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Video based human motion analysis has been actively studied over the past

decades. We propose novel approaches that are able to analyze human motion under

such challenges and apply them to surveillance and security applications.

Part I analyses the cyclic property of human motion and presents algorithms

to classify humans in videos by their gait patterns. Two approaches are proposed.

The first employs the computationally efficient periodogram, to characterize peri-

odicity. In order to integrate shape and motion, we convert the cyclic pattern into

a binary sequence using the angle between two legs when the toe-to-toe distance

is maximized during walking. Part II further extends the previous approaches to

analyze the symmetry in articulation within a stride. A feature that has been shown

in our work to be a particularly strong indicator of the presence of pedestrians is

the X-junction generated by bipedal swing of body limbs. The proposed algorithm

extracts the patterns in spatio-temporal surfaces. In Part III, we present a compact

characterization of human gait and activities. Our approach is based on decompos-

ing an image sequence into x-t slices, which generate twisted patterns defined as the



Double Helical Signature (DHS). It is shown that the patterns sufficiently charac-

terize human gait and a class of activities. The features of DHS are: (1) it naturally

codes appearance and kinematic parameters of human motion; (2) it reveals an in-

herent geometric symmetry (Frieze Group); and (3) it is effective and efficient for

recovering gait and activity parameters. Finally, we use the DHS to classify activi-

ties such as carrying a backpack, briefcase etc. The advantage of using DHS is that

we only need a small portion of 3D data to recognize various symmetries.
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Chapter 1

Introduction

Human motion analysis is receiving increasing attention from several commu-

nities of researchers. Computer vision researchers are developing many new theories

and mathematical models to manipulate the human structure inside the computer

world [5], [41, 52, 129]. This interest is motivated by applications over a wide spec-

trum of topics. In computer vision, segmenting the parts of the human body in

a image, tracking the movement of joints over an image sequence, and recovering

the 3D body structure are useful for precise analysis of athletic performance or

medical diagnostics. Law enforcement officials are interested to the capability to

automatically monitor human activities using computers in airport, borders, and

other secured sites. Another application domain is the computer animation and

video game industry, where the human avatars are very common. So, the potential

number of applications is very high and in the next few sections we introduce several

main areas in computer based human motion research. Detailed introductions could

be found in the first section of following chapters.

1.1 Biomechanics

Human motion contains biological information about the identity of an actor

as well as about his or her actions, intentions, and emotions. The human visual
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system is highly sensitive to biological motion and capable of extracting socially

relevant information from it. Researchers have investigated the question of how

such information is encoded in biological motion patterns and how such information

can be retrieved. Decades ago, experimental psychology researchers introduced a

visual stimulus display designed to separate biological motion information from other

sources of information that are normally intermingled with motion information.

They attached small point lights to the main joints of a persons body and filmed

the scene so that only the lights were visible in front of an otherwise homogeneously

dark background. Using these displays, he demonstrated the compelling power of

perceptual organization from biological motion using just a few light points. After

that, marker based approaches have been a dominant tool for human motion analysis

in biomechanics for quite a long time.

The principles of classical mechanics have been applied to the study of human

motion to provide an understanding of the internal and external forces acting on

the body during movement. The role of muscles in generating force and controlling

movement is emphasized. Researchers compare the biomechanics of various motions

by collecting and analyzing motion data. Many algorithms have been proposed to

describe motions of the body during typical activities, predict which muscles are

responsible for controlling movement, quantify the forces acting on the body during

movement, understand the limitations of different experimental and analytical tech-

niques used to quantify human movement, interpret motion data accurately, and

evaluate studies of human movement.
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1.2 Kinematics

Kinematic-based human motion has been researched and used commercially

for a number of years with applications found in animation and biometrics [135].

The use of markers however is intrusive, necessitates the use of expensive specialized

hardware and can only be used on footage taken especially for that purpose. A

markerless system of human motion capture could be run using conventional cameras

and without the use of special apparel or other equipments. Combined with today’s

powerful PC, cost-effective and real-time markerless human motion capture has

for the first time become a possibility. Such a system has a greater number of

applications than its marker based predecessor ranging from intelligent surveillance

to character animation and computer interfacing. For this reason the field of human

motion capture has recently seen somewhat of a renaissance.

The problem with using articulated models is the high dimensionality of the

configuration space and the exponentially increasing computational cost that results.

A realistic articulated model of the human body usually has several tens of Degree of

Freedom (DOF). There are several possible strategies for reducing the dimensionality

of the configuration space. First it is possible to restrict the range of movement

of the subject. Such an approach greatly restricts the resulting trackers generality.

Another way to constrain the configuration space is to perform a hierarchical search.

Without the assistance of a kinematic model it is very hard to independently localize

specific body parts in realistic scenarios. This is mainly due to the problem of self

occlusion and pose change.
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1.3 Video Surveillance

The surge in the global need for automated and reliable security and surveil-

lance systems has elicited a significant response from both industry and academia in

the domain of video analysis based sensing, processing and decision support. Com-

puter vision research and development has advanced the state-of-the-art in video

surveillance related algorithms in conjunction with the exploitation of increasing

processing power of standard computing platforms for deployed and experimental

systems.

Visual surveillance in dynamic scenes, especially for humans and their activ-

ities, is currently one of the most active research topics in computer vision. It has

a wide spectrum of promising applications, including access control in special areas

such as human identification at a distance, crowd counting statistics and congestion

analysis, detection of anomalous behaviors, and interactive surveillance using multi-

ple cameras, etc. In general, the processing framework of pedestrian surveillance in

dynamic scenes includes the following stages: modeling of environments, detection

of motion, classification of moving objects, tracking, understanding and description

of activities, human identification, and fusion of data from multiple cameras. Some

other possible research directions includes occlusion handling, motion analysis for

biometrics, content-based retrieval.

Visual surveillance has been investigated worldwide under several large re-

search projects. For example, the Defense Advanced Research Projection Agency

(DARPA) supported the Visual Surveillance and Monitoring (VSAM) project [42]
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since 1997, whose purpose was to develop automatic video understanding technolo-

gies that enable a single human operator to monitor behaviors over complex areas

such as battlefields and civilian scenes. Furthermore, to enhance protection from ter-

rorist attacks, the Human Identification at a Distance (HID) program sponsored by

DARPA in 2000 aimed to develop a full range of multimodal surveillance technolo-

gies for successfully detecting, classifying, and identifying humans at great distances

[106]. The European Unions Framework V Programme sponsored Advisor, a core

project on visual surveillance in metro-stations. The Army’s Collaborative Technol-

ogy Alliance (CTA) program was formed in 2001 to establish partnerships among

research communities in the Army Laboratories and Centers, private industry and

academia. Under the CTA program, Advanced Sensors and Robotics have a direct

orientation towards the cutting edge of surveillance and security applications.

1.4 Contributions

To solve the problem described in the previous section, this thesis introduces

an architecture that provides algorithms to reason about the symmetry of human

motion in space and time. Our contributions have been four fold.

First it has achieved a framework that supports the cascading extraction of

periodicity, i.e. temporal symmetry [123, 115]. This process is manipulated by

hypothesis testing that is able to detect a small amount of cyclic pixels out of

background clutters and adapts to dynamic environments such as IR sensors, moving

platforms or object sizes as small as 20*20 pixels.
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Then the thesis provide a method from the observation of an X type junction

in slices representing the bipedal motion of limbs [118]. By training the detector by

a gradient based histogram feature, it is robust to pose, size and appearance change

etc.

Third, the thesis then builds up a novel representation for gait and activities

using geometric group theory and kinematics [116, ?]. The approach differs from

previous work in this area by reasoning from temporal slices. In addition, Frieze

Group Theory from architecture and cystography defines a Double Helical Signature

(DHS) for human body articulation. Our framework is prepared to represent the

dynamic shape deformation by a compact set of DHS.

Finally, we extend our study from symmetry to asymmetry in human motion

due to load carrying events as well as sport video [117]. To our best knowledge, the

proposed algorithm is the first one capable of real time recognition of gait activities

without segmentation of silhouette.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 discusses how

hypothesis testing can be cascaded to detect periodicity and use it for pedestrian

classification. Another model based method based on MPGA fitting with detailed

experiments can be found in Chapter 3.

Chapter 4 gives a view of a novel architecture for pedestrian detection by

spatio-temporal X junctions.

6



Chapter 5 describes the DHS based representation of gait and activities. Chap-

ter 6 presents the results of experiments with the DHS. It discusses the performance

and robustness in different applications such as segmentation, occlusion handling

and activity recognition.

Finally Chapter 7 discusses several possibilities for extending this work in the

future and conclusions, emphasizing this thesis’s original contributions.

1.6 Acknowledgement

This research effort was supported by General Dynamics Robotic Systems

(GDRS) and the Collaborative Technology Alliance (CTA) under contract DAAD19-

012-0012 ARL-CTA-DJH. We would like to thank Dr. Larry Davis, Dr Kevin S.

Zhou and Dr Isaac Weiss for providing discussions. We would also like to thank

Dr. Wael Abd-Almageed, Mr. Feng Guo, Mr. Aswin Sankaranarayanan, Mrs. Jie

Shao, Mr. Haibing Ling, Mr. Jian Li, Mr Seong-Wook Joo and all the other CfAR

members for their helpful comments.

7



Chapter 2

Pixel Based Periodicity Analysis
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2.1 Introduction

2.1.1 Research motivation

Pedestrian monitoring is critical in many surveillance systems in order to de-

tect intrusions [73, 74]. Recently there has been a growing interest in using infrared

cameras for human detection using robot vision techniques because of the sharply

decreasing prices of such cameras and their ability to work in low light condition.

Sensor noise and target pose variations present challenges. Existing systems for au-

tomatic detection of humans by shape and/or motion using thermal infrared cam-

eras are sometimes confused by moving foliage, passing headlights, some building

windows, traffic signs and more.

For close range pedestrian detection such as driver assistance systems, shape

information can be reliably extracted. But for targets in mid or far range, it is

no longer dependable and motion cue has to be integrated. The goal of this work

is to develop a general motion-based pedestrian detector in low or regular lighting

situations, where previous shape based methods exhibit high false alarm rate.

2.1.2 Algorithm overview

Object motions that repeat themselves are common in both nature and man-

made environments. Many real-life motions are periodic such as the wings of flying

birds, a puma’s chasing and so on. Most human locomotory motions (e.g., walking,

running, skipping, shuffling) are periodic in a frame of reference that moves with

the person. Knowing that an object’s motion is periodic is a strong cue for object
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and action classification at a distance. Natural repeating motions tend not to be

perfectly regular, i.e., the period varies slightly from one cycle to the next, or from

one body part to another. For human gait, different parts of the human body share

approximately the same period.

The two methods proposed here are based on detecting periodic motion. One

is a bottom-up approach based on hypothesis testing over periodograms and the

other relies on global gait fitting. The first one is designed to be computationally

efficient by identifying periodicity in pixels. The second method is based on a gait

based feature called Maximal Principal Gait Angle (MPGA). It is insensitive to

alignment error and does not require segmentation but it is more computationally

expensive. The two methods can be used individually or can be combined.

We initialize the target candidates using independent motion detection [112] or

by a method that uses a hierarchal shape structure reported in [99], and track them

with a method reported in [78]. The target locations are defined by bounding boxes

in each frame. We focus on periodic motion because gait characterizes pedestrians

and is more reliable when the targets are observed at a distance. Whether using

only periodic property of motion or both motion and shape, the core task is how to

efficiently use them. Our methods for detecting humans:

1. Is effective in different poses and from various distances.

2. Exhibits stable statistical performance.

3. Has efficient implementation.

The outline of this chapter is as follows. Section 2.2 discusses related work
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on pedestrian detection. In Section 2.3 we discuss the pixel-based method with

preliminary experiments. Section 2.4 provides a detailed analysis of sensitivity to

several key factors.

2.2 Related Work

In recent years, automatic pedestrian detection in video has become an ac-

tive research area in computer vision [41, 91]. This task is especially difficult for

video sequences acquired by moving platforms and low quality sensors in situational

awareness applications. Some of the difficulties in these applications are 1) non-rigid

motion of pedestrians; 2) target pose and range change; 3) cluttered backgrounds

and low video quality and 4) arbitrary camera motion. Reviews of some of the

prior research on this topic can be found in [52, 81]. Useful criteria for classifying

pedestrian detectors are the cues they use such as shape or motion.

Examples of algorithms in the first category can be found in [52] with learning

tools such as wavelets [100], neural networks [150] and others. Nanda [99] builds a

probabilistic shape hierarchy to achieve efficient detection at different scales. The

method in [60, 127], uses handcrafted human models for pedestrian detection, but

requires segmentation into body parts which is very difficult. A system [101] pro-

posed by Pai et al recognizes pedestrians by measuring the distance between leg

silhouette after background subtraction, which is not effective for moving platforms.

Lipton [87] uses a skeleton based ’star’ model to identify humans, which also depends

on the extraction of a foreground mask. Another approach involves extracting low-
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level features such as edges or responses to filter banks, and using standard pattern

classification techniques to determine the presence of a pedestrian as in [107], where

the authors extract wavelet features and then use an SVM to classify. Fang [49]

compares the multi dimensional features between visible and infrared images and

uses vertical projections of bright pixels specifically for infrared sensors. Objects in

the background clutter such as windows, traffic signs and moving foliage often con-

fuse shape based methods leading to high false alarm rates at acceptable detection

rates. Besides, shape based detectors works better for close range targets than those

far away.

In the motion based category, the gait feature has been analyzed based on

pixel-wise or region-based oscillations. Statistical periodic behavior provides clas-

sification. For example, Little [84] used the Discrete Fourier Transform (DFT) to

measure pixel oscillations. Tsai et al also described a similar method using DFT

to extract pixel period in [130]. Efros and Berg [90] identified the cyclic motion in

the optical flow domain. Liu and Picard [85] examined the pixel oscillations over

the XT plane to extract the fundamental frequency of gait. Seitz and Dyer in [128]

presented a novel concept, referred to as period trace to detect motion trends. Boyd

[21] uses vPLLs (video Phase-Locked Loops) to measure the period contained in

every pixel due to gait. Allmen and Dyer, in [?], proposed an approach to mea-

sure periodicity using a curvature scale space at each pixel. Polana and Nelson, in

[108], showed that the recognition of human or animal locomotion can be done using

low-level, non-parametric representations and matching against a spatio-temporal

template of motion features. The main limitations of prior approaches in this sec-
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ond category are the sensitivity to alignment as well as to changing background.

For videos acquired from moving platforms, accurate alignment is hard to achieve

and hence pixel-wise periodicity can be corrupted. A method that is closely related

to this paper and motivates our work can be found in Cutler and Davis [44]. The

authors look for the gait period by calculating a similarity matrix for every image

pair in a sequence. The approach is computationally expensive and sensitive to

background clutter. Furthermore, video sensors in infra-red band contain higher

noise levels than in the visible band, which makes the similarity calculation easier

to corrupt and good alignment harder to achieve.

A significant feature in some other methods is to combine shape and motion.

Some of them directly trained the detector over shape and motion information si-

multaneously. For example, Viola’s Adaboost detector cascade in [132] is a real-time

pedestrian detection algorithm for a static camera. It was trained using patterns

of frame difference as well as static shape features. Because of the static camera,

those regions which have human-like shapes such as windows, stop signs and trees

etc., are filtered out as non-moving background by preprocessing and do not enter

the classifier cascade.

There are many multi-stage systems for detecting pedestrians by using different

cues at different steps. One cue (shape or contour) is used for initial detection and

others (motion, gait) are used as verification. For instance, Curio [45] proposed a

method for the detection, tracking, and final recognition of pedestrians crossing a

moving observer’s path. The initial detection process was based on texture analysis

and geometric features. The classification was obtained by a temporal analysis
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of the walking process. However their algorithm ”is restricted to the detection of

pedestrians that cross the road” [45] and hence is not general enough for robot’s

situational awareness such as intrusion detection.

Another class of methods tried to fit a 3D human model to a 2D image to

determine the articulation. For example, A. Broggi et al [28] compare several ap-

proaches relying on the matching between image features and model features stored

in a predefined or dynamically updated database. A challenge to using model based

fitting is that the complicated nature of human gait and variations of pose requires

a large number of Degree Of Freedom. Hence it is very difficult to map the non-

rigid dynamics. The authors in [28] also concluded that ”it is difficult to obtain an

exhaustive model set that gives good results on very different scenes”.

2.3 Pedestrian Detection by Periodogram

Although gait period is used widely to analyze walking motion, few of the

proposed methods are suitable for detecting pedestrians. The reason lies in two

factors. One is the high complexity and the other is the sensitivity to pose change.

Different known forms of frequency detection are studied and applied in this

work for pedestrian detection. Phase-Locked Loop and autoregressive moving av-

erage models (ARMA) have been traditionally used for estimating frequencies of

sinusoidal time series data. In [111], the frequency is estimated using a second order

ARMA model in an efficient fashion. Other frequency estimation techniques are

parametric minimum entropy and subspace methods such as multiple signal classi-
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fication (MUSIC). Our challenge here is how to use them efficiently to address the

very specific pedestrian detection problem.

2.3.1 Pixel periodicity extraction

Objects with periodic motion are similar in many aspects, including appear-

ance, motion flow, and shape [44]. However, environmental conditions (such as light-

ing, shadows, cluttered backgrounds) and internal conditions (pose, shape) variation

contribute to wide signal variation and adversely affect detection. Besides, periodic

behavior may only exist in some portion of an object. We carefully studied and

implemented this in [44] and found that focusing on the overall similarity between

images may fail due to a large number of non-periodic pixels. In this section, we

describe a new algorithm which first tests the periodicity on a pixel-wise level and

then analyzes the overall distribution of periods.

We start from a sequence of bounding boxes. Pre-processing is carried out

to adjust for small alignment errors and to normalize for size. Assuming that the

intensity at a periodic pixel (i, j) is a sum of a periodic signal M(i, j)(t) and additive

noise n(t) while a non-periodic pixel contains only noise, we expand the signal in a

frequency domain.

xt(i, j) = Mt(i, j) + n(t)

= µ(i, j) +
∞∑

k=1

[αk cos(kωt) + βk sin(kωt)] + n(t) (2.1)

where n(t) is noise, M(i,j)(t) is the oscillatory signal and t is time.

To simplify the equations we linearize them and only use the first 3 coefficients
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to approximate the original signal, yielding:

xt(i, j) ≈ µ(i, j) + α(i, j) cos(ωt) + β(i, j) sin(ωt) + n(t),

(2.2)

This approximation enables efficient estimation with low computation cost. With

N observations at t = 0, 1, . . . , N − 1, we have N linear equations and 3 unknown

parameters to estimate. We rewrite the N equations in a matrix form as:

A(ω)




µ(i, j)

α(i, j)

β(i, j)




= b (2.3)

where

A(ω) =




1 1 0

1 cos(ω) sin(ω)

...
...

1 cos((N − 1)ω) sin((N − 1)ω)




and

b = [x0(i, j)− n(0), x1(i, j)− n(1), . . . , xN−1(i, j)− n(N − 1)]T .

For a given period, or frequency ω, the least square estimator (LSE) for the

parameters is given by:




α̂(i, j)

β̂(i, j)

µ̂(i, j)




= (A(ω)T A(ω))−1A(ω)T b. (2.4)
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The residual sum of squares, for a given ω, is calculated as:

RSS(ω)

=
N−1∑
t=0

(xt(i, j)− x̂t(i, j))
2 (2.5)

=
N−1∑
t=0

(xt(i, j)− x̂t(i, j))xt(i, j) (2.6)

=
N−1∑
t=0

x2
t (i, j)− bT A(ω)(A(ω)T A(ω))−1A(ω)T b (2.7)

=
N−1∑
t=0

[xt(i, j)− x̄]2 − {[A(ω)b]T




α̂(i, j)

β̂(i, j)

µ̂(i, j)



− x̄2}.

The second derivation given above results from the orthogonality between the

original signal and the estimation error under the Gaussian noise assumption [111].

Thus, the estimate of the period for the object sequence should be that ω which gen-

erates the smallest RSS(ω) over all possible frequencies (periods). Notice that min-

imizing RSS(ω) is equivalent to maximizing the second term in (2.7) with respect

to ω. This enables us to estimate the period directly. Moreover, (A(ω)T A(ω))−1

could be approximated as [111]:

(A(ω)T A(ω))−1 ≈ 1

N




1 o(1) o(1)

o(1) 2 o(1)

o(1) o(1) 2 + o(1)




, (2.8)

where o(1) denotes terms tending to zero, so the cost function is simplified to:
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Ii,j(ω) =

N−1X
t=0

{[A(ω)b]T

2666664
α̂(i, j)

β̂(i, j)

µ̂(i, j)

3777775− x̄2} (2.9)

≈ bT 1

N

266666666664

1 + 2 cos 0ω ... 1 + 2 cos(N − 1)ω

1 + 2 cos ω + 2 sin ω ... 1 + 2 cos(N − 1)ω cos ω + 2 sin(N − 1)ω sin ω

...
...

...

1 + 2 cos(N − 1)ω + 2 sin(N − 1)ω
.
.. 1 + 2 cos2(N − 1)ω + 2 sin2(N − 1)ω

377777777775
b−N ∗ x̄2(2.10)

Substituting b and expanding the result we obtain:

Ii,j(ω) =
2

N
{

N−1∑
t=0

xt(i, j) cos(ωt)}2 +
2

N
{

N−1∑
t=0

xt(i, j) sin(ωt)}2 =
2

N
||

N−1∑
t=0

xt(i, j)e
iωt||2

(2.11)

The quantity Ii,j(ω) is the well-known periodogram [111] of the pixel. It has been

showed in [111] that the maximizer of the periodogram over all frequencies cannot

be improved on, in terms of asymptotic variance, by any other technique without

extensive knowledge of the distribution of the noise n(t).

2.3.2 Periodicity verification

Periodograms can be regarded as the signal response of the system at different

frequencies. We verify the existence of a period via hypothesis testing to confirm the

existence of a well-pronounced peak in the periodogram for each pixel. By filtering

out non-periodic or stationary pixels, we are able to focus on periodic pixels only.

Given the signal model as in Equation (2.2), where the noise is Gaussian, we perform

the following statistical hypothesis test for every pixel:

H0 : λ(i, j) = 0 vs. Hλ : λ(i, j) > 0. (2.12)
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where λ is the oscillatory amplitude for function M(i,j)(t) at the pixel (i,j). It could

be approximated from Equation 2.2 as λ ≈ (α2 +β2)1/2. H0 stands for non-periodic

pixels (amplitude is zero) and Hλ for the periodic pixels. We use Bayesian decision

rule based on the posteriori probability

P (Hλ|X) <> P (H0|X) (2.13)

Using Bayes theorem, the decision rule can be transformed as:

P (X|Hλ)P (Hλ) <> P (X|H0)P (H0) (2.14)

Under a Gaussian noise assumption, the test rejects the null hypothesis H0

for large values of the ratio of the maximized likelihood under Hλ to the maximized

likelihood under H0, i.e.:

−N

2
log(2πσ2

λ)−
N

2
log(2πσ2

0)−
N

2
, (2.15)

where

σ2
λ =

1

N

N−1∑
t=0

[xt(i, j)− x̄]2 −max
ωk∈Θ

Ii,j(ωk)

and

σ2
0 =

1

N

N−1∑
t=0

[xt(i, j)− x̄]2.

We reject H0 if σ2
λ/σ

2
0 is too small, or equivalently,

r =
maxωk∈Θ Ii,j(ωk)

1
N

∑N−1
t=0 [xt(i, j)− x̄]2

is too large [44].

After performing hypothesis testing, we are left with only periodic pixels and

the most likely periods for them. We then compute the histogram of these periods
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Figure 2.1: Left: illustration of periodicity extraction for an infrared surveillance

video. Middle: filtered periodic mask for the pixels in the (red) bounding box.

Right: a distinct peaks shows frequency corresponding to human gait.

and look for maximum period in this histogram. This is done using the same

hypothesis testing method given above for the pixel based periodograms. This gives

us the period of the global object.

An example of periodicity extraction is shown in Figure 2.1. After the testing,

’good pixels’ are filtered out as the non-black pixels in the middle mask image for

the human on the left image. The higher intensity stands for stronger periodicity.

The histogram is shown on the right, with a well-pronounced peak representing gait

rate. We also display a complete cycle of the walking sequence as a reference at

the top of the figure. Because of the low resolution of the infrared camera, only a

small portion of the image shows periodicity. Most of the periodicity comes from

the region around the lower part (legs) of the human body, which captures most of

20



the motion for human gait. In spite of the difficulties, the algorithm still correctly

detects a distinct peak at the periodic frequency in Figure 2.1.

As an extension of such a two-stage testing method, we apply shape constraints

to lower the false positives rate. For example, the symmetry and relatively fixed

location of periodic pixels for human gait could help us discriminate pedestrian

walking from other periodic motion.

2.4 Experimental Results

Two datasets were tested. One was obtained using infrared cameras and the

other employed color ground-based sensors. The infrared data (HONDA dataset,

UMD dataset I) consists of 40 sequences ranging from 3 minutes to 7 minutes con-

taining more than 80 objects (55 pedestrians and 35 vehicles) from both static and

moving sensors. The other dataset (UMD dataset II) contains 55 color/gray se-

quences with 90 pedestrians and is also acquired by moving and static platforms.

They include typical scenes such as parking lots, roads and other urban settings

containing pedestrians varying in terms of size, speed, clothes and poses. We get a

successful detection for an object only if the bounding boxes cover major portion of

a human body and the motion based classification is correct.

2.4.1 Infrared sensor

In Figure 2.2, we illustrate the detection process for a more challenging se-

quence captured by a very low quality interlaced thermal sensor. The sensor blurs
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Figure 2.2: Detection of a pedestrian in low contrast infrared sequence. Top row:

original object sequence; bottom row (from left to right): original image; mask

generated by hypothesis testing; A peak in histogram showing gait rate; similarity

matrix using [44].

foreground target’s contour and appearance with background, which makes most

shape and motion based methods fail. For example, the similarity based method

such as [44] yields a weak correlation matrix as shown in the left bottom image in

Figure 2.2. Each pixel in that matrix represents correlation between two frames. If

the contrast is high enough, we will observe darker lines parallel to the diagonal,

which is caused by the similarity between two images in the same gait phase. Al-

though no periodicity is observed in this matrix, our method successfully filters out

the ’good’ periodic pixels (even a very small portion of the whole image sequence)

for estimating the correct gait rate.

To evaluate the accuracy of our method, we compute the ROC (Receiver Op-

erating Characteristics) curve. The ROC curves plots the false positive rate against
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Figure 2.3: ROC analysis for infrared dataset from static/moving sensors.

the detection rate, when the classification criterion is varied. The false positive

rate is defined as the total number of false positive detections divided by the total

number of objects in all sequences; the true detection rate is the ratio between total

number of correct detections and total number of detections in all sequences. Since

we use a whole sequence for each classification, we do not divide the above rates

by the frame number. Our classification criterion is the likelihood ratio, Equation.

2.15. This criterion depends on other parameters, namely the frame length N and

the noise variance σ2
A, σ2

0. We adjust only one of these parameters at a time to get

different pairs of detection and false positives rate.

For infrared videos, our method maintains the detection rate above 80% with

a false positives rate lower than 10% for static and the moving platforms.

2.4.2 Color/gray sensor

Figure 2.4 shows the pixel-wise classification results for three representative

pedestrians from the data set. Two are from the same sequence (static camera)
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Figure 2.4: Period detection in Color/gray sensor dataset. top: first frames of

original sequences; bottom: corresponding histogram

with different views: lateral (across the camera) and radial (towards or away from

the camera), and the other is from a moving sensor in the lateral view. In all cases,

the method detects the correct period and classifies the objects as pedestrians.

We plot the ROC curves for the static and moving platform for the UMD

dataset II in Figure 4.12. Compared to the results for the infrared data, we obtain

higher performance in terms of detection rate at the same false negative rate. This

is due to the higher contrast and lower sensor noise level.

To compare to the method in [44] where we started our research, we imple-

mented a version of the latter. Before presenting results of comparison, we make the

following observations. Ours is more robust to the background clutter. Correlation

over all pixels for an image pair computed in [44] will inevitably include background.

When the background intensity is not homogenous, the correlation score for image

pairs in the same gait phases will decrease, which is demonstrated in Table 2.1. We
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Figure 2.5: ROC analysis for color/gray dataset from static and moving sensors.

Table 2.1: Comparison of sensitivity to background clutter

Object size increasing ratio (%) 0 2.5 5 10 15

Correlation score ratio for [44] 8.63 4.32 3.50 1.93 2.02

Maximum-to-mean ratio for our method 12.9 11.3 14.5 10.0 9.8

calculate the maximum-to-variance ratio of one row in the correlation matrix for a

sequence in Fig. 2.4. By systematically increasing the bounding box size, we include

more and more background clutter into correlation calculation. The same ratio in

the histogram from our new method is also calculated. In Table. 2.1, with the

increase of the box size and hence the portion of background clutter, the correlation

score ratio decreases sharply for a method like [44], while our method successfully

filters out the periodic pixels and extracts the gait rate correctly.

The second advantage is that our method needs less computational power and

is amenable for parallel hardware implementation. Assuming an object sequence

with normalized size X by Y and frame number is N , the major operation in peri-

odogram based estimation is FFT whose complexity is N log(N). The total number
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Table 2.2: Comparison of classification results at different alignment error levels

σ 0 2.0 4.0 6.0 8.0 10.0

Period 34 32 35 30 - -

Classification Human Human Human Human Non-Human Non-Human

of operations will be X · Y · N log(N). In order to have a robust detection, the

method in [44] calculates the full correlation matrix to detect the lattice pattern.

Each correlation between two images adds up to X · Y operations. The overall cor-

relation matrix requires X ·Y ·CN
2 = X ·Y ·2/N(N −1). The computational saving

is the ratio of the above two: N log(N)/C2
N , or (N − 1)/(log N · 2) times faster.

2.4.3 Alignment

This method works better when we have accurate alignment of the frames since

it uses pixel-wise temporal information. Current detection and tracking algorithms

cannot provide error-free alignment. We selected a subset sequences (more than 150)

with a length of 64 frames and a box size around 40 ∗ 80. To obtain a quantitative

estimate of the error in periodicity estimation resulting from misalignment, every

box of the probing sequence is shifted in both directions by a quantity (dx, dy), which

obeys a zero-mean uniform distribution U(0, σ). The periodicity is re-calculated

with various σ. We list in Table 2.2 the detected period for one sequence as a

function of the shift parameter σ.

With the increase in alignment error range, the performance of hypothesis
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Figure 2.6: Pedestrian detection with alignment errors in color/gray sensor data.

testing approach deteriorates. It classifies the pedestrian as non-human when the

alignment error is more than 6 pixels. Furthermore, we present the ROC curves in

Fig. 2.6 for a subset of our data.

The result shows that the method is sensitive to large alignment errors and

works reasonably well when alignment error is within a reasonable range. In order

to reduce the sensitivity to alignment, we present another method based on cyclic

property but less sensitive to alignment errors.
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Chapter 3

Model based Periodicity Analysis
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Figure 3.1: Examples of cyclic motion (a) a rotating fan, (b) a running dog, (c) a

walking pedestrian.

3.1 Cyclic Motion

Beside the speed of motion (such as walking or running), the concept of gait

also captures the style or manner in which a human moves. Periodicity differentiates

a pedestrian from other non-periodic motions such as moving vehicles, while gait

differentiates humans from other cyclic moving objects such as machines or animals.

Gait also differentiate individuals. By comparing different kinds of periodic motion

extracted from various objects illustrated in Fig. 3.1, we can identify a distinctive

pattern that applies only to pedestrians. In particular, the swing of the two legs

characterizes this pedestrian-specific oscillation.

We start by investigating the kinematics of human gait from a synthesized

sequence as in Figure 3.2. The figure displays a complete cycle of a pedestrian’s legs.

We develop a computationally efficient human motion analysis algorithm based on

the twin-pendulum model introduced in [5, 45]. The twin-pendulum model has a

very simple form that captures the inherent nature of gait. It focuses on the motions

of the legs. Each leg is represented by two jointed cylinders. The diameters of the
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cylinders are constant but the lengths of the cylinders are changing over time.

Figure 3.2: Motion signature in synthesized sequences [45]. The one with the (red)

boundary represents the best fit using a twin-pendulum model

3.2 Extraction of Motion Pattern

The discussion above suggests that we classify a moving object as a human

by features related to cyclic motion pattern. But changes in appearance, non-rigid

deformation of human body and arbitrary motion of camera present challenges.

What is a good feature to analyze the cyclic motion pattern unique to a walking

human? The answer involves two issues. First, good features should be global and

shape-based rather than pixel-based to reduce sensitivity to temporal alignment.

Second, since precise shape extraction (segmentation) is very difficult, we prefer

features derived from the human contour. A closer look at Figures 3.2 and 3.3

reveals that the relative angle between the two thighs can be used as such a feature.

The Principle Gait Angle is defined as the angle between two legs during walking.

But the non-rigid deformation and self-occlusion of two legs as well as the arbitrary

pose makes it difficult to continually observe this angle in a complete stride. Instead

we focus on a special case in which the two legs are maximally separated as in (g)

in Figure 3.2, enclosed in a box. We refer to it as the Maximal Principal Gait
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Angle (MPGA). This corresponds to a unique phase in the cycle in which the toe-

to-toe distance approaches a maximum. The periodicity of the angle is a strong

cue for detection. An example is given in Figure 3.3. We apply an edge detector

to pedestrians at different principle gait angles of walking. Only those with MPGA

exhibit a salient angular pattern formed by two line segments.

Figure 3.3: Principle Gait Angle in original and gradient images. Only those with

MPGA exhibit a salient angular pattern.

We next describe how to extract the critical Principle Gait Angle from a

cluttered background. We first apply an edge operator (i.e. Canny operator) to the

image. Then a Hough line detector scans the edge map and generates a list of the

candidate lines in the image with length above a pre-specified threshold. We pair

these lines by checking symmetry and slope and choose the pair with the longest

average length to be our candidate in that frame. Finally, we use a Bayes classifier

to identify the occurrence of the MPGA. Intuitively, the MPGA should arise from

line segments with sufficient length forming the gait angle and the angle should be

related to the model and the pose. The distance between segments should fall into

a narrow range. We formulate the detection of MPGA in a Bayes linear classifier
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framework. An observation vector X is defined as

X = {l, d, α} (3.1)

where l is the average length of the twin-line, d is the center distance and α is the

angle formed by that pair. The first two are normalized by the height of the object

bounding box. However, in order to construct the likelihood ratio, the conditional

probability must be in closed form for each class. In applications like ours, we

have to estimate this distribution using samples from a training set. Since this is

impractical, we use an approximation, namely a linear classifier. We are looking for

a vector V and a scalar v0 such that y = V T X <> −v0 is the discriminant function

for this two-class problem. When X is normally distributed, y is also normal and

we outline the process to generate a linear Bayesian classifier from the training set

as follows (adapted from [50]).

1. Compute the sample mean M̂i and the covariance matrix Σ̂i of vector {l, d, α}

from a manually labeled training set;

2. Calculate V for a given weight s by V = [sΣ̂1 + (1− s)Σ̂2]
−1(M̂2 − M̂1);

3. Using the V computed as above, obtain y
(i)
j = V T X

(i)
j , i = 1, 2, 3...N.X

(i)
j is

the jth i-class sample

4. y
(1)
j and y

(2)
j , which do not satisfy y

(1)
j < −v0 and y

(2)
j > −v0, are counted as

errors.

5. Vary v0 to find the v0 which gives the smallest error
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6. Vary s from 0 to 1 and repeat steps 2-5; choose the s giving the smallest error

as well as the corresponding V and v0 to form the discriminant function

We give some sample fitting results in a sequence of the lower part of a pedes-

trian.

Figure 3.4: Illustration of twin-pendulum model fitting. White pixels indicate edges;

Green pixels show the detected lines by Hough Transform; Red pixels (line segment

pairs along legs) show the fitted lines forming Principle Gait Angle.

Such a Bayesian classifier gives us a binary sequence representing the classifi-

cation decision for each frame in the video sequence. That is, for an image with a

positive detection we have a 1 in the binary sequence and 0 otherwise. Intuitively,

the sequence should be quasi-periodic and its instantaneous frequency should be

the gait rate. In fact, even with false alarms, we still can observe a strong periodic

oscillation in such a sequence and a more accurate solution will be provided in the

next section.

3.3 Estimation of Period

The motivation for this section is to integrate shape and appearance with mo-

tion, which is expected to give better detection rate and fewer false alarms. Having
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detected the presence or absence of the MPGA for each frame in a sequence, we

can test for periodicity by the hypothesis testing methods described in the previous

chapter.

3.3.1 Phase-locked loop

A PLL, or Phase-Locked Loop, is basically a close-loop feedback control sys-

tem, whose operation is based on the detection of the phase difference between the

input and output signals of a voltage controlled oscillator (VCO). Phase-locked loops

are widely used in communications. An introduction to PLL can be found in [18].

Figure 3.5: Diagram of a Digital PLL.

We use a software version of PLL [13]. Figure 3.5 shows the classic con-

figuration. The phase detector is a device that compares two input frequencies,

generating an output approximately proportional to their phase difference (if, for

example, they differ in frequency, it gives a periodic output whose frequency is the

difference frequency). Let’s denote the reference signal frequency and the output of

VCO frequency as fIN and fV CO. If fIN doesn’t equal fV CO, the phase-error signal
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causes the VCO frequency to deviate in the direction of fIN . If conditions are right,

the VCO will quickly ”lock” to fIN , maintaining a fixed relationship with the input

signal.

3.3.2 Recursive period estimation

We use the output of the previous stage, namely the binary sequence provided

by fitting the Principle Gait Angles, as the input to the digital PLL module for

estimating both the frequency and phase of gait.

The input is a 0-1 sequences representing the critical phases corresponding to

presence or absence of maximum toe-to-toe distances. This signal is passed through

a low pass filter to remove high frequency components and obtain a smoothed signal:

Vi(t) = Lowpass(V1(t)) (3.2)

Without loss of generality, we write the input signal and the output signal

from the VCO as

Vi(t) = A · sin(ωi(t) + θi), Vo(t) = cos(ωo(t) + θo) (3.3)

If we use a multiplier as the phase detector, the signal after multiplication will

be

VPD(t) = K · A · sin(ωi(t) + θi) · cos(ωo(t) + θo) (3.4)

where K is the gain of the phase detector (multiplier in our case). Furthermore,
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we could write it as

VPD(t) = 1/2·A· K ·{sin[(ωi(t)+ωo(t))+θi+θo]+cos[(ωo(t)−ωo(t))+θi−θo]} (3.5)

When ωo ≈ ωi, the first item in the above representation is attenuated by the

low pass filter (inside the loop filter) in Figure 3.5. The input of the VCO after low

pass filtering can be approximated as

VV CO,IN(t) = 1/2 · A ·K · sin(θi − θo) (3.6)

When the phase difference is small enough, this equation can be simplified to

VV CO,IN(t) = 1/2 · A ·K · (θi − θo) (3.7)

VV CO,IN is proportional to θi − θo. We can now explain how the dPLL locks

the gait period. Suppose at first that the object’s period is unknown. The initial

frequency of the VCO output is set to an approximate value of gait frequency, ω0

(20 frames/cycle). When the gait period (frequency ωt of Vi) changes, the difference

between Vo and Vi is detected by the phase detector which controls VV CO,IN , causing

the VCO frequency to deviate in the direction of ωt. Hence, the period is estimated.

Only when the rate falls into an interval representing a normal gait range, will the

object be classified as a pedestrian.

In practice, the dPLL loop is activated by the result of initial hypothesis

testing. As soon as a period is detected for the first time, the dPLL module works

on the following frames with the initial VCO frequency being set to the detected

period.
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(a)

(b)

Figure 3.6: PLL VCO output voltage vs. locking time for the infrared data (a)

Representative frames. (b) VCO output.

3.4 Experimental Results

We use a module reported in [99] to initialize detection and the tracking

method reported in [78, 65] to track bounding boxes surrounding the targets. We

test the system using the Infrared and Color/gray datasets as in the pixel-based

method.

In Figure 3.6, we show the results based on tracking two pedestrians for

200 frames. The period for the first object is locked around a frequency of 32

frames/cycle, which corresponds to the gait rate. The second is locked at around 24

frames/cycle. We plot the PLL VCO voltage output vs. locking time in the second

row to illustrate how fast the method adapts to the real signal. In Figure 3.7, we

present a sequence from the color/gray set. We track pedestrians for 150 frames;

the PLL locks to the period after 40 frames.
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(a)

(b)

Figure 3.7: PLL output voltage vs. locking time for color/gray sensor. (a) Repre-

sentative frames. (b) VCO output.

In order to evaluate the performance of the detector in finding the MPGA, we

plot the ROC curves in Figure 3.8. We present the curves for infrared and color/gray

data set respectively with the detection results obtained using the shape matching

method reported in [99] and compare the performance improvement when cascaded

with the MPGA fitting method. In this experiment, the training set is composed

of 827 positive samples (boxes containing a pedestrian with maximum toe-to-toe

distance) and 3270 negative samples (images containing pedestrians in other gait

phases, other objects or background). For each data set, two cases are compared.

One is the direct results obtained purely by using a shape hierarchy [99] in every

frame and the other cascades matching and cyclic motion verification stages. As we

can observe, the cascaded detectors successfully use the gait angle to identify true
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Figure 3.8: ROC comparison between PLL+shape and shape matching for both

datasets.

pedestrians with a higher detection rate under the same false positive rate with the

help of MPGA fitting algorithm and PLL-based gait rate estimation.

3.5 Sensitivity Analysis

In this section we study the sensitivity of detection accuracy of the two algo-

rithms presented above to several important independent variables. The variables

considered here are object size (determined by the distance to the camera), signal

length, frame rate and movement directions.

3.5.1 Object size

Sensitivity to object size is important for judging a system’s ability to detect

targets at various distances. We present the result for a subset of the two data

sets with different down-sample ratios in Figure. 3.9. Typical object sizes from
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Figure 3.9: ROC analysis for the two methods at different object sizes.

this subset of sequences are greater than 3200 pixels (based on a bounding box of

40*80 ). We obtain consistently correct results for the first method even when the

target size is gradually reduced to 10x20. Notice that during the down-sampling, the

detected period does not change. This demonstrates that the pixel based method

exhibits only a weak dependence on object size. But the second method works only

on relatively large objects, which is not surprising since the MPGA is extracted from

edges.

This results also gives us a promising way to reduce the computational cost

when using the pixel-based method. By reducing the object size by 2 or even 4, it

reduces computations while maintaining the performance.

3.5.2 Number of frames

An interesting issue is the minimal sequence length needed to reliably extract

the gait rate. We would like the detector to make a decision with minimal delay

and to yield a reasonable detection rate. For shorter lengths, the signal may not be
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Figure 3.10: ROC analysis for the pixel-based method with various lengths.

long enough to exhibit periodicity. When the length increases, tracking is harder

and the change of external variables such as pose, size, lighting etc will corrupt the

cyclic signal.

Suppose we estimate the frequency directly from the periodogram output with-

out any further processing [111]. If the true period for a pixel is ω, and it falls into

two adjacent bins: k and k+1,

ω ∈ [k × 2πFsample/N, (k + 1)× 2πFsample/N ] (3.8)

where Fsample is the sample frequency and N is the signal length, we will have a

bias up to the width of the bin. Hence this method requires longer sequences for

higher resolution. But it is not always easy to maintain tracks of small objects in

long low quality video acquired by a moving platform. We test the first method for

object sequences with various lengths and the resulting ROC curves are shown in

Fig. 3.10. Using the first method, for a typical human, we need only about two to

three stride cycles (30-40 frames for a 30 fps video) to estimate the correct period.

For the MPGA method, a more meaningful measure will be the PLL locking
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Figure 3.11: Locking time (in terms of frame number) vs. number of lockings for

the MPGA based method. Left: infrared sensor; right: color/gray sensor.

time. Given the initial guess of the internal oscillator to be a regular gait rate (for

example, 1Hz or 30 frames/cycle in color sensor and 2Hz or 15 frames/cycle in IR

video for full frame rate), we plot the locking time (in terms of frames) vs. number

of lockings in Fig 3.11. The left image shows the results for the infrared sensor

and the right is for the visible spectrum sensor, together with the approximate

Gaussian distributions. The histogram for the color sensor has a clear peak at 36

frames with a narrow bandwidth, showing the quick locking time. We observe two

peaks for infrared data due to the fact that some low quality thermal sensor has the

same response for left and right legs and so the real ’period’ is half of the gait rate

because of the symmetry in walking motion. After locking to the correct frequency,

the module adapts to it without any re-initialization at a very high speed.
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Figure 3.12: ROC analysis for the two methods at different frame rate.

3.5.3 Frame rate

Due to sensor limitation, we may be unable to always obtain the full frame

rate (> 25fps). In addition, robustness to frame rate reduction could be useful for

reducing overall computational cost. We present results for the two data sets with

different frame rates in Fig. 3.12. The original rate is 30 frames/second and we

reduce it systematically to 6 frames/second. We still obtain good results for both

of the methods even when the frame rate is about 10 frames/second.

Comparing it with the ROC curves from sensitivity analysis against size, the

results show that the pixel and model based methods are more sensitive to frame

rate than to object size. At lower frame rates, longer sequence length could be used

to compensate for the loss in periodic signal strength.

3.5.4 Walking direction

The observed oscillation amplitude of walking in images varies with different

walking directions. It will approach a minimum when the pedestrian is walking
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in a radial direction and will increase gradually to a maximum when the walker is

moving sideways. The change in the amplitude of periodic signal will directly affect

the detector performance.

We divide parts of the two data sets into subgroups according to walking

directions and compare the results for the pixel based detector in Fig. 3.13. The

results show that the first method correctly classifies a human under different poses

ranging from radial to lateral. This could be explained by the 2-step hypothesis

testing. When a pedestrian is walking towards the camera, many locations no longer

exhibit strong cyclic pattern. Yet subtle oscillations still exist around body parts

such as arms, legs and shoulder. By filtering out the non-periodic pixels, a small

number of ’good’ pixels with reasonable periodicity amplitude can be extracted to

support correct estimation. In Fig. 3.13, with a box size of 40*80, the number of

’good’ pixels decreased from thousands to hundreds and even to several tens as the

movement direction changes from lateral to radial. A portion of good samples less

than 1/16 (= 200/(40 ∗ 80)) is used in the final case when the target is moving

towards the sensor.

A comparison of the ROC curves of sensitivity to walking directions is shown

in Fig. 3.14 for both detectors. The angle of walking direction is the angle between it

and the image plane. The results demonstrate that the pixel based method is more

stable to walking directions due to the selectivity of periodic pixels. The MPGA

method, as expected, drops performance sharply when the walking direction is over

π/3.
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Figure 3.13: Detection with various walking directions.
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Figure 3.14: ROC analysis at different walking directions. Left for the pixel based

method; Right for the MPGA method.

3.6 Conclusion

We presented two algorithms for pedestrian classification based on periodic

motion. The first method is simple, efficient and robust to camera motion, sensor

noise and walking directions but depends on good alignment accuracy. The MPGA

method uses a global descriptor combining shape and motion, which is robust to
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alignment and recursively estimates the gait rate. It integrates appearance and

motion cues to classify objects. Both methods can detect pedestrians within a short

time period (less than 2 seconds). Sensitivity analysis shows the robust behavior of

the proposed methods with respect to a number of important factors such as frame

rate, walking directions and object size.

The pixel based method monitors the oscillation at each pixel site and statis-

tically extracts the overall frequency. It works better when the alignment is reliable.

The method works well for both lateral and radial views and is computationally

efficient.

The model-fitting method obtains classification cues from global shape and

appearance and then examines gait dynamics. It extracts the MPGA in special gait

phases and uses a phase look to continuously classify targets. It does not require

accurate alignment between frames.

A promising direction is to use a shape detector such as Viola’s Adaboosting

method [132] or Nanda’s shape hierarchy [99] followed by the cyclic motion detector

or pixel periodic detector as a verification module to obtain higher performance.

By doing so we do not need to search the whole image in every frame and hence

it is more computationally efficient. As part of the results shown in Fig. 3.8, this

will form an automatic pedestrian detection system with lower false alarm rate and

faster speed.
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Chapter 4

Gait Pattern in Space and Time

4.1 Introduction

Vision based pedestrian detection is a natural choice based on a human’s

own experience. The human visual perception system is perhaps the best example

of what is achieved possibly with these vision sensors. Although video cameras

can obtain much richer information about the pedestrians and their surrounding

environments compared to radar or a laser scanner, the image sequences can not

be used for anything directly without further interpretation. How to extract useful

information effectively from available image sequences is not a trivia task due to

several reasons. First, video surveillance involves a complex uncontrolled indoor

or outdoor environments. The illumination conditions may change due to weather

and lighting. Pedestrians are found in surveillance conditions where the background

texture (e.g. nearby buildings, vehicles, poles and trees) form a highly cluttered

environments. Second, a wide range of variations exist in pedestrian appearance

because of clothing, pose, occlusion, shadow, motion and size. Third, a moving

platform will increase the difficulty in differentiating between background objects

such as trees, windows, traffic signs and pedestrians.

Researchers have done a lot work to address such challenges. There are still a

number of serious questions to be answered as to how to efficiently combine various
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cues and how to maintain a balance in the system between computational cost and

robustness. We realize that some proposed systems fall into a dilemma. On the one

hand, to continuously locate targets, one must incprporate a tracking module. No

matter what cue it uses, searching and matching is computationally expensive and

subject to the non-rigid shape change. Tracking does not always provide reliable

results for multiple non-rigid objects in cluttered scenes. On the other hand, detect-

ing targets in each frame requires the detector to scan in every possible location.

Such detectors are also easily influenced by background clutter, target appearance

change and shape variations and hence cannot provide reliable results.

Although a large portion of work for localization is based on human shape,

it is recognized that one of the most routine actions that humans perform is walk-

ing. Because of the upright pose and a piecewise translational trajectory, analyzing

pedestrian motion in spatio-temporal domain is more reasonable and efficient than

in a single image. Intuitively, if we could verify the presence of the gait pattern

in the spatio-temporal volume occupied by the human, we can efficiently integrate

shape and gait without tracking. We assume that the human does not change move-

ment directions dramatically within a short period, such as a half second. This is

equivalent to assume that the trajectory is locally linear.

The motivation for our approach arises from an analysis of pedestrian walking

motion pattern in footsteps shown in Fig. 4.1. Instead of considering the cyclic

property, we focus on the shape lying on a spatio-temporal surface within a stride:

the crossing due to bipedal swing of the legs. In our notion, a signature surface cuts

through the X-Y-t volume along a pedestrians trajectory and contains the pattern
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Figure 4.1: Gait pattern in spade and time. Left: the spatio-temporal slice slightly

higher than ground plane contains the twisted pattern with red dots showing the X

shape crossing. Right: one frame from original sequence.

Figure 4.2: Horizontal slices in different camera motion: static, pan, tilt and zoom

and their 2D gradient histograms (discussed in section 4.4.1).

that interests us. Another motivation lies in the observation of the orientation in

temporal slices due to motion parallax and depth discontinuity between foreground

and background. Figure 4.2 shows four types of orientations in horizontal surfaces

with corresponding 2D gradient histogram (described in Section. 4.4.1). The orien-

tation of the background pixels in the surface encodes camera motion as well as the

scene depth structure.

4.2 Related Work

To develop human motion analysis algorithms, we need to integrate biome-

chanics, graphics and computer vision. In this section, we survey several related
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areas.

4.2.1 Pedestrian detection

Different algorithms have been proposed to detect pedestrians in the image

sequences acquired from video cameras. Some of the methods have been reviewed

in [52, 81]. Recent research shows two main trends: 1) two-step approaches as

screening candidate regions followed by recognizing the rhythmic gait after tracking;

2) one-step approaches as recognizing in every frame. Methods for the initialization

in two-step approaches are either independent motion detection or shape matching.

Rhythmic motion based approaches take into account temporal information and

try to detect periodic features of human gait. On the other hand, shape based

approaches rely on shape features and scans the image to locate humans.

Shape based methods recognizes both moving and stationary pedestrians from

static or moving platforms. The primary difficulty associated with these approaches

are how to accommodate the wide range of variations in pedestrian appearances due

to pose, articulations of body parts ([17, 82, 83]), lighting, clothing, occlusion etc.

The key issues are: i) to find a concise yet sufficient human shape feature represen-

tation that could achieve high inter-class variability with low intra-class variability;

ii), to maintain a balance between accuracy of detection and processing time. In

[107], an over-complete dictionary of Harr wavelets is used as representation of hu-

man shape characteristics followed by a support vector machine for classification.

In order to detect partial occluded pedestrian, the same system is modified to de-
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tect components of human body (e.g. head, torso or limbs) first, then the detected

body parts are assembled together in [107]. In [151], the distance measurement

from stereo vision is used for the segmentation step. A neural network trained by

example pedestrian images is then used to classify segmented foreground objects.

The stereo vision system developed for the ARGO vehicle is introduced in [28]. The

vertical symmetry of a pedestrian is used in the segmentation step. Then pedestrian

candidates are filtered with head shape, distance, size and aspect ratio. In [51], the

Chamfer system developed by Daimler-Chrysler is introduced. The segmentation

step is implemented by matching distance transformed images with different pedes-

trian shape templates. To reduce the processing time, the templates are organized

in a certain hierarchy. A radial basis function based fine analysis is then imple-

mented to reduce the false positive rate. A single feature is not enough to hold the

human body shape change and multiple features requires a lot more time to com-

pute. Although the shape-based method is general, the major drawbacks associated

with them are: 1) high false positive rates due to variation of human shape and

changing lighting conditions, 2) heavy computational cost when performing feature

matching over every frame, 3) tracking is still needed for continuously localizing

targets. Hence they are often used as an initialization step.

On the other hand, motion based approaches use rhythmic features or motion

patterns unique to human beings. Periodicity of the human gait is a strong cue

that can be used for the recognition of walking pedestrians [71, 72]. In [145], the

maximum entropy method is applied to observe the periodic change of image in-

tensity caused by walking. In [44], Fourier Transformation with Hanning window is
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used to find periodicity in the correlation matrix of the acquired image sequences.

Little et al analyzed the shape variations due to motion for classification [84]. Boyd

[21] introduced the video phase locked loop for perceiving the oscillations at a pixel

level. Seitz et al presented [128] a novel concept called period trace for detecting

motion trends. Allmen et al [10] proposed an approach for measuring periodicity

using a curvature scale space at each pixel. The work was extended into surface

flow in [11, 12, 13]. Polana et al [109] showed that the recognition of periodic loco-

motion can be matched against a temporal template. Tsai et al [130] described a

method using DFT to extract the pixel period. However, most of the above pixel-

based methods do not exploit gait kinematics except for periodicity. Hence they

are unable to capture the articulations of body parts present within a stride. The

major drawback associated with rhythmic motion based methods is the delay. The

detector has to accumulate a sufficient number of (basically 2-4 period ) frames to

observe the rhythmic features.

Another trend is to combine motion and shape. Viola’s Adaboost detector

cascade [132] is a fast pedestrian detection algorithm for a static camera. It was

trained using patterns of frame difference as well as the static shape features. Be-

cause of the static camera, those regions which have human-like shapes such as

windows, stop signs and trees etc., are filtered out as non-moving background by

preprocessing and do not enter the classifier cascade. An interesting idea mixing

shape and motion analysis has been developed by Curio et al. [45]. The torso is

first tracked so that the lower part of the region can be located to reveal the relative

motion of legs. A rough model of two legs consisting of two rod-like pieces each,
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jointed at the knees, is juxtaposed on the image area below the tracked torso. The

detected periodic movement is correlated with an experimental curve derived from

the statistical average of human gait periods. High peaks of the correlation function

indicate the presence of a person. The approach pursued by Niyogi and Adelson

[98] analyzes the pattern in a slice of a XYT cube by a persons ankles. The tracks

assume a characteristic plait shape due to the relative periodic motion, and may

be easily identified by shape recognition methods, like snakes. Unfortunately, these

ideas encounter difficulties in applications involving a moving camera.

4.2.2 Tracking

To continuously locate pedestrians in a video, human body tracking has been

incorporated in many existing methods [136, 137, 141, 142, 143, 64]. There have

been many approaches to solve such a problem. They differ mainly by whether the

recovered motion description is 2D or 3D, and whether there is an explicit model

of the human body. Bobick and Davis [48] developed a template based action

recognition system, the Motion History Image, which records the recency of activity

at each pixel, with each action having its own MHI template. Morris and Rehg

[93] built a 2D stick figure kinematic model of the body for tracking the motion of

the body through single source video. Bregler [26, 27] employed a mathematical

result from robotics, the twist/screw motion of kinematic chain, and related it to

image gradients to solve for differential motion of the body joints. Leventon et al

[79] collected statistical data of the likelihood of body configurations and used them

53



to recover body joint angles in each frame. Particle filtering or mean shift based

algorithm have been a major trend for adaptive trackers [38, 80, 43, 14, 29, 30].

Zhou et al [154] designed a particle filter framework to estimate the deformation

between frames, which works fairly well for pedestrians at a distance. But because

of the complicated articulating motion, tracking tends to fail due to non-rigidity and

occlusion of body parts . It is hard to predict the body shape variations. Besides,

prediction and matching need significant computation.

4.2.3 Temporal Video Analysis

To fuse motion and appearance for achieving a more reliable algorithm, we

need to consider in space and time simultaneously, which directly brings up the tem-

poral video analysis [22, 23, 24]. In the overwhelming majority of studies to date,

image sequences are primarily analyzed and processed in groups of two frames, as

by differentiating one frame from the other, one is able to infer the dynamics oc-

curring in an image sequence. Although the single or two-frame approach has been

very successful in some applications, such as the shape or shape context [17] based

methods and the Adaboost based human classifier, it faces considerable difficulties

if used, for example, to reason about non-rigid human motion. This subsection

reviews the developments made in processing an alternative image sequence struc-

ture; the spatio-temporal surface (or slice), which has been proposed to alleviate the

shortcomings of the traditional pair-wise approach.

One way to analyze the spatio-temporal volume is to consider it as being
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formed by a stack of two-dimensional temporal slices or surfaces [104, 105, 138, 139].

For example, if the cube were to be sliced horizontally, one slice per scan line, then

each slice exhibit structures related to the image features which pass over that

scan line over time. Unlike the spatial features such as points and corners, the

spatio-temporal paths contain some special ”strip” pattern since they consist of the

temporal dimension. If we compare such strips to the regions in 2D images, strips

requires less effort to extract because of the continuity in scene depth change. In

the case of locally linear camera motion, the orientations of such strips are usually

aligned along one direction. A special type of surfaces, slices of the spatio-temporal

volume, was first investigated by Bolles et al. [20], which focused on the geometric

recovery of static scene structure. The particular class of slices analyzed were termed

epipolar plane images (EPIs), and by restricting camera motion to linear paths,

with a fixed orientation orthogonal to the direction of motion, depth information

could be extracted from the relative angles of paths formed by features in the EPI.

Following that Generalized EPI was proposed by Bolles [19] to handle non-linear

camera motion. Ngo et al [95, 94, 97, 96] used spatio-temporal slices for the detection

of cuts and wipes, where the task of detecting scene breaks was reformulated as the

detection of boundaries in spatio-temporal slices.

4.2.4 Contributions

Our work can be categorized as a two-step algorithm combing both shape

and motion. The distinct feature of our method lies in the fact that we find a
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strong indicator within a stride instead of the periodicity. The main contributions

of this work are threefold. First, we fuse motion and appearance within a very short

interval (a half second). Second, there is no tracking module employed. Third, by

embedding kinematic analysis and graph theory into the framework, it results in

a real time system capable of simultaneously localizing pedestrians and monitoring

some of their activities.

The rest of this chapter is organized as follows. Section 4.3 presents the anal-

ysis of body kinematics and propose a strong spatio-temporal indicator for pedes-

trians: X junction. Section 4.4 provides a solution to extract the gait pattern in

spatio-temporal surfaces. Section 4.5 discusses a system for detecting pedestrians.

Results are presented in Section 4.6 and section 6.6 summarizes the approach.

4.3 Methodology

4.3.1 Kinematic body model

To measure the articulation of a human body in video, we need to relate the

points on the body to the images. Extensive discussion of this topic can be found in

[110, 135]. For our purposes it is sufficient to model the motion of a human body as

an 3D articulated motion of rigid body parts. We model the geometry of body parts

by 3D volumetric primitives. Articulated motion can be represented by kinematic

chains. There are many parameter systems that can be used to model kinematic

chains [135]. We expect that the choice of a small set of kinematic parameter would

be sufficient to understand and estimate temporal motion patterns in our framework.
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Figure 4.3: Kinematic body model.

Regardless of the parameter number, we can characterize the body motion by a

mapping describing the forward kinematics of the underlying mechanical structure.

The model used here is the well-established kinematic tree model where the torso

and head form the base part and each limb as a separate chain connected to the

base as shown in Fig. 5.1. A given human motion can be described as a global

motion in the base and the articulations in limbs.

The forward kinematics mapping specifies the position and orientation of any

body point from body parts and joints articulation. For any kinematical limb, its

articulation is given by a series of matrix multiplications, parameterized by joint

angles θ1, ..., θn (θi is generally a time-varying multi-dimensional signal). In homo-

geneous coordinates, we can calculate the 3D position x of a point attached to the

k − th body segment after motion as follows:

x = g · x0 = gk(θ1, ..., θk) · x0 (4.1)
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where x0 is the original position of the point x given in the local body coordi-

nate system and gk is the mapping describing the forward kinematics of the first k

segments in the kinematic chain. For each fixed parameter set at time t, θ1, ..., θk,

g(θ1, ..., θk) is a 4 by 4 matrix specifying a rigid body transformation in homoge-

neous coordinates. Unlike many problems in robotics where the position and the

orientation of the base is fixed, we allow the base frame to move. This motion can

be caused either by human body motion or by camera motion. Hence x is given by:

x = D · gk(θ1, ..., θk) · x0 (4.2)

where D = [R, T ] is the homogeneous matrix corresponding to rotation R and

translation T of the base coordinate frame with respect to the camera frame.

Given the body and the camera model as well as the current body posture,

the relationship between body points and the corresponding image pixels can be

expressed by a combination of kinematic and camera transformations. We use the

perspective projection to model the geometry of the camera transformation. This

results in a mapping u = f(F, x) between the image point u and the corresponding

world point x.

Let the coordinates of a body point in a local body coordinate frame be denoted

by x0. Assuming that this point belongs to the k-th body segment and that the

configuration of the body at time t is given by R(t), T (t), θ1(t)....θk(t). Its image

position u(t) after motion and projection can be calculated by a series of mappings

as:
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u(t) = f [F (t), D(t) · gk(θ1(t)...θk(t)) · x0] (4.3)

4.3.2 Signature surface

Our approach addresses the problem from a new angle to describe the fore-

ground objects and background. It seeks to find a surface passing through fore-

ground object that cuts the space-time volume. This reliance on appearance in time

allows us to deal foreground objects with both static and dynamic scenes. Instead

of focusing on the scene structure with fixing the coordinate system at the camera

center, we study the case when the coordinate system is fixed on the object. Be-

cause of the vertical pose of the human body in many of the surveillance videos, we

propose a spatio-temporal surface S as follows.

Let F be a video sequence, which is an ordered set of frames {Ft}N
1 . Each frame

in turn contains an ordered set of horizontal strips F j
t . The space-time volume is

the set of strips {F j
t } (t is coordinate on the temporal axis , j is coordinate on the y

axis). Using these notations, the desired surface can be denoted by a list of strips:

S = {F jk
tk
}K

k=1 (4.4)

The height of the strips is set to one pixel as wider strips may form naturally

when needed. We seek to find the surface which cuts the object with an equal

distance to its top in every frame. An example of such a surface is shown in Fig.

4.5.
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Figure 4.4: An example to illustrate X junctions generated by kinematic chain

model.

4.3.3 X Junctions in space and time

In the described human body model, each limb is modeled as a kinematic chain

centered at torso with a 3D motion g(R, T ). As in [110], a nine DOF chain model is

used to describe the body structure (head, arms, torso and legs). The articulations

are due to the mass of rigid body parts and motion (rotation and translation) of

joints as shown in the left row in Fig. 4.4. Since the volumetric body parts are

of some width, the pattern generated by them at time t in one surface could be

represented by a point set as the intersection of the body and the tangent plane to

the signature surface. By connecting these points we obtain the trajectory shown

in the right row in Fig. 4.4. Assuming that the object is at a distance far enough

from the camera, F (t) can be set as a constant F over short time period.
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The surface S is formed by combining various horizontal strips from frames

throughout a sequence. For a rigid motion, S will contain a continuous path as

shown in top-right image in Fig. 4.4. For non-rigid motion, the path is more

complicated such as being twisted. We illustrate this in the middle and bottom

images in Fig. 4.4.

The motion of the limbs divides gait articulation into approximately two levels:

intra- and inter- gait motion. Intra gait motion represents the articulation of body

parts relative to the body mass center and inter gait motion describes the overall

body motion by the rotation and translation of the mass center. We make each

row of S at a given vertical distance to the mass center as in Fig. 4.5 so that the

inter-gait motion such as body translation and mass center variation is canceled.

The remaining temporal pattern is only due to the intra-gait motion.

When considering the swing of limbs, different individual will have different

styles and articulations and hence trajectories. But one feature is shared among

almost all pedestrians while walking: two legs swing approximately out-of-phase,

making an X-junction in space and time when they occlude each other. We naturally

define X junction as the volume occupied by the two legs during their occlusion in

walking motion. To prove the existence of such special shape we continue to use the

kinematic chain model introduced above.

We set the world coordinate system at the pelvis center of a human body

with directions towards sagittal plane, coronal plane and axial plane. Although the

articulation of legs is subtle during the whole gait, their motion before and after

both toes contacting the ground could be approximated by a twin-pendulum model.
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Figure 4.5: Signature surface in videos. Top: Red curve is the trajectory; blue lines

form the horizontal strips in S for each frame along the trajectory. Middle: signature

surface. Bottom: corresponding poses. Notice that the X junction appears for most

part of the signature surface except for the radial viewing directions.
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If we set the time as t0 when both toes contact the ground plane, it also corresponds

to the time when the twin-pendulum’s arms are in the lowest location. Following

Eqn. 4.3, we consider the same point at time t0 − δt and t0 + δt:

u(t0 + δt) = f [F (t0 + δt), D(t0 + δt) · gk(θ1(t0 + δt)...θk(t0 + δt)) · x0]

u(t0 − δt) = f [F (t0 − δt), D(t0 − δt) · gk(θ1(t0 − δt)...θk(t0 − δt)) · x0] (4.5)

It is shown in biomechanics that when δt is small enough compared to the gait

period, θ(t)k
1 is symmetric. They could be approximated by Taylor series. Hence we

have:

u(t0 + δt) = u(t0) + ∆u (4.6)

u(t0 − δt) = u(t0)−∆u (4.7)

The above equation shows that the volume carved by one leg is symmetric to

the position u(t0). Because of the bipedal motion, both legs generate a 3D X-shape

junction in space and time. If we cut such a volume by a horizontal surface S defined

as in Eqn. 4.4, we obtain a 2D X junction.

The nice features of the X-junctions are: 1) Inherent to the bi-pedal motion of

pedestrians. 2) Robust to environmental conditions such as viewing angles, anthro-

pometric parameters and platform motion. 3) Distinct from background clutter. We

fuse human shape and motion by considering X junctions in space and time. Be-

cause of the vertical pose of human body while walking, S contains the intersection

by slicing the 3D volume after compensating for global body motion.
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4.4 Extraction

4.4.1 Support region

The surface S contains foreground patterns and background camera motion

patterns. The motion of the pixels in the surface is due to either camera or fore-

ground objects. When the camera is not static, the orientation of pixels provides

information to estimate and compensate ego motion just like optical flow. Instead of

calculating the flow as in [61, 15], we design an approach based on the gradient com-

putation introduced in [149] to estimate the overall orientation of the background

pixels in a surface for static as well as moving cameras. The distribution of local

orientations across time inherently reflects the camera motion in a surface. In most

of the videos, it is sufficient to assume that the camera motion is locally linear. If

the surface is taken with a length of half a second from a video, there will be a

dominant motion for that surface which is featured by the global orientation in that

surface. To measure such a orientation, let S ′ denote the collapsed slice surface (fit

each row of S in a plane) with an orientation angle θ. To estimate θ we pose the

problem as finding the minimum gray level axis within a local neighborhood. More

specifically, we find the local directional derivative that vanishes,

uT 5 S ′ = 0 (4.8)

The above equation is often solved by minimizing a cost function within a

local area R as:

64



C(u) = min
‖u‖=1

∫

R

‖ uT 5 S ′ ‖2 dR (4.9)

Expanding the above equation we get:

C(u) = min
‖u‖=1

uT

∫

R

(5S ′5 S ′T dR)u (4.10)

Denote the integral part as

T =

∫

R

5S ′5 S ′T dR =

∫

R




S2
x SxSt

StSx S2
t


 dR

Hence the optimization becomes the following with T denoted as the spatio-

temporal structure tensor.

C(u) = min
‖u‖=1

uT Tu (4.11)

It is shown that the above optimization process corresponds to finding eigen-

vectors and eigenvalues. The eigenvalues can be used to classify regions as: ho-

mogeneous (i.e., no dominant orientation γ1 = γ2 = 0), single orientation (γ1 >>

0, γ2 = 0) and multiple orientations (γ1, γ2 >> 0). Interestingly, though motivated

differently the structure tensor and its subsequent eigen-analysis corresponds to the

SIFT corner detector analysis [89]. We seeks to classify the dominant regions and

thus avoid the expense involved in explicitly calculating the eigenvalues and instead

analyze the determinant D and trace Tr of T ,

D = det(T ) = γ1γ2, T r = tr(T ) = γ1 + γ2 (4.12)
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Figure 4.6: Extracting the support region in a slice.

By calculating the 2D structure tensor for each pixel within a small neighbor-

hood, we obtain the distribution of the gradient. We divide the 2D motion direction

in a surface into a 2D histogram with M ∗N bins. Each pixel in the surface votes

for the bin ((αx, αt)) with its gradient confidence G (a DOG operator) at direction

along x and t as:

H(αx0, αt0) =
∑

αx=αx0,αt=αt0

G(αx, αt) (4.13)

The orientation caused by the camera motion can be detected by finding the

peak in the histogram as shown in the bottom row of Fig. 4.2 because the peak

corresponds to the dominant motion among the bins. It indicates the ego motion

direction and amplitude of the platform. By subtracting the pixels belonging to the

bins close to the global peak, we roughly eliminate the background and obtain a

support region for the foreground. Examples of extracted support region are given

in Fig. 4.6.
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4.4.2 Learning X junctions

Since the foreground objects are at different depths than the background, they

could be segmented using the method described above. We obtained a database of

exemplar gray scale image patches of size 20*20 that covered a broad range of X-

junctions in the spatiotemporal domain. In total, 400 X-junctions were labeled with

an accompanying set of 500 anti X-junctions for classification.

The spatial domain analysis are presented in [47] using oriented histogram of

gradients. Here the X-junction patches were normalized to have zero mean and unit

variance and the principal components [50] were calculated to represent the dom-

inant features of X junctions. Not surprisingly, the principal components capture

certain characteristics of X-junctions that are physically plausible C namely, the

occluding edge and the intensity profile of that being occluded. Projecting the data

back onto the top three principal components, we can see a distinct structure in the

data. To learn a classification model for X-junctions we tested the PCA descriptor

using a Bayes classifier. Consider the a large vector composed of each image’s in-

tensities in the training set, PCA reduces the model dimensionality. In our system,

the descriptor projects the data matrix onto the top 20 principal components and

the energy distribution due to PCA is shown in Fig. 4.7.
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Figure 4.7: Learning the X junctions. Left: the eigenvalues of the PCA covariance

matrix drop sharply after 20. Right: positive examples in the training set.

4.5 System Design

4.5.1 Graph construction

In this section we construct a complete system for reliable pedestrian detection

regardless of camera motion. The flowchart in Fig. 4.8 shows the modules in the

proposed system. First an initialization module is applied to a sequence at time

0, T0, 2 ∗ T0, ..... This step gives a bunch of potential areas (boxes) Bi(t) in those

frames. Then we connect two boxes Bi(t1) and Bj(t2) to form a candidate trajectory

only if they satisfy the following conditions:

1. The time-stamping difference between t1 and t2 are close enough (T0 in our

case).

2. The spatial distance between Bi(t1) and Bj(t2) are close enough for a regular

walking speed.

3. The normalized appearance difference between Bi(t1) and Bj(t2) is less than
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a preset threshold.

Or equivalently;

| t1 − t2 |≤ γ1T0 (4.14)

‖ Oi −Oj ‖≤ γ2(wi + wj)(hi + hj) (4.15)

mean[
∑

P∈Bi(t1),Q∈Bj(t2)

(I2
P − I2

Q)] ≤ γ3 (4.16)

After that, we construct an infinite graph G to organize the candidates. The

graph is defined as:

G(V,E)
.
= G(Bi(t), S(z)) (4.17)

where Bi(t) is the vertex. An edge E is defined as the spatial temporal surface

formed by cutting the data volume connecting two vertices. It is valid if and only

if the two vertices belong to the same pedestrian. We generate spatio-temporal

surface(s) for each pair of vertices (boxes) satisfying the above criterion by cutting

the X-Y-t volume by planes parallel to the trajectory. Only a small set of surfaces

are selected for extracting the possible pattern. In our experiment, only the surface

passing at 1/4 height of the body is chosen. After estimating the global camera

motion at the surfaces, we use the obtained support regions to locate the foreground.

Finally the support region is partitioned and verified for the presence of the gait

pattern. Such a procedure simultaneously affirms initial detections and generates

piecewise linear trajectories as the paths in Graph G.

It should be emphasized that by connecting candidate regions, this system no

longer needs to track the objects, which is unreliable and computationally expensive

in some cases.
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Figure 4.8: Flow chart for the proposed system.

4.5.2 Initialization

This system can take any algorithms which are capable to initialize pedestri-

ans in a frame. We use a similar method developed in [99] or the OpenCV version

of Viola’s Adaboosting method [132] to find the candidate areas using probabilistic

template matching. For the first method, the training data for developing the prob-

abilistic template consists of more than 100 rectangular images containing human

upper body segments in different poses and orientations. The reasons that we only

consider the upper body lie in the following facts: (i) head and shoulder articulations

are relatively small compared to limbs. (ii) upper body shares a similar ω contour

shape for different individuals, which is easier to describe than a complicated model

for the whole body. Since pose is a challenging factor to estimate [2, ?, 4], we have

a few templates to take into account different poses. In our case three poses are

used , left, right and upfront at different scales. For each pixel of the templates, the

probability of it being pedestrian at that pose is calculated based on how frequently

it appears as 1 in the training data. This upper body template in effect gives the

70



Figure 4.9: Continuously detecting pedestrian in PETS.

probability of seeing a foreground at different pixel locations for pedestrians. Dur-

ing initialization, we apply a gradient operator to the smoothed image and scan the

gradient map to calculate the sum of these probabilities for all pixels. This gives

us the combined probability of the given window containing a human. The value of

the threshold is decided using a Bayesian classifier reported in [99].

In order not to miss a true target, we relax the parameters in both methods

to include as many real pedestrians as possible and a reasonable amount of false

alarms to be rejected later.
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4.6 Experimental Results

4.6.1 Video sensor

We first consider the detection of pedestrians in videos acquired from a single

video camera. By connecting the verified edges containing the X junctions, we con-

tinuously find the pedestrian trajectories . Figure 4.9 shows the typical detection

results for a video from the PETS data where a static camera is deployed in a surveil-

lance area. The initial detector works every T0 frames (15 or 30 in our case) and

gives a bunch of false alarms as well as true detections (red lines). For example, the

windows in the background building were initialized as candidates in some frames.

But the verification successfully rejects them. It also misses two detections which

are illustrated by the white bounding boxes. Even with possible false negatives, our

algorithm picks it up by allowing the linking of two initial detections 2 ∗ T0 frames

apart in the graph. Finally we superimpose the detections and trajectories in red

color in one frame. The path in G reveals the human’s movement direction. In

general, it correctly classifies and locates the target consistently. In the right part

of the trajectory, one segment of the trajectories is verified as non-human because

the lower half of the human body is occluded by a car passing in front of the human

during that time.

Results for videos aquired by a moving camera are shown in Fig. 4.10 when

the platform is mounted on a mobile sentry. Only those corresponding to the same

pedestrian give positive results and affirm the initial detections (in red) by rejecting

false alarms (in green and blue).
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Figure 4.10: Continuously detecting pedestrians in video sequences acquired by a

moving platform.

We then apply the detector to an IR sensor and the result is shown in Fig.

4.11. Because of the sensor noise, IR video tends to have more false alarms in the

initialization stage. But for infrared videos, our method maintains the detection

rate above 80% with a false positives rate lower than 10%.

Figure 4.11: Continuously detecting pedestrians in IR sequences. We list 3 initialized

regions (with different color) and only one contains the X junction.

We plot the ROC curves for the UMD and PETS dataset in Figure 4.12 with

369 pedestrian clips. The ROC curves plot the false positive rate against the de-

tection rate, when the classification criterion is varied. The false positive rate is

defined as the total number of false positive detections divided by the total number

of objects in all sequences; the true detection rate is the ratio between the total
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number of correct detections and the total number of detections in all sequences.

Since we use a sequence for one classification, we do not divide the above rates by

frame number. We compare the proposed method to the results from the OpenCV

version of Adaboosting classifier and our implementation of a shape based pedes-

trian detector [99]. We obtain better performance in terms of higher detection rate

at the same false negative rate for both color and IR sensors. This is due to the

efficient verification of temporal symmetrical motion coherence. During our exper-

iments we also notice a better performance of the proposed method for the static

platform case than for the moving platform. This is because the accuracy of ’sup-

porting region’ is better in the static case than in the moving case. Since the camera

motion is more complicated (may including rotation) for moving sensors, the quality

of support region and hence the performance of verification stage drops.
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Figure 4.12: ROC analysis for UMD color/gray dataset and IR dataset.

An important factor is the viewing angle, or walking direction. The temporal

X junction will degenerate into ribbon(s) in radial views. Under such conditions, the

classifier cannot differentiate it from other rigid moving objects. Another situation

when this method may fail is when the pedestrians are stationary. But our algorithm
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is able to quickly pick it up as soon as the target resumes walking.

4.6.2 Range sensor

Range sensor models for ultrasonic sensors and laser range finders have been

around for many years. These sensors are frequently deployed as components on

autonomous systems for navigation or surveillance. We are interested in the Horizon

Infrared Surveillance Sensor (HISS) system, which is installed in a static or a moving

platform, scanning horizontal lines at a very high speed. The output is the range

data at a given height, which naturally forms a slice (a horizontal surface) containing

the desired motion signature as shown in Fig. 4.13.

Figure 4.13: Simulated range sensor slice data.

We simply apply the same method to the output signal from range sensors for

the purpose of detecting pedestrians and the result as well as the ROC curve are

shown in Fig. 4.14. During our experiments, we are using an SRI stereo head (base

line 10 inches) to simulate the range sensor response. The sensor is mounted at one

foot from the ground plane to best capture the X-junctions during the leg swing.

4.6.3 Activities in sport videos

Given the detected trajectories and the verified X-junctions associated with

continuous time instants, we can parse each trajectory into segments where each
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Figure 4.14: ROC analysis for range sensor data.

segment contains a single atomic motion such as walking, standing, running etc.

The goal in this section is to bridge the gap between low-level visual features and

mid-level semantics. Here we are focusing on automatic analysis of sports videos,

or more specifically, soccer videos. This is especially useful in applications of digital

video game understanding such as summarizing and retrieving.

Traditional sports video analysis toolbox focus on the silhouette, which is hard

to extract in many cases and may not be reliable. Since the players’s trajectory is

almost piecewise linear and the patterns from various activities are distinct from

each other, we can apply some simple classification for activity recognition based

on the features of X junctions. For example, a standing player will degenerate the

X-junctions into straight ribbons. A running player makes the distance between

adjacent X-junctions much shorter than walking (faster in time). When he/she is

passing or receiving the ball, the X-junction will be distorted into curves of other

form. Such observations suggest to analyzing the activity by the deformation of

X-junctions in real time. We add a post-processing module after the extraction of
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X-junctions to measure its closeness (in time) and induce the repeating speed of the

X junctions for each player. We also train a similar ribbon detector (PCA feature

and Bayesian classifier) to handle the degenerate X-junctions for standing/stopping

players.

Our approach keeps updating and classifying the motion signature for each

player at every half second. This interval is fast enough to analyze the activity

on-the-fly. By doing so, we can not only know the positions but also understand the

strategy of both teams. For each player, we assign an activity tag to him/her such

as running, walking, stopping, others. An example is shown in Fig. 4.15.

Figure 4.15: Soccer sequence and the classified events with overlayed motion signa-

ture.Top: left image is one frame with detected players. The right image has the

color dots coding the trajectories for all players and the associated motion signature

representing activities. Bottom: activity classification results for two players.

The advantage of our method is that so far no feature point tracking or back-

ground substraction [37] is required and hence it is computationally efficient and
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robust to camera motion.

4.7 Conclusion

We presented a method for analyzing pedestrians in space and time and im-

plemented a real time monitoring system. This two-step system first initializes

potential candidates and then verifies the gait patterns in temporal surfaces formed

by connecting close candidates in an infinite graph structure. The feature used as

a particularly strong indicator of pedestrians is the X-junction in space and time.

Unlike traditional rhythmic motion based detectors, the X junction lies within a

stride and the detector does not need long period tracking. Our approach fuses

appearance and motion in a very efficient manner to reject the false alarms in the

initialization stage. The proposed algorithm is independent of tracking modules.

It can be applied to surveillance applications such as mobile sentry or intrusion

detection. The experimental results demonstrate the effectiveness of the proposed

method using visible and IR videos with arbitrary camera motion. It is also com-

patible with scanning data from range sensors. The ROC curve analysis supports

the high statistical performance. We also show its effectiveness in sport video anal-

ysis by paring the players’ activities in a soccer game. It successfully recognizes the

temporal pattern change due to walking, standing or running without tracking any

feature point or extracting the silhouette.
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Chapter 5

A Compact Characterization of Human Motion

5.1 Introduction

Human motion analysis has been an active research area over the last decade

with applications in surveillance, clinical and sports video analysis [33, 34, 35, 36,

131, 148, 67, 7, 8, 9, 32, 31]. Although the traditional approaches are based on

markers, silhouette or feature points extracted from the human body [63, 68, 69, 70,

77, 76], we are interested in the landmark-free methods. Comprehensive reviews on

human motion and activity analysis may be found in [52, 81]. In [52], methods are

classified into 2D approaches that do not use explicit models, 2D approaches that

use explicit models and 3D approaches. To capture the cyclic human gait patterns,

many solutions have been proposed for characterizing the periodic motion at pixel

level or in 3D space.

In the first category, Little et al analyzed the shape variations due to mo-

tion for real time classification [84]. Boyd [21] introduced the video phase locked

loop for perceiving the oscillations at a pixel level. Seitz et al presented [128] a

novel concept called period trace for detecting motion trends. Allmen et al [10] pro-

posed an approach for measuring periodicity using a curvature scale space at each

pixel. Polana et al [108] showed that the recognition of periodic locomotion can be

matched against a temporal template. Tsai et al [130] described a method using
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DFT to extract pixel period. However, most of the above pixel-based methods do

not exploit gait kinematics except for periodicity. Hence they are unable to capture

the articulations of body parts present in a stride.

Methods in x − y − t space analyzed the topology of human motion in space

and time [6]. Niyogi et al in [98, ?] analyzed the periodic patterns and used them

to estimate gait parameters by Active Contours proposed by Cootes et al [46] and

Active Snakes/Surfaces by Kass et al in [75]. Liu et al in [85] used the power

spectrum for extracting the periodic motion. Again, they neither studied the gait

animation/kinematic constraints nor considered multiple view geometric constraints.

To understand the spatio-temporal pattern in activity sequences, a straight-

forward direction is to measure the similarity between each instances. The work

closely related to this paper is by Liu et al [?] who used the Frieze Group Theory

for modeling gait silhouette profile in X and Y axes. They proposed a method to es-

timate the viewing angles from different symmetries in 1D patterns. This approach

requires segmented silhouettes and does not study other activities than walking.

Cutler et al [44] measured the motion similarity between image pairs of a gait se-

quence and extracted a lattice representing human walking motion. However the

body articulation is lost during the correlation stage. There are several major differ-

ences between our method and those discussed above: (1) We study the topology of

activities guided by a kinematic model, while they discard such information either

by focusing on correlation or silhouette histogram. (2) These methods assume that

objects have been segmented and/or aligned. We focus on simultaneous detection

and segmentation with and without occlusion. (3) We analyze the geometric con-
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straints between DHS from multiple views or individuals. (4) Finally, we investigate

its usefulness in activity recognition.

A systematic analysis of human activities can be done using state-of-the-art

techniques from computer graphics, biomechanics and computer vision. Inspired

by studies in human motion animation and kinematics, we introduce the DHS to

characterize the gait or activity topology in spatio-temporal domain. Humans walk

at a stable frequency. The body and limbs maintain the center of gravity above the

point of contact and minimize the muscular effort needed for balancing the whole

body for various events such as natural walking or carrying a brief case. If we stack

all the instances for an activity in the X-Y-Z-t space, we observe a 4D point set with

special topology containing both global body movement and local subtle variations

for that specific event. Although they vary for different individuals, the topology

for one class of activity retains strong similarity. Following Felix Klein’s work [?]

we look for a compact representation of human walking motion.

The main feature of the proposed approach with respect to the techniques

mentioned above is that we do not match image features such as regions, points and

markers from frame to frame. Our work makes two major contributions. First we

show that the sliced spatio-temporal pattern generated by a 3D kinematic model

belongs to a geometric symmetry group and forms a compact signature. Then we

propose a robust pedestrian monitoring system that segments and labels targets and

recognizes a class of events by applying DHS.

The paper is structured as follows. Section 5.2 discusses the DHS pattern and

then establishes its properties such as symmetry and compactness in representing
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human gait and activities. Section 5.3 proposes a method for simultaneously identi-

fying and extracting such signatures. Section 6.1 discusses a pedestrian monitoring

system covering applications from segmentation with and without occlusion to event

detection supported by experiments. Section 6.6 summarizes the work.

5.2 Double Helical Signature

5.2.1 Spatio-temporal gait and activity volume

In subsequent discussions, we interchangeably use gait and activity. Human

gait can be represented by a set of 3D body points. Each body point generates its

own trajectory in a four dimensional space (X,Y, Z, t). The sequence captured by

cameras is formed by stacking the 2D frames at every time instant and hence is in a

3D space (x, y, t). Two corresponding points XP , xp from the two spaces are related

by a projection as:

xp =




a1 a2 a3 0 a4

b1 b2 b3 0 b4

0 0 0 1 0

0 0 0 0 1




·XP = P ·XP (5.1)

where XP and xp are in homogeneous format. By doing so, temporal informa-

tion is naturally coded as one of the dimensions. We define the Activity Volume as

a subset of points in the 4D space as follows:

Definition: Activity Volume G is the 4D spatio-temporal (X-Y-Z-t) volume occu-

82



pied by the human performing the activity. Activity Sequence g is the projection

of the Activity Volume to the 3D spatio-temporal (x-y-t) frame domain.

(a)

(b)

(c)

Figure 5.1: Top: Original frames and silhouette; Middle: Activity Sequence; Bot-

tom: Selected 2D slices containing helical structure.

What are preserved in many gait related activities are the global periodic (or

symmetrical) body translational motion, bipedal limb articulation and the vertical

pose as in Fig. 5.1. It is our goal to find an efficient representation derived from the

raw video frames. The proposed spatio-temporal slices along the body movement

direction generates a geometric repetitive pattern. More interestingly, a close look

at the horizontal slices reveals the embedding of some body articulation parameters

as Fig. 5.2.
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Figure 5.2: Gait parameters coded in DHS.

5.2.2 Geometric symmetries

Symmetry is a fundamental concept for understanding repetitive patterns in

art decoration, crystallography etc. This has been a primary motivation for de-

veloping the branch of mathematics known as Geometric Group Theory [140]. A

geometric figure is said to be symmetric if there exist isometries that permute its

parts while leaving the object as a whole unchanged. An isometry of this kind is

called a symmetry. The symmetries of an object form a group called the symmetry

group of the object. A symmetrical group spanning in 1D is defined as a Frieze

Group and is defined as a Wallpaper Group in 2D space.

Because human walking motion generates translation along planes parallel to

the direction of global body translation, we are more interested in planar symmetries

such as reflections and half turn. There are seven distinct subgroups (up to scaling)

in the discrete Frieze group generated by translation, reflection (along the same axis

or a vertical line) and a half turn (180 rotation). Sample patterns are shown in the

Fig. 5.3. The seven different groups can be described as follows:

1. Translations only.
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Figure 5.3: An example to illustrate 7 patterns in Frieze Groups. T: translation,V:

vertical reflection, H: horizontal reflection, G: glide reflection [140].

2. Glide-reflections and translations.

3. Translations, reflections in the horizontal axis and glide reflections.

4. Translations and reflections across certain vertical lines.

5. Translations and 180 rotations.

6. Glide-reflections, translations and rotations.

7. Translations, glide reflections, reflections in both axes and 180 rotations.

In our work, we consider the Frieze Group Theory of 1D pattern to repeat along

arbitrary directions in R2. Such a direction represents the instantaneous translation
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of the human body. We do not have to limit ourselves to rely on the cropped and

aligned images as in [44, ?].

5.2.3 Kinematic chain model

It can be very difficult to analyze the complicated nature of human shape and

motion without using a shape model. Several possibilities for human shape modeling

exist ranging from stick figures and ellipsoids to more sophisticated deformable

models [?]. Modeling the human body as rigid parts linked in a kinematic structure

is an effectively approximate model for many purposes. In biometric research, body

locomotion is specified at two levels: inter-gait (global) parameters such as speed

v, step/stride length s, and cadence f (or period T ) resulting in global translation

as well as intra-gait (local) articulation capturing subtle deviations. The kinematic

chain offers a useful approximation of such locomotion. A humanoid, or a walking

robot, consists of a number of serial sub chains: legs, arms, and head, all connected

to the same trunk. Consider a human model H, where H has articulated parts

L1, L2, L3...LN and joints J1, J2, J3...JM . The parts Li are rigid and the joints Ji

between parts are small enough compared to the parts Li they connect. Without

loss of generality, we assume that body parts are of the unit width, forming a stick

model. The number of independent body parts and joints can vary for different

accuracy requirements.

We consider an open kinematic chain composed of parts {L1, L2, ...LK} and

joints J0, J1, ...JK connected to the base body in the order of J0, L1, J1, L2, ...JK , LK .
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The body frame coordinates system X = (X, Y, Z) is fixed in the torso region. The

position of any point P in the (X,Y, Z, t) 4D space of the kinematic chain at the

kth part at time t + 1 can be represented as a product of a serious of matrices and

the previous position at time t as:

XP (t + 1) = T (t) ·XP (t) =

k0∏
i=0

Ti(t) ·XP (t) (5.2)

where Ti(t) is the 4 ∗ 4 transformation matrix describing the articulation of

joint Ji+1 from Ji. The forward kinematic equation (5.2) gives the position in

the 4D space using the homogeneous transformation. Moreover, the matrix Ti(t)

defines both the link transformations (determined by the link geometry) and the

joint transformations (determined by the joint position). The 4 ∗ 4 matrix Ti(t) can

be decomposed as a product of a matrix Di describing a position vector and a 3 ∗ 3

rotation matrix Ri−1,i for the ith relative to the (i− 1)th part as:

XP (t + 1) = R0,1(t) ·D1(t) ·R1,2(t) ·D2(t)......Rk−1,k(t) ·XP (t) (5.3)

On one hand, from the bio-mechanical point of view, the human body keeps

the mass center in the middle during the swing of the limbs. On the other hand, from

the computer animation point of view, each joint in the body chain model generates

its own trajectory in space and time. With many physically possible combinations,

the normal articulation parameters for a pair of limbs Θ = {θl, θr} are identical

except for a phase difference of π because of the bipedal property:
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θl(t) = θr(t− T/2) (5.4)

θl(t) = {R0,1,l(t), D1,l(t), R1,2,l(t), ...Rk−1,k,l(t)} (5.5)

θr(t) = {R0,1,r(t), D1,r(t), R1,2,r(t), ...Rk−1,k,r(t)} (5.6)

Also, assuming T to be the gait rate, we have the following constraint due to

periodic motion:

θl(t) = θl(t + T ), θr(t) = θr(t + T ) (5.7)

If we slice G horizontally along the direction of body movement (assumed to

be piecewise linear) into planes, we observe a view-dependent twisted pattern. Each

row (tth) of such pattern at height Y0 is the Y th
0 row of tth instant pose for that

activity. Intuition tells us that the pattern is also periodic. The stride and step

length as well as cadence can also be directly obtained from such a pattern. These

patterns uniquely characterize an individual’s articulation in gait and activities.

Definition: An Activity Signature is the set of shapes S = {S1, S2...SY ...}

formed by slicing the Activity volume G at all heights covering the whole human

body during a complete stride. Each SY corresponding to limbs is defined as a

Double Helical Signature.

Combining G with the articulation parameters Θ, SY is given as SY0 = GΘ(X, Y, Z, t)|Y =Y0 .

If we define GΘ(X, Y, Z, t)|Y =Y0 as G(Y0), decomposing it from t = 1...T results in:

SY = [G(Y, 1)|G(Y, 2)|...G(Y, T )], where G(Y, t) denotes the subset of G at height

Y and time t. It is a 3 × n matrix that contains the coordinates of n points. SY
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is a 3 ×N matrix where N is the sum of all ns. In particular, we can divide SY (t)

into two halves when it corresponds to the DHS generated by a pair of limbs as:

SY (t) = [G(Y, t)l|G(Y, t)r]

Figure 5.4: DHS generated by a twin-pendulum model. First row: A twin-pendulum

moving across an image; second row: X-t slices containing periodic helical structure

Before providing a detailed analysis, we first give a simple example in Fig. 5.4.

In a symmetrical twin pendulum model approximating the hip-to-toe motion, each

leg is modeled as a line segment with out-of-phase oscillating angle α(t), period T

and a translation speed v. The generated slices are shown in the second row of Fig

5.4 where the twin pendulum is translating across the image from left to right. They

contain symmetries such as reflection symmetry along horizontal and/or vertical axis

and even 180◦ rotation for any α(t). Since the ’legs’ are of unit width, the signature

at time t (tth row) consists of up to two points, which are the intersections of two

chains with the plane Y = Y0. Assuming that the center O is located at pelvis with
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Y axis pointing downwards, we have

SY (t) = [G(Y, t)l|G(Y, t)r] = [P1, P2] =




Y tan α(t) + v ∗ t −Y tan α(t) + v ∗ t

0 0

Y Y



(5.8)

The pattern SY at height Y has a translational speed v along the X axis with

period T/2. This immediately suggests the applicability of the repetitive pattern

analysis using Frieze Group Theory [140]. When v equals to zero, it degenerates

into the case studied in [44, ?] where the objects are already aligned. Another

interesting fact is that the DHS patterns at different heights only differ by the

oscillating amplitude, which is decided by the distance from that plane to the center

O (pelvis complex). From a DHS at Y = Y1 one can derive the signature at another

plane Y = Y2 by simply scaling in the direction perpendicular to the translational

displacement (line (v ∗ t, t)). We can compress the volume by using only one DHS

because it carries enough information to estimate the articulation (the speed v and

style Θ(t)).

5.2.4 Animated human activity

Actual human activities are more complicated but they do share some simple

kinematic properties. We propose the following theorem relating the bipedal and

periodic nature of a real gait with Frieze Group Theory.

Theorem 1: The DHS generated by limb articulation belongs to a Frieze Group.

Proof : It is obvious that the DHS has a translational period T because of the

cyclic gait property. Given the relationship of intra-gait model configuration Θ(t) =
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Figure 5.5: Hip-to-toe kinematic chain model

{θr(t), θl(t)} for limbs as specified in Eqns. (5.6) and (6.4), the lower body’s DHS

at height Y and time t has two points at the tth row in that slice. For a given t we

have the following for the matrix of SY :

SY (t) = [G(Y, t)l|G(Y, t)r] = [G(Y, t− T/2)r|G(Y, t + T/2)l]

= [G(Y, t + T/2)r|G(Y, t + T/2)l] = [G(Y, t + T/2)l|G(Y, t + T/2)r]

(5.9)

which directly suggests a translational symmetry. The inter-gait parameters

such as speed will shift the tth row by vt along the X axis and cadence will scale

the length along t as shown in Fig. 5.5. But the DHS still preserves the symmetry

because the sheer transformation does not affect the symmetry along the shifting

direction (X = vt). One can observe from Eqn. 5.9 that the signature at tth row re-

peats itself at (t+T/2)th row. If we consider the tiles of the DHS as a set and define

the operation f as the translation (assuming that the walking direction does not

change) of one tile by multiples of (T/2, vT/2) and I as the identity transformation,

we obtain a group since it satisfies axioms such as the existence of inverse transfor-
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mation (backward translation), associativity and commutativity. In particular, the

pattern belongs to the Frieze Group because it has a period of T/2 characterized by

1D translation (v ∗ t, t).

It is apparent that different walking styles will result in various point or line

symmetries in DHS. For example, approximating each limb by a pendulum generates

the half-turn (180 rotation) symmetry in DHS. Asymmetry between the left and

right limbs changes the translational vector to (vT, T ). These observations can be

proved using arguments given above. In summary, the possible symmetries in gait

and activities are listed below.

1. Asymmetrical limbs: Translations with a vector (vT, T ) only.

2. Symmetrical limbs: Translations with a vector (vT/2, T/2).

3. Symmetrical limbs approximated by pendulums : Translations with a vector

(vT, T ) and half turns.

4. Symmetrical limbs approximated by identical pendulums : Translations with

a vector (vT/2, T/2), horizontal reflections and half turns.

5. Symmetrical limbs approximated by constant-speed pendulums : Translations

with a vector (vT/2, T/2), horizontal , vertical reflections and half turns.

The spatio-temporal planes are formed by slicing an image sequence. The

transformation of the original pattern in 4D activity volume to 3D shape sequence

with both projection (Eqn. (5.1)) and articulation (Eqn. (5.2)) are represented as

follows under orthographic projection:
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xp(t + 1) = P ·XP (t + 1) = P · T ·XP = P ·∏k
i=0 Ti(t) ·XP (5.10)

where P is the projection matrix. Besides the symmetry preserved in the slices,

there is also redundancy in gait. The following theorem establishes the efficiency of

DHS in representing the gait volume G:

Theorem 2: There exists a finite set of DHS as a compact representation for the

hip-to-toe Activity Volume G.

Proof : Given an articulation parameter set G(Θ), we consider the animated gait

by the limb part Li at different slices along the Y axis. Because of the vertical body

configuration, axis Y can be divided into intervals {Y0, Y1}, {Y1, Y2}...{YN−1, YN}

(shown in Fig. 5.5). Each interval contains the DHS generated by the n-th pair of

limb parts Ln,l, Ln,R.

The first limb pair generates DHS in horizontal planes from Y = Y0 to Y = Y1.

From Eqn. (5.2), any two points P1, P2 lying on the same part Ln share the same

articulation parameters T0, T1, ..., Tn−1 and differ only in their location vectors D.

Hence all the DHS in this interval are identical except for a scale factor in the X

direction. Given the DHS at Y = Y1, we could derive others at Y = 0, 1...Y1 − 1.

Actually this holds for any Y0 ∈ [Y0, Y1). Thus we conclude that the DHS at Y = Y0

has enough information to reconstruct or estimate the topology of G at interval

Y = 0, 1...Y1 − 1. Similar conclusion can be drawn for the volume at following

intervals [Y1, Y2), [Y2, Y3)...[YN−1, YN). Hence the DHS at {Y0, Y1, Y2, ..., YN−1} form

a complete set to reconstruct G and estimate Θ. The number of DHS in the above
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set is less than the total number of slices. In real applications the number of required

DHS is decided by the complexity of underlying kinematic motion and the accuracy

required to approximate G.

In conclusion, to capture every subtle variations in gait variations, we need to

include all the slices. But as an approximation to the topology of activity volume and

designing an efficient pedestrian monitoring system, a few slices may be adequate.

5.2.5 DHS in images

When a human performs an activity, we only observe the images at a specific

camera location. Various positions and poses result in different activity sequences.

This section studies the variation of features such as symmetry of the extracted

DHS when the subject is captured by multiple cameras. Most existing methods deal

with geometric constraints for repeated patterns between images. Schaffalitzky and

Mittal’s approaches in [?, 92] automatically detected and grouped image elements

repeating on a planar scene. Baker et al [?] proposed the epipolar-plane image (EPI)

to analysis geometric structure constraint in slices.

Because it is difficult to establish accurate correspondence between landmarks

extracted from a human body, we take an alternative approach to find the geometric

constraint. During the period of an activity, the yth row of each image contains points

generated by the intersection of the body parts (unit width) and the plane at y. De-

note the compact set of slices used for an activity as s = {s0, s1, s2, ..., sN−1} at y =

{y0, y1, y2, ..., yN−1}. For one row in a slice, denoted by R(y0, t0) = g(x, y, t) |t=t0,y=y0 ,
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the spatio-temporal point set (one for each kinematic chain in our case) is arranged

in a matrix as: sy0 = (xT
1 , xT

2 , ...xT
n ) = (x1, x2, ...xn)T , where xT

i are the coordinates

of the intersecting points and n is the number of points in row R. Generally speak-

ing, if the human was sufficiently far from the camera and could be regarded as a

planar object, there exists a homography matrix H between corresponding points

x, x′ in the images from two cameras as x′ = Hx. For two calibrated cameras, H

is of the form :H = R + 1
d
T n̂T ∈ R3×3 [?]. R and T are the rotation matrix and

translation vector between the two cameras in the world coordinates system and n̂

is the surface norm. In most surveillance applications we can assume R to be I, i.e.

there is no rotation between two cameras. The above equation reduces to:

H = I +
1

d
[Tx Ty Tz]T [n1 n2 n3] =




1 + txn1 txn2 txn3

tyn1 1 + tyn2 tyn3

tzn1 tzn2 1 + tzn3




(5.11)

where tx, ty, tz are Tx, Ty, Tz multiplied by 1/d. In our case, we are con-

sidering horizontal slices cut from the image volume. We want horizontal lines

in one image ”mapped” to horizontal lines in the other image. Hence H satisfies

[γ, 0, 0]T = H[1, 0, 0]T . This directly gives the constraint as tyn1 = 0; tzn1 = 0.

Or equivalently n1 = 0 or ty = tz = 0. The answers correspond to two camera

settings. One is when the object plane normal is in horizontal plane (n1 = 0, i.e.

vertical pose). The other is when the translation between the two cameras is along

the x direction only (i.e., a stereo rig). Actually, these two cases are common in

many surveillance applications. In our case, each row R in one slice corresponds to
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one row in an image at height y. There is no geometric equation in a general sense.

But given the vertical pose of the gait and the activities we are interested in, we

still can derive an epipolar constraint between the DHS patterns. From now on we

assume that the following facts hold:

1. A pedestrian is sufficiently far from the cameras so that he/she can be regarded

as a planar shape.

2. A pedestrian keeps a vertical pose when walking or performing a class of

activities.

Under such conditions, the surface normal n satisfies the constraint above as

n = [0, n2, n3]
T . The points from one row in one image will be mapped to the other

row, which makes H in turn change into:

H =




a1 0 a2

0 a3 a4

0 0 1




(5.12)

If we normalize the two imaged object heights, we obtain the point correspon-

dence for the pair of rows at the same height y0 and time t0. Thus the transform

between them is as:

R′(t0, y0) = H(t0)R(t0, y0), F (t0) =




a1(t0) 0 a2(t0)

0 1 0

0 0 1




(5.13)

Because of the body translation, H(t) is a time varying transformation. Since

the distance between the object and the camera is sufficiently larger than the object
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size, H becomes almost constant in a short time period. If we cascade two corre-

sponding slices, we obtain the geometry constraint for two slices s′(y0), s(y0) under

multiple views as:

s′(y0) = H s(y0) (5.14)

Let the points in the slice set for an activity sequence be represented in a

matrix form as g =
[
sy0
|sy1

|...syN−1

]
. Each sT

y0
contains all the homogeneous point

coordinates in the slice at height y0. For two sequences g, g′ captured by two

cameras for the same G, we directly obtain the epipolar constraint as:

g′ = Hg, H =




a1 0 a2

0 1 0

0 0 1




(5.15)

which states that there is a special homography connecting DHS images in

different views. Since we already scale the sequence in vertical direction and pair

the corresponding rows, H only contains the horizontal translation and scaling. Such

a relationship in Eqn. (5.15) leads to several conclusions. First, since 1D scaling

and translation does not change the isomorphism in a plane [140], the symmetries

are preserved in the projection from the 4D activity volume G to the 3D sequence

g. We can directly apply Theorems1, and 2 in image sequences. The parameter

a2 becomes zero when the object sequence is aligned, which corresponds to the case

studied in [44] and [?]. When the view angle changes from lateral to radial, the
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scaling may degenerate the DHS into a line. Second, it provides a solution to match

DHS patterns in images under different views. Actually most of the applications

aim at analyzing gait and activity at a distance and hence the assumptions are

almost always satisfied. However, it should be noticed that the planar assumption

is an approximation. The actual human body is not of unit width and occlusion can

violate the assumption. Some of the cases are studied in Sec. 5.3.3.

5.3 DHS Extraction

The activity volume results from both intra- and inter- gait motion. Since

analysis in the original space or in framed-up sequence can be represented by various

global body motion vector v, we no longer differentiate between the two cases. To

focus on the extraction method, we first apply a preprocessing step as in [85] to

estimate the global trajectory of heads and align the center of every row of DHS to

compensate for inter-gait motion.

5.3.1 1D curve approximation

Inspired by the two Theorems in Sec 5.2.4, we try to embed 1-D curves for

DHS and stack these curves to generate an approximation to the topology of the

activity volume G. Definitions of several nonlinear curves have been evaluated in [?].

We use a definition based on self-consistency, i.e., the DHS curve should coincide at

every position with the projected expected value of the pixels from an articulating

human body. Verbeek et al proposed a k-segment algorithm [?] as an efficient local
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linear model fitting method. However, a disadvantage with their approach is that for

self-intersecting data, it often fails to capture the complete structure. An example

is shown in Fig. 5.6. We directly applied Verbeek’s algorithm but failed to generate

meaningful curves. Unfortunately, self-intersection is inevitable in DHS under most

view points.

0 1 2 3 4 5 6 7 8 9 10
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Figure 5.6: Unsuccessful learning of the DHS by directly applying principal curve

analysis. Left: Original DHS; Middle: Manually labeled DHS; Right: Fitted princi-

pal curves.

To solve this problem, we adopt a divide-and-conquer strategy. We divide a

DHS within a stride into four quadrants so that we can separate it into non-self-

intersecting curves. Because it belongs to a Frieze Group and has a translational

periodicity (T/2) and an approximate horizontal reflection as illustrated in Fig.

5.7, Theorem 1 guarantees the success of such an approach. Each quadrant image

contains a single curve capturing the articulation of gait activities in a stride for one

limb as in Fig. 5.7.
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Figure 5.7: Learning DHS by using Frieze Group symmetry. Left: A complete DHS.

Middle: Dividing into strides. Right: Dividing into quadrants.

5.3.2 Extraction of the helical pattern

Following Theorem 1 and [?], the DHS (white pixels in left column of Fig.

5.8) in a quadrant is modeled as

p(x) =

∫ t0

0

p(x|t)p(t)dt +

∫ T/2

t0

q(x|t)q(t)dt, (5.16)

where t is the latent variable uniformly distributed over a quadrant and p(x|t) and

q(x|t) are the distributions of features at point t. Instead of starting with one

line segment corresponding to the most dominant principal component and then

increasing the number of segments gradually as in [?], Theorem 1 suggests the use

of only two segments. So if t0 denotes the time when the DHS approaches the

maximum oscillating amplitude, then only one t0 exists in each quadrant. The

segments are defined as: s1 = {s(t)|t ∈ (0, t0)}, s2 = {s(t)|t ∈ (t0, T/2)}. After

defining a distance metric, the principal curve analysis algorithm will recursively

look for the curve that minimizes a cost function. The distance from a point in the
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Figure 5.8: Learning DHS in quadrant. Left: helical pattern in quadrants, Middle:

line segment approximation; Right: Extracted DHS curves

quarter slice to any of the line segment is defined as:

d(x, si) = minsi(t)∈si
||si(t)− x||. (5.17)

Our goal is to find two segments s1 and s2 such that the overall distance is minimized

over all DHS data points:

Cs1,s2 =

∫ t0

0

d(x, s1)
2dt +

∫ T/2

t0

d(x, s2)
2dt. (5.18)

We connect segments into polygonal lines and form a smoothed curve for each

limb. The results of learning the structure from quadrants are shown in Fig. 5.8.

The fitted curves are shown in red in the right column. We assemble these curves

to restore a complete DHS as shown in Fig. 5.9. There is a significant improvement

when compared to Fig. 5.6, showing the effectiveness of Theorem 1. Actually the

whole process does not require the compensation of global body translation. It can

work directly on slices cut from activity volume with global body translation.
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Figure 5.9: Example of extracting DHS. (a),(b) connected curves for two legs in one

DHS; (c) superimposed DHS; (d) degenerate DHS for torso.
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5.3.3 Degenerate DHS

The extraction algorithm works well for limbs (arms and legs). For torso and

head regions we do not observe strong periodicity. We simplify the twisted helix

into a single-line and apply it to the upper body slices as in Fig. 5.9(d). It should be

noted that the magnitude of swing for the two limbs will decrease from the lateral

view to the frontal view and approach the minimum in the latter case. Thus the

motion signature will degenerate to a straight ribbon when the target is moving

towards/away from the camera.
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Chapter 6

Applications of Double Helical Signatures

6.1 Overview

A complete pedestrian monitoring system must be capable of detecting and

segmenting humans and their body parts and recognizing events related to carrying

a backpack, briefcase etc. Most of the current approaches are based on x-y domain

(frames) [39, 40, 56, 57, 62, 146, 147, 148, 153, 152, 25, 88]. In this section, we present

a new system based on analyzing DHS in planes parallel to the ground, which is

especially useful for applications such as surveillance in parking lot or indoors.

6.2 Pedestrian Segmentation

The goal in this step is to generate the silhouettes of a pedestrian and to label

the body parts. To achieve this we need to integrate segmentation and learning. We

use DHS to provide a distance constraint based on the fact that pixels close to the

curves are more likely to belong to the body. Hence it acts as a ’temporal skeleton’

just like the real skeleton for the human body. While the skeleton of a human body

is hard to extract, the DHS is easier to obtain as described in Sec. 5.3. Intuitively,

describing each pixel by its appearance and closeness drives the background regions

away from targets and makes segmentation easier than using appearance alone. The
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input to the clustering algorithm is a feature vector that combines the pixel intensity

(or color) and the distance measure calibrating the closeness to the DHS. Many

major clustering method work well. We invoke the spectral clustering algorithm [?]

and iterate the extraction and clustering steps for each slice. Spectral optimization

eventually leads to eigenvectors. At the core of spectral clustering is the Laplacian

of the graph adjacency (pairwise similarity) matrix, represented by the similarity in

appearance and distance closeness. We use Theorem 2 to speed up the process: the

extracted DHS for one slice is used as the initial condition for the one above it. The

algorithm is described as below.

• Input: Slices cut from an activity volume

• Output: Silhouettes with body parts labeled

• Algorithm:

1. Divide each slice into strides and each strides into four quadrants.

2. Initialize the DHS and fit principal curves for every quadrant image. Con-

nect and smooth into right and left spirals for the two limbs respectively.

3. Use the extracted DHS for spectral clustering.

4. Re-calculate the intersection points from the two spirals and re-partition

the slice.

5. Repeat steps 2-5 until convergence or a pre-specified number of iterations

is reached for each slice.
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6. Smooth and stack the signatures from each slice and output the mask

with labeled body parts.

An interesting issue is the initialization of this iteration. In the current im-

plementation, we use the detected gait period to generate a generic DHS tile made

up of two connected lines for each quadrant as in Sec. 5.2 Fig. 5.4. The trajectory

serves as the center line for the Frieze gait pattern. The only degrees of freedom are

t0 and the oscillating magnitude x0 in each quadrant. In our experiment, we vary

(t0, x0) to generate different DHS and select initial condition as the one with the

minimum normalized intensity variance within it. The assumption behind such a

method is justified by the fact that the DHS appearance is the temporal repetition

of the target at a given height. It is more like a single Gaussian than the appearance

distribution in the whole human body.

We use a shape based pedestrian detector reported in [52] to locate the boxes

only at key frames (every 2 seconds in our case ). The boxes in the intermediate

frames are linearly interpolated, assuming that humans move at a constant speed

between the key frames.

6.2.1 Simultaneous segmentation and body part labeling

We tested the algorithm on videos acquired from static and moving sensors.

The frames are of size 720 ∗ 480 from interlaced color cameras. Most of the objects

we try to segment contain 30 ∗ 60 to 50 ∗ 100 pixels (An example of the original

frame is shown in Fig. 6.2(c)). Fig. 6.1 shows the result for a moving camera
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(a)

(b)

(c)

Figure 6.1: Pedestrian segmentation for a video sequence captured by a moving

camera. (a) X-t slices for y = 50, 60, 70, 80; (b) silhouettes; (c) comparison of

segmentation results between not using DHS (left binary images ) and using the

DHS as a feature (right binary images).
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and provides a comparison between the proposed method using DHS+apperance as

features and the same method using only the appearance. A problem in moving

object segmentation is that similar color in background and foreground will corrupt

the silhouettes as shown in the left of Fig. 6.1 (c) (the misclassified region close to

the pedestrian’s back). This cannot be solved by applying morphological operators.

The motion signature in the X-t slice helps to reject the background pixels because

they are far away from DHS skeleton.

Next we show the results for the USF data in Fig. 6.2(a), (b) and compare

them to a state-of-the-art background substraction (BGS) methods [106] widely

used. The BGS methods are sensitive to object size, shadow, non-rigidity and

lighting changes and may contain holes and spurs. To demonstrate the improvement,

we enlarge and compare the results in Fig. 6.2(c). Over smoothing makes the BGS

method merge the two legs and insufficient smoothing may leave holes in the human

body. But our approach correctly segments them due to the distance constraint

introduced by DHS. Also, our algorithm is robust to shadows due to the fact that

shadows do not exhibit periodicity. In summary, although serval pre- and post-

processing techniques are available to improve the quality of BGS methods, they

share some common disadvantages:

1. Pixel based background substraction methods do not effectively model spatial

and temporal neighborhoods.

2. Morphological operations do not consider the coherence of body articulation.

3. Parameter tuning may result in better performance for a given video but may
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(a)

(b)

(c)

Figure 6.2: USF sequence 03507C0AL segmentation: (a) extracted DHS; (b) silhou-

ettes generated for a complete stride; (c) comparison of segmentation results between

background substraction [106] (left binary images) and the proposed method (right

binary images).
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fail for others.

For example, a strong post processing step may fill holes but over-smooth the

contours, while a weak one may leave too many spurious edge or holes along and

inside the body. The main improvement is due to the accurate capture of the limb

positions which are crucial for gait and activity analysis. Holes or spurious areas

are much less likely to appear in our segmentation result due to using DHS as a

skeleton. To have a quantitative comparison, we use the ground truth silhouettes set

to compare the accuracy (% of misclassified pixels) of the two methods for a subset

of USF data containing 10 subjects in Fig 6.3. Our method generates consistently

better results.

Furthermore, we present the accuracy of the part labeling to the ground truth

provided in [106] as shown in Fig. 6.4. An advantage of our method is due to

exploiting the spatio-temporal coherence of human motion. But we can infer the

part location when they are completely occluded by body such as the right arm of

the target.

6.2.2 Robustness analysis

In the algorithm pipeline, each step may be sensitive to noise. For example,

unreliable period detection or asymmetry between left and right legs will yield in-

accurate quadrant partitions. Since we re-partition between each iteration from the

previous step, the extracted DHS will eventually converge to the true location in

our experiment. In our experiment, we found that 2-3 iterations are sufficient.
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Figure 6.3: Comparison of segmentation accuracy between our method (red)

and background substraction (blue) for selected USF Sequences. (02463G2AR,

02539G1AR, 03500G0AR, 03507C0AL, 03509C0AL, 03516G0AR, 03521G0AR,

03526G0AR, 03529G0AR, 03532G0AR)

Figure 6.4: Comparison of body parts labeling accuracy for USF Data. The color

boxes on the body parts show the labeling results at the slice at various heights. We

successfully label legs and one arm. The other arm is occluded during the walking

and cannot be labeled.
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Figure 6.5: Robustness to view points. Each row contains original and segmented

DHS for torso and limbs under different views for the USF sequence 03507C0AR.

In order to demonstrate robustness, we first present the results of evaluation

at different viewing angles (or equivalently body movement directions) in Fig. 6.5.

View dependency is of importance for human motion [114, 102, 103, 113]. The

viewing angle varies from 0 (lateral) to π/2 (radial) and the proposed method au-

tomatically handles the changes in DHS magnitude by taking the degenerate case

into consideration and gives satisfactory results.

Secondly, we present results for different sizes and frame rate by applying

various down-sampling ratios in Figure. 6.6. The original object size is greater than

3200 pixels (based on a bounding box of 80*120 ) in a 30 frames per second ( fps)

video, which corresponding to a DHS size of 80*80 in one stride. The object size and

sampling rate is reduced by 2 (40*60, 15 fps) and by 4 (20*30, 8 fps) respectively.
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Figure 6.6: Robustness to size. Each group contains original and segmented image

with extracted DHS under different sizes and video rates for the USF sequence

02463C0AR.

We obtain consistently correct segmentation and labeling results for the legs and

torso even when the target size is reduced to 20x30 at a frame rate of 8fps. However,

during down-sampling, the labeling for upper limbs is successful only when the size

is above 40*60 because the arms can be hardly separated from the torso at lower

resolution. The results demonstrate that the segmentation performs well for objects

at close and middle range (less than 50 meters in our experiments) and various video

frame rates.

6.3 Severe Occlusion Handling

In most segmentation/tracking algorithms the trackers are unable to accu-

rately label walkers and locate their body parts during severe occlusion. The invisi-

ble parts make it hard to extract the body contour. An example is given in Fig. 6.7
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where two targets walk towards each other and one completely occludes the other

in some frames.

Figure 6.7: Severe occlusion for pedestrians. First row: original sequences; Second

row: extracted mask.

The DHS provides a promising approach to handle occlusion. The intuition

behind our approach is that helical pattern should be consistent in time because of

periodicity and symmetry. To classify the foreground pixels in each x− t slice to the

walker they belong to during occlusion, we compare them with the different DHS

using a Bayesian classifier and assign them to the most similar walker. The details

of the algorithm is given below:

1. Obtain the trajectories for each individual 1, 2, ...n by detecting lines of heads

in slices. Notice that if a pedestrian changes his walking direction, his trajec-

tory will be split.

2. Occlusion Oi(j1, j2...) i = 1, 2....m are detected by finding the intersections

of any two trajectories. i is the occlusion segment index and j1, j2... are the

individuals’ indices.

3. Extract DHS for each object using the method proposed in Sec. 5.3.
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4. For each occlusion Oi, repeat the following steps:

5. Divide the x-y-t data for occlusion Oi into x-t slices

6. For each individual, translate its extracted DHS into the occlusion slice

7. For each pixel in a slice, test its probabilities in all the corresponding objects’

DHS distribution and assign it to the one giving the highest probability.

The occluded pixels can be restored almost perfectly by filling with the un-

occluded DHS. An example is given in Fig. 6.8, where our algorithm precisely

captures the contour with one walker completely behind the other. A limitation of

our algorithm is that the prediction fails when the targets change their gait during

occlusion. This could be handled by allowing the DHS to deform during occlusion.

Figure 6.8: Segmentation under severe occlusion. First column: the original and

extracted foreground at two different heights; Second column: separated individual

DHS; Right two images: two frames of restored silhouettes.
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Figure 6.9: More results for segmentation under severe occlusion. Notice that even

the two pedestrians in the right are wearing same color pants, the proposed method

still successfully segments them from occlusion by using DHS.

6.4 Matching

6.4.1 Across cameras

Because of the equivalency of viewing angle change and pose change in gener-

ating image sequences, we study them in a unified framework. As in Eqn. (5.14),

the normalized x− t DHSs in various views (poses) are related to a specific transfor-

mation. If we can estimate such an H and measure the quality of restored geometry,

we obtain a similarity measure between two activity sequences. There are quite a

few methods available for solving Eqn. (5.14) given point coordinates. We take

the method reported in [?] to estimate H by using a set of linear equations. After

calculating the homography H, we obtain the error as the overall average point wise

difference for a set of DHS slices s = {s0, s1...sN−1} at y = {y0, y1...yN−1} for a pair

of gait sequences g and g′ assuming that they are from the same volume G:
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Table 6.1: USF data: DHS Matching across cameras.

Error% 02463G2AR 02539G1AR 03500G0AR 03507C0AR 03509C0AR

02463G2AL 1.3 5.1 7.2 4.0 5.0

02539G1AL 3.7 1.0 5.2 7.5 5.0

03500G0AL 7.2 2.7 1.1 10.0 5.0

03507C0AL 4.1 5.3 7.9 1.4 5.4

03509C0AL 5.5 7.1 8.4 5.0 1.5

Error(g, g′) =
1∑
Ni

∑
si∈s

∑
p∈si

|xp − F̂ x′p|2 (6.1)

where F̂ is the estimated transformation and Ni is the number of points in slice

Syi
. To validate the proposed method, we present the results for matching targets

from a subset of USF data (02463G2AR, 02539G1AR, 03500G0AR, 03507C0AR,

03509C0AR) and (02463G2AL, 02539G1AL, 03500G0AL, 03507C0AL, 03509C0AL)

captured by two cameras. The confusion matrix (not symmetrical) is given in Table.

6.1. In this experiment we divide each sequence into clips containing DHS for one

stride. Each entry in the table presents the average Error. It shows that the

proposed method consistently matches the DHS across cameras and does not confuse

with other subjects.

6.4.2 Across time

When the two clips to be matched are from similar viewing directions but have

different speeds, the DHS from the same individual will have different length. This
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may due to videos captured at various time instants, under different environmental

conditions etc. The matching above considers translation and scale change both in

spatial and time, which works for DHS from multiple views for the same individual

at the same time. However, if the two DHS are captured at different times, the

matching may become nonlinear. Eqn. 5.14 is not enough to incorporate the subtle

change in gait.

Temporal alignment deals with matching two sequences with different lengths

and plays a key role in human identification by gait. Among many existing methods,

Dynamic Time Warping (DTW) is the most used technique for non-linear alignment.

It uses dynamic programming to find the optimal alignment of two sequences of

different lengths. But a major challenge is accurately determining the location of

start and end points in samples. In our case the complete DHS are partitioned into

strides, which makes the DTW [?] an effective tool. DTW yields an accumulated

distance matrix (AD matrix) representing the best possible match between the input

pattern and the template. The DHS pattern giving the lowest accumulated distance

is the best match for the input pattern.

A challenge in DTW for temporal multi-dimensional signal warping is the cost

involved to compute the minimum-cost assignment path, which also holds for multi

dimensional activity space. But since we decompose g into slices and each DHS

contains two spirals for left and right limbs, we can view them as two 1D temporal

signals s(t)l, s(t)r. 1D DTW is a standard and efficient process given the end points.

To compare two DHS at the same height from two clips, the cost function is given

as:
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Figure 6.10: DHS matching using DTW for gait activities with different lengths.

D(s, s′) = min{d(s(t)l, s
′(t)l) + d(s(t)r, s

′(t)r), d(s(t)l, s
′(t)r) + d(s(t)r, s

′(t)l)}(6.2)

where d(s(t), s′(t)) is the DTW cost function for two single spirals and D(s, s′)

is the overall cost for a DHS containing multiple spirals. Each DHS contains two

spirals for left and right limbs. We compare the two possible permutations and

choose the one with minimum error. When a set of DHS is used to represent an

activity g, we average the cost for each and write the cost function as:

D(g, g′) =
1

N

N∑

i=1,si∈g,s′i∈g′
D(si, s

′
i) (6.3)

Comparing two sequences by measuring similarity in DHS is a major advan-

tage in our framework. The shape sequence is represented by a compact set of 1D

temporal signal pairs. An example of the proposed method is given as Fig 6.10.

In our experiment, only 3 DHS are used. They are at heights (0.4, 0.6, 0.8) in the

bounding boxes. The confusion matrix (symmetrical) are given in Table. 6.2. This

experiment suggests the potential of using DHS for human identification.

119



Table 6.2: USF data: DHS Matching across Time.

D(g, g′) 02463G2AR 02539G1AR 03508G0BR 03521G0AR 03603G0AR

02463G0AR 2.1 6.2 6.3 5.7 7.0

02539G0AR 6.2 1.7 5.7 6.7 5.0

03508G1AR 6.3 5.7 3.1 8.0 6.7

03521C0AR 5.7 6.7 8.0 2.3 6.4

03603C0AR 7.0 5.0 6.7 6.4 1.9

6.5 Load Carrying Event Detection

In activity analysis, gait abnormalities are typically detected by measuring

changes from silhouettes or landmark trajectories [16, 53, 57, 55]. Methods in these

domains will be easily affected by segmentation and tracking errors due to non-

rigidity and occlusion. In many cases, it is difficult to separate the person and the

object he/she is carrying using shape alone or by tracking body points. Variations in

viewing directions make it even harder. In this section, we show how the symmetries

in a small set of DHS can be used for detecting load carrying events. Our approach

does not require segmentation or landmark tracking. It is effective even for moving

platforms, where other approaches depending on silhouettes do not work that well.

In the proposed model in Fig 5.5 in Sec. 5.2.3, the motion of the limbs is

represented as a pair of kinematic chains oscillating out of phase. The hands would

like to maintain the center of gravity above the point of contact and minimize the

energy to balance the body during bi-pedal leg swing. We expect that the presence

of a sufficiently heavy object will (at least in hand regions) distort the DHS pattern.
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Figure 6.11: Comparison of DHS in the hand regions for different activities.

Theorem 2 enables us to look at only one slice to understand the arm articulation.

Theorem 1 enables us to use the presence and absence of Frieze Group symmetries

to classify events. We list three activities: natural walking, carrying an object with

one hand, holding an object in hands and examine the different symmetries in the

DHS in Fig. 6.12 associated with activities. For example, vertical symmetry exists

for all events but only natural walking has horizontal symmetry. In summary, one

side of the signature disappears when one carries objects in one hand and the whole

DHS disappears when holding objects in arms.

To prove the presence and change of symmetries due to different object car-

rying activities, we invoke the kinematic chain model in Section 5.2.3. Each limb is

described by a kinematic chain L1, ..., Lk and corresponding articulation T0, T1, ...Tk.

Carrying an object will distort the symmetrical gait and hence change the articula-

tions of limbs. Assume that a human is carrying a briefcase in one of his/her hands,
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the body movement will adapt the gait to such load change and minimize the energy

consumption. The periodicity remains but we no longer observe the same symmetry

as in natural walking:

θl(t) = θl(t + T ), θr(t) = θr(t + T ) θl(t) 6= θr(t− T/2) (6.4)

Such a change results in a new translational vector T in DHS. Similarly when the

target is holding an object in both arms, the two halves of the DHS degenerate into a

line since the arms do not oscillate anymore. By comparing the translational vector

as well as symmetries in hand DHS and leg DHS, we can detect those activities.

We first apply 1D autocorrelation along t axis for each slice with sufficiently

long length (2 seconds) after compensating for global motion. Local peaks are ex-

tracted within a local neighborhood (5*5 in our case) representing the lattices. The

distances between adjacent peaks in a DHS is the vector for translational symmetry.

If the two vectors for hands and legs are the same, we reject it from further analysis

and classify it as hand-free. If we do not observe strong horizontal symmetry in the

hand DHS, we label the event as ’holding in two hands’.

We then transform the original DHS slice S by various symmetry rules (such

as glide reflection or half turn) along the trajectory to obtain a transformed slice S ′.

Then we compute the average residual error between S and S ′. If the error is less

than a preset threshold, the specific symmetry is said to exist and the event is labeled

as ’holding in one hand’. In our experiment we considered the slices around 1/4 of

the body height from the head as hand DHS and around 3/4 as leg DHS. We have

tested on 30 sequences collected by cameras attached to a building and 63 ground-
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Figure 6.12: Examples of different activities: four slices (0.25,0.35,0.75,0.85 of object

height) are chosen for analysis and are illustrated in the left corner with activity

name superimposed. The two leftmost insets show DHS of elbow and wrist; the two

rightmost insets show DHS of the knee and ankle.

based sensor sequences recorded for various activities, distances, viewing angles,

backgrounds and lightings. All the video segments were collected from azimuth

angles from π/2 to π/6 and elevation angles from 0 to π/3. The preliminary results

are shown in Fig. 6.12.

Table 6.3 presents detection rates (the percentage of observed events that

were correctly classified) and false alarm rates (the percentage of events that were

incorrectly classified). We list 3 events: None for natural walking, One hand for

carrying objects, Arms for holding in arms. The average detection rate is 88.7%

and the false alarm rate is at 11.7%. Most of the false alarms are due to the self-

occlusion of the human body parts, which suggests using multiple cameras in future
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Table 6.3: Outdoor Event Classification. First row: 3 categories; Second row: total

number for each category; Each cell: the number classified as the index in the left.

None One hand Arms False alarm

Total 40 31 22 N/A

None 37 1 2 7.5%

One hand 2 27 1 10.0%

Arms 1 3 19 17.4%

Recognition % 92.5% 87.1% 86.4%

work. The proposed method could be directly applied with line scan based LASER

or range sensors without capturing the whole scene. By doing so, computational

power and resource is dramatically reduced. The limitation of this method is when

the target is walking towards the camera. The DHS degenerated into a ribbon

and no strong symmetry is observed. To attack such challenges, shape cue may be

integrated into our system.

Furthermore, we examine the activities of leaving or picking objects by check-

ing the symmetry change and the results are shown in Fig. 6.13. It demonstrate the

power of DHS to differentiate the symmetry change due to carrying objects, which

is of importance in the security surveillance.

6.6 Summary and Discussion

We presented a method for understanding the gait and activity volume using

DHS in layered slices. The proposed method naturally integrates temporal body
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Figure 6.13: Examples of recognizing activities as leaving and picking up objects.

Each row shows the DHS change before and after picking an object.

dynamics with 2D shape information. It does not require silhouettes and feature

tracking. Our approach has two major features. First, the twisted pattern belongs

to a Frieze Group, enabling separation of self-intersecting curves for robust and

efficient learning. Second, only a finite set of DHS is needed for compact and

sufficient representation for activity volume topology estimation and articulation

parameters estimation such as cadence, step/stride length and style.

Moreover, we have implemented a pedestrian monitoring system capable of

simultaneously segmenting and labeling body parts, matching across various cam-

eras and time as well as recognizing load carrying events. The experimental results

demonstrate the effectiveness and robustness under lighting changes, shadows, cam-

era motion, various viewing angles as well as severe occlusions. The approach is ro-

bust against several key factors such as body movement direction, viewing angle and
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target size. The work indicates that considering human motion in spatio-temporal

domain is an efficient method to analyze gait and activities.

126



Chapter 7

Conclusions

7.1 Summary

This dissertation presented several approaches for human motion modeling and

analysis with specific focus on the applications in surveillance. Our general approach

can be understood in terms of three aspects. The first aspect is to model gait by

periodic signals. The second aspect is to use kinematic and geometric constraints

to characterize the articulation within a period. The third aspect is to present a

compact representation using video sequences to analysis human motion in space

and time simultaneously. In summary, here are some of the key contributions made

in the thesis:

1. In Part I, we proposed a new algorithms to extract the periodic motion pattern

and used it as a cue for pedestrian classification. It is very compact yet efficient

encoding of the gait. In the literature, usually periodicity based detection

methods are designed using shape or contour. This assumption might be hard

to satisfy in moving platform or when the pixels on target is small. By using

the cascaded hypothesis testing and symmetry constraints, we can achieve a

robust algorithm that recovers the periodicity under more general and difficult

setting, i.e., when the platform is moving under different illuminations. In

particular, this algorithm can handle IR as well as visible images with object
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at a distance and yields a robust performance.

2. The MPGA approach in Chapter 2 is image-based and does not require explicit

3D body model. It models the bipedal swing of limbs and is computationally

efficient and is also able to deal with images of small size. In contrast, tradi-

tional 3D model-based approaches are computationally intense and need more

pixels on the target. By employing a PLL module, it could track the gait rate

continuously.

3. Periodic analysis of human gait in literature requires long sequences to provide

sufficient temporal information. In Part II Chapter 3 we used a kinematic

model which characterizes the high order statistical deformations of a human

body. The bipedal movement suggests a strong attribute: the X Junction in

space and time to act as an effective feature. This specific feature enables the

analysis human gait within a short time of period.

4. The analysis of redundancy in gait signatures from different heights is pre-

sented in Part III, Chapter 5. The proposed method naturally integrates

temporal body kinematics with 2D shape information. It does not require

silhouettes and feature tracking. Our approach has two major features. First,

the twisted pattern belongs to a Frieze Group, enabling separation of self-

intersecting curves for robust and efficient learning. Second, only a finite

set of DHS is needed for compact and sufficient representation for activity

volume topology and estimation of articulation parameters such as cadence,

step/stride length and style.
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5. In Chapter 6, we presented a pedestrian monitoring system capable of simulta-

neously segmenting and labeling body parts, matching across various cameras

and time as well as recognizing load carrying events. The experimental results

demonstrate the effectiveness and robustness under lighting changes, shadows,

camera motion, various viewing angles as well as severe occlusions. The ap-

proach is robust against several key factors such as body movement direction,

viewing angle and target size. The work indicates that considering human

motion in spatio-temporal domain is an efficient method to analyze gait and

activities.

6. We presented, in Chapter 7, a summary of how we model periodic human

motion and articulation in space and time in video sequences. This framework

provides a complete description of activities related to human waling motion.

Various current schemes are just instances of this generic framework.

7.2 Future Directions

Human motion analysis and recognition can be expanded in many ways. The

following just lists some potential avenues to explore in the context of the proposed

approaches.

The approaches taken in this dissertation by no means cover the whole spec-

trum of the unconstrained human motion analysis problem and address only a small

portion of all available issues. Existing todays video surveillance systems while pro-

viding the basic functionality, fall short of providing the level of information need to
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change the security paradigm from investigation to preemption. Automatic visual

analysis technologies can move today’s video surveillance systems from the inves-

tigative to preventive paradigm. Smart Surveillance Systems provide a number of

advantages over traditional video surveillance systems, including:

1. the ability to preempt incidents – through real time alarms for suspicious

behaviors

2. enhanced forensic capabilities – through content based video retrieval

3. situational awareness – through joint awareness of location, identity and ac-

tivity of objects in the monitored space

There are still a number of technical challenges that need to be addressed.

These include challenges in robust object detection, tracking objects in crowded

environments, challenges in tracking articulated bodies for activity understanding,

combining biometric technologies like face recognition with surveillance to achieve

situational awareness. In addition, performance characterization of surveillance sys-

tems is very challenging and requires significant amounts of annotated data. Typi-

cally annotation is a very expensive and tedious process. Additionally, there can be

significant errors in annotation. All of these issues make performance evaluation a

significant challenge.
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