of sub-crowd emotions. Given that E i

t rep-
resents the emotion of sub-crowd i at time t , the collection of all sub-crowd
emotions can be collected into a single vector

Et = {E 1
t ,E 2

t , ...,E n
t } (8.17)

where n is the total number of sub-crowds, one for each subregion in the
environment. Representing crowd emotions not as a single value but as a vector
provides a more granular understanding of the state of the crowd and potential
crowds within it without losing a macroscopic view of the crowd as a whole.
This consideration allows our model to adapt well in either the presence or
absence of psychological unity [66] and collective emotions [68].

8.3 Experiments

The effectiveness of the proposed crowd model is demonstrated by means of two
experiments: the first experiment makes use of real-world data to evaluate the
ability of our method to learn sub-crowd behavior models and produce emotion
estimations in a single context, and the second experiment employs a more
extensive dataset produced from simulations to evaluate our method’s ability to
identify sub-crowd motivations among multiple observed contexts and infer its
emotional state.

8.3.1 Experiment 1: C-Station Dataset

The first experiment is conducted using the C-Station dataset [137], which con-
tains annotation of pedestrian trajectories from footage of New York Grand Cen-
tral Station. Details of this dataset are summarized in table 6.1 of chapter 6.
Given the small variation in pedestrian density and walking speed, the entirety
of the dataset is identified as a single context, and only one motivation is labeled
for each subregion of the environment. The goal of this experiment is to test
the capability of our method to learn the sub-crowd behaviors and use them in
predicting expected PTF to infer the emotional state. To asses how representa-
tive the sub-crowd emotion is from the pedestrians conforming it, we compare
the inferred emotional state of the sub-crowd against the mean of pedestrian
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emotion labels produced in chapter 6. A 70% of the trajectories is assigned to
the training set D tr ai n and 30% to the testing set D test

Model Training

For the training phase, the topology of the environment is learned utilizing
a SOM using the trajectories in the training set D tr ai n . The decision on the
number of subregions to use depends on the desired level of granularity to
describe the crowd at a macroscopic level. For this dataset, a SOM with 25
subregions is selected, and the resulting topology can be observed in figure
8.3. The training set D tr ai n is used to compute a set of state vectors X tr ai n

as prescribed in sub-section 8.2.1 and a crowd behavior model is learned for
each subregion i using its PTF sequence X i

tr ai n as defined in equation 8.4. The
training phase is concluded by manually assigning the expected emotion E i

exp
to the crowd behavior model of each subregion i .

Model Evaluation

Evaluation on the testing set D test starts by computing the PTF vectors X test

and then calculating the estimation of crowd motivations m̂i
t for each subre-

gion i . However, given that only one kind of scenario (i.e., context) is observed
throughout the dataset, only one crowd behavior model is learned for each
subregion, and therefore it becomes irrelevant to evaluate the accuracy in pre-
dicting mi

t to select the right crowd behavior model.
Employing the values of AUC i

exp and AUC i
act calculated as explained in sub-

section 8.2.4, the emotion estimation Ê i
t for each subregion i is computed over

the observation period in the testing set. The accuracy of the crowd model to
estimate crowd emotions is measured by the MSE between Ê i

t and E i
t , where E i

t
represents the mean emotion ground-truth of the pedestrians present in subre-
gion i at time t as it was computed in chapter 6. The MSE for each subregion i is
presented in figure 8.2, showing a mean MSE of 0.0218 and standard deviation
of 0.004. The resulting MSE values are consistently low in all subregions, sup-
porting the idea that the proposed conceptualization of crowd emotion indeed
reflects the emotion of the pedestrians.

8.3.2 Experiment 2: Grand Central Station Synthetic Dataset

This experiment aims to assess the performance of our model under a broader
range of conditions. For this reason, we virtually replicate the observed envi-
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ronment in the first experiment and a synthetic dataset is generated using the
agent-based social force model presented in chapter 4 with details of the pro-
duced data are presented in table 6.2 of chapter 6. The dataset is divided ac-
cordingly to 4 manually labeled contexts: non-peak hours, morning peak hours,
evening peak hours, and panic. For each context k, the data points are separated
into a training set D tr ai nk (70%)and testing set D test k (30%).

Model Training

The training phase starts with learning the environment’s topology by feeding
the annotated trajectories of all training sets D tr ai n1 , ...,D tr ai n4 to a SOM con-
figured to 25 neurons (subregions), with the result of this process illustrated in
figure 8.4. For each training set, the PTF state vectors X i

tr ai nk
in each subre-

gion i are computed and used to learn a Gaussian process model k capable of
predicting PTF behavior within that same subregion i . Finally, the crowd emo-
tion labels for each subregion are generated by computing the mean pedestrian
emotion label generated in the second experiment of chapter 6.

Model Evaluation

For the testing phase, identifying the current context for subregion i is done
by predicting the sub-crowd motivation mi

t using the previously observed PTF

Figure 8.2: MSE between crowd emotion estimation and mean pedestrian emotion for
each subregion computed using C-Station test set.
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sequence X i
t−N :t with a minimum observation period of N = 30. The motivation

prediction accuracy for every subregion in each test set is presented in figure
8.5.

Crowd motivation prediction results for each context are broadly similar to
those for pedestrian motivation prediction, with non-peak hours producing the
highest accuracy of 0.95, morning and evening peak hours with an accuracy
of 0.47 and 0.55, respectively and finally panic context with 0.42. A correla-
tion between pedestrian and crowd motivations is not required as one is not
an aggregation of the other. However, comparing the pedestrian motivation
prediction results of the second experiment of chapter 6 with the sub-crowd
motivation prediction we find a consistency that is informative in confirming
the level of predictability by which pedestrians move on different contexts at a
microscopic and macroscopic level. The predicted sub-crowd motivation m̂i

t = k
allows the selection of the appropriate Gaussian model k to be used in forecast-
ing the expected subsequent PTF sequence X̂ i

t :t+N . The crowd emotion E i
t+N for

each subregion i is inferred from the deviation between expected X̂ i
t :t+N and

actually observed X i
t :t+N sequences as captured by AUC i

exp and AUC i
act .

Figure 8.6 shows the MSE between the inferred crowd emotion and the
mean pedestrian emotion label of people present in that same subregion eval-
uated for all contexts. The panic scenario consistently yields the smallest MSE
values in all subregions, whereas the MSE in the remaining scenarios differs
significantly more between subregions. Low MSE values indicate a strong cor-
relation between pedestrian and crowd emotions, confirming that the proposed
representation of crowd emotion is indeed representative of the pedestrian emo-
tions, although to different degrees in every scenario.

8.4 Conclusions

This chapter presented a second iteration of the crowd model first introduced
in chapter 7. The model was extended to account for crowds within crowds and
provided a formal definition of behavior, motivation, expectation, and emotion
at the sub-crowd level that is analogous to the pedestrian model. The intention
to model both the pedestrian and the crowd analogously is to maintain related-
ness among both types of entities. The viability of both models is dependent on
the assumptions that pedestrian walking behavior is an affective expression in
line to each person’s motivations and expectations. The conducted experiments
made use of real world and simulated scenarios aiming to test the proposed
model in a wide variety of circumstances. Results obtained from such experi-
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ments indicate an acceptable accuracy in predicting sub-crowd motivations as
well as a high correlation between pedestrian and sub-crowd emotions, con-
firming that the proposed sub-crowd emotions indeed serve as a meaningful ab-
straction of pedestrian emotions. The experiments conducted here were limited
to the environment of a train station; therefore, in future efforts, it is essential
to evaluate the method’s performance under different types of crowded envi-
ronments. Another critical aspect to address in the future, is the acquisition of
well-validated pedestrian emotion annotations to further support the validity of
this method.
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(a)

(b)

(c)

Figure 8.3: Grand central station dataset with (a) the observed environment, (b) training
set with annotations colored in green dots, and (c) the environment divided
into subregions, displayed with random colors and enumerated by their in-
dex.
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(a)

(b)

(c)

Figure 8.4: SC-Station dataset presenting (a) the simulated environment, (b) annotated
trajectories of the training set in green lines, and (c) the environment divided
into subregions colored with random colors and enumerated by their index.
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Figure 8.5: Crowd motivation estimation for each subregion in every test set of the SC-
Station dataset.

Figure 8.6: Crowd emotion estimation MSE for each subregion in every test set of the
SC-Station dataset.



Chapter 9
Conclusions, Limitations and
Future Work

This chapter provides a summary of the work presented in the previous chapters
and how it addressed our research questions. Next, we outline the limitations
encountered throughout this research. Finally we describe potential aspects to
be studied in the future.

9.1 Conclusions

The goal of this research was centered on investigating the relationship between
visually observable behavior of pedestrians in crowded environments and their
emotional state. With this in mind, we devised a series of research questions
posed in chapter 1, and the remaining chapters proposed answers to these ques-
tions. Our main research question stated:

Main Research Question:
How to design a model capable to infer emotions of people in crowded envi-
ronments?

In the initial stage of our research [129] we were able to identify previous
contributions where the inference of emotions was addressed either to the in-
dividual or collective level, but not both. Each way of describing a crowd (i.e.,
as a whole or by single pedestrians) poses different challenges and advantages
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depending on the context. Taking on a dualistic view of the crowd, we divided
our main research question into two sub-questions, one to address the infer-
ence of emotion of individual pedestrians, and another to provide an emotion
estimation of the crowd as a whole.

Research Question 1.1:
How to model the individual pedestrians in a way that allows to associate
their walking movement to their underlying emotions?

In addressing the inference of pedestrian emotions, our work in [128] and
chapter 5 presented the first iteration of the pedestrian model for the estima-
tion of individual emotions of pedestrians under complex, crowded environ-
ments. In comparison to the closest work found in the existing literature [5],
our approach provided significant improvements: (1) accounted for scenarios
with multiple origin and destination points, (2) Introduced the concepts of mo-
tivations and expectations as the building blocks to estimate emotions. And
(3) presented the idea of representing behaviors in higher abstractions using
words and vocabularies, which helps to reduce data sparsity. The conducted
experiments in that chapter confirmed the viability of our model to estimate
pedestrian motivations, model their behavior, and make use of this to produce
an estimation of their emotional state. The pedestrian model was further refined
in our work [131] and in chapter 6 where an improved version included the ad-
dition of expectations specific to individual pedestrians to infer their emotions.
The prediction of pedestrian’s motivation was addressed using direction fields
generated for each POI. The emotional state was derived from the difference be-
tween expected and actual observed behaviors. A hypothesis of expectation for
pedestrians in a train station was proposed and employed to generate emotional
state annotations. The results of the proposed model indicated a significant im-
provement for predicting motivations (destinations) over previous works, and
to efficiently estimate individual emotions based on the proposed hypothesis for
expectations.

The innovative contributions of the pedestrian model include: (a) a data-
driven model based on hierarchical Bayesian networks that includes multiple
levels of abstraction to account for behavioral and psychological factors, and is
capable to generalize to different contexts in a supervised way; (b) the introduc-
tion of the distance-to-motivation (DTM) measurement which helps to form an
association between observable behavior and emotions with strong foundation
in psychological principles; (c) an emotion annotation scheme for automatic la-
beling of pedestrian trajectories based on learned motivations and expectations;
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and (d) A method to infer emotions in a continuum valence axis, extending from
abnormality detection or simple behavior classification, a recurring theme in the
crowd emotion models discussed in our literature review [14] [91] [6].

Research Question 1.2:
How to produce an inference of the collective emotion of pedestrians in a way
that is consistent with their individual emotions?

Turning our attention to estimate the collective emotion of pedestrians, in
[130] and chapter 7 we presented the first iteration of the crowd model aiming
to explore a suitable approach to describe the dynamics of a crowd as a whole,
under realistic crowded environments. Behaviors were modeled by changes in
density distribution in the crowd rather than by observing single trajectories of
pedestrians. This approach was advantageous when crowd density was high as
in such circumstances, people counting methods perform better than pedestrian
tracking techniques. Also, seen the crowd as a whole provided a more compre-
hensive understanding of the crowd’s dynamics. The conducted experiments
supported the viability of achieving a macroscopic view of the crowd yielding
consistently reliable predictions of its future behavior and identification of moti-
vation. In particular, the crowd model performed with high accuracy to identify
different behaviors in crowds even when the predominant behavior was exhib-
ited by as low as only half of the pedestrians in the crowd. Later in chapter
8 the model was extended to account for crowds within crowds and provided
a formal definition of behavior, motivation, expectation, and emotion at the
sub-crowd level that was analogous to the pedestrian model. The intention to
model both the pedestrian and the crowd analogously was to maintain related-
ness among both types of entities. The viability of both models was dependent
on the assumptions that pedestrian walking behavior was an affective expres-
sion in line to each person’s motivations and expectations. The conducted ex-
periments made use of real world and simulated scenarios aiming to test the
proposed model in a wide variety of circumstances. Results obtained from such
experiments indicated an acceptable accuracy in predicting sub-crowd motiva-
tions as well as a high correlation between pedestrian and sub-crowd emotions,
confirming that the proposed sub-crowd emotions indeed serve as a meaningful
abstraction of pedestrian emotions.

Innovations introduced with the crowd model include: (a) a data-driven
model based on hierarchical Bayesian networks capable to generalize to ambu-
latory crowds in multiple contexts, and that expands the concepts of motivation,
expectation and emotions from the individual pedestrian to a collective level in
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a consistent and equivalent way for both the pedestrian and the crowd; (b)
a method to describe crowds and sub-crowds based on spatial-temporal inter-
actions learned from partial observation of pedestrian trajectories; and (c) an
approach to infer the collective emotion of crowds and sub-crowds measured in
a continuum valence axis, in a way that is representative and consistent with
the emotions experienced by the pedestrians member of the crowd.

9.2 Limitations

Undoubtedly we are faced with several limitations when trying to infer the emo-
tion of pedestrians solely from visually observed walking trajectories. The first
and foremost limitation is that the models presented in this thesis apply only
to crowds with a predominantly ambulatory behavior, as is the case of casual
crowds, queues, acquisitive, mobs, riots, and panic crowds. On the other hand,
our models are not suitable for passive crowds like audiences, spectator crowds,
and information-seeking groups. Secondly, as we employ surveillance cameras
to observe the crowd due to their ubiquitousness in public spaces, we depend
on the performance of crowd counting and pedestrian detection & tracking al-
gorithms. This entails that in the presence of highly dense crowds, pedestrian
detection & tracking algorithms will deliver fragmented trajectories, tampering
the performance of the pedestrian model. Another relevant limitation concerns
the absence of context-awareness in our method, i.e., the association of learned
behavior to an emotion label is dependent on the context of the situation. To
illustrate this point, consider a group of kids running in a park, where their
behavior may be associated with valence in the positive spectrum while the
same behavior displayed by adults in a train station may correspond to a panic
situation where the associated valence lies on the negative spectrum. For this
reason, models of behaviors learned unsupervisedly need to be empirically la-
beled by a human operator. Finally, the emotion inferences produced by both
the pedestrian and crowd models are approximations that include only the va-
lence dimension and account merely for the stimuli related to the pedestrian’s
intention to reach a destination in the environment. Therefore, our approach is
unable to draw any assumption about the emotions evoked in pedestrians from
internal stimuli or factors unrelated to their desire to reach a destination.
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9.3 Practical Applications

Appreciating the frequent occurrence of crowds and the important role of emo-
tions in understanding the dynamics of crowds, the pedestrian and crowd mod-
els developed throughout this thesis have a wide range of practical applications.
In the general sense, as our models learn to associate observed behaviors with
manual labels of emotions, the predictive capabilities of what emotions will
arise from the exhibited behavior of crowds can result useful in several areas
concerning pedestrian gatherings. Taking into consideration the capabilities
and limitations of our work, as follow we list some potential practical applica-
tions where we consider our models can prove to be beneficial.

Crowd Management: this area concerns the development and implementation
of best practices to ensure the security and safeness of large gatherings of peo-
ple, such as those seeing in sport events and concerts. Aiming to reduce the
intervention of human operators, current implementations of surveillance sys-
tems allow the automation of certain tasks like abnormal events detection. In
this context, where a macroscopic view of the crowd is more relevant, our crowd
model can help in providing early warnings when minor levels of negative emo-
tions are detected before an actual incident takes place, given that our method
infers emotions in a continuous granularity rather than binary (normal/abnor-
mal) states. For instance, using our method to learn about the expected be-
havior of a queuing sub-crowd in the environment, we can signal when waiting
times are exceeding acceptable thresholds, helping to deescalate a potentially
violent situation.

Urban planning: this process addresses the design and development of pub-
lic spaces for the use of general population. The use of crowd simulations to
understand how pedestrians move and behave in a particular environment is
already a common practice, however these methods are intended to inform
on the efficiency of space utilization without considering psychological factors
only observable in real-life scenarios. Implementing our method in existing in-
frastructures can allow to gain insights into recurrent patterns of how people’s
emotions are influenced by the infrastructure or environmental factors. As an
example, let’s consider a train station where the new placement of ticket win-
dows is convenient to find for tourists but causes subtle inconvenience for a
large number of passengers walking towards some exit doors; such situation
will be identified by our models as it will impact the expected flow of pedestri-
ans, resulting in measurable variations of the inferred emotions.
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Smart Environments: At is most basic form, it refers to infrastructures equipped
with automated processes to control certain operations as lighting and ventila-
tion. A common case of this approach is the use of motion sensors to turn lights
on only when people are present, hence reducing electricity consumption. In
a more complex example, we can envision a smart building supplied with a
cognitive dynamic system, i.e., a system that builds up rules of behavior over
time through learning from continuous experiential interactions with the envi-
ronment. In this case, our model can provide an inference of the emotion of
the crowd in real time, enabling the system to make decisions on how to con-
trol pedestrian flow by opening/closing doors, dynamic signal display or other
means.

9.4 Future Work

In the pursue of reliable and robust models capable to infer emotions of peo-
ple in crowded environments, several gaps in the literature remain open for
exploration.

From the limited amount of research devoted to the estimation of emotions
in crowds, a great majority focuses only on the types of scenarios directly associ-
ated with the negative spectrum of emotions, as is the case of panic, evacuations
and riots [79]. The unbalanced interest in these scenarios is well justified given
that safety is a major concern in crowded environments; its also advantageous
that a behavior displayed in such undesired conditions is distinctively different
from its relative normal behavior. The models presented in this thesis focused
on a more generalized spectrum of circumstances by providing the means to
learn associations between observed behaviors and their corresponding emo-
tions along a valence-axis, ranging from negative to neutral and positive affec-
tive states. An aspect for potential improvement of this model is the inclusion of
the arousal-axis, completing the factors considered by the family of dimensional
theories of emotions [109] over which we based our research. Further develop-
ing models that fully adopt the selected theory of emotion would increase their
robustness and reliability, encouraging real-world implementations.

The experiments conducted in the previous chapters employed real-world
and simulated datasets corresponding to train stations and shopping malls.
These environments were deliberately chosen because they offered the bene-
fit of a large open space where the area of interest could be observed with a
single surveillance camera; However, this puts in doubt how well the proposed
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models can generalize to different conditions decisions since it limits the cate-
gory of observed behaviors. For instance, the dynamics of pedestrians in a train
station is significantly distant to that in school playgrounds or museums. Hence,
another point of improvement lies in conducting additional experiments to test
the performance of our proposed models in more diverse situations.

Another reason for limiting the environments explored in the conducted ex-
periments was the lack publicly available datasets that provide well validated
annotations of emotional states. A survey conducted in our previous work [129]
evidenced a relative abundance of crowd-related datasets providing annotations
of trajectories, density levels, and categorical behaviors, neglecting the affective
aspects of the crowd. An example of the scarce datasets providing annotations
related to emotions is Rabiee’s contribution [104] which captures a crowd in a
single environment and produce annotations of panic, fight, congestion, obsta-
cle, and neutral behaviors. This shortage of options is justified considering the
current interest in crowd analysis comes from the field of computer vision where
the tasks of crowd density estimation, people detection and tracking, group ac-
tions, and collectiveness & cohesiveness occupy a higher concern. Additional
constrains to designing datasets richer in emotional diversity come from eth-
ical concerns in subjecting people to potentially harmful situations. One way
to overcome ethical concerns is to utilize existing footage of past events where
crowds were observed in the conditions we aim to study. one more option is
to employ simulation tools, at the cost of compromising the naturalness and
credibility of the produced data. The absence of available datasets and common
benchmarks further impedes the comparison and improvement of methods in-
tended for emotion estimation in crowds.

Based on our current understanding of the decision-making process [32]
[11] [120] guiding our actions, we identify a cyclic relationship between emo-
tions and behavioral responses. The research conducted in this thesis focused
on inferring emotions from observable behavior, leaving the reverse case of this
relationship uninvestigated. Having emotion estimation models reach a level of
maturity where affective states can be inferred with a higher degree of confi-
dence, it opens the possibility to explore how emotions can be used to predict
the behavior of single pedestrians and the crowd.
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