391 research outputs found

    A Survey on Few-Shot Class-Incremental Learning

    Get PDF
    Large deep learning models are impressive, but they struggle when real-time data is not available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks from just a few labeled samples without forgetting the previously learned ones. This setup can easily leads to catastrophic forgetting and overfitting problems, severely affecting model performance. Studying FSCIL helps overcome deep learning model limitations on data volume and acquisition time, while improving practicality and adaptability of machine learning models. This paper provides a comprehensive survey on FSCIL. Unlike previous surveys, we aim to synthesize few-shot learning and incremental learning, focusing on introducing FSCIL from two perspectives, while reviewing over 30 theoretical research studies and more than 20 applied research studies. From the theoretical perspective, we provide a novel categorization approach that divides the field into five subcategories, including traditional machine learning methods, meta learning-based methods, feature and feature space-based methods, replay-based methods, and dynamic network structure-based methods. We also evaluate the performance of recent theoretical research on benchmark datasets of FSCIL. From the application perspective, FSCIL has achieved impressive achievements in various fields of computer vision such as image classification, object detection, and image segmentation, as well as in natural language processing and graph. We summarize the important applications. Finally, we point out potential future research directions, including applications, problem setups, and theory development. Overall, this paper offers a comprehensive analysis of the latest advances in FSCIL from a methodological, performance, and application perspective

    A Survey on Few-Shot Class-Incremental Learning

    Full text link
    Large deep learning models are impressive, but they struggle when real-time data is not available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks from just a few labeled samples without forgetting the previously learned ones. This setup easily leads to catastrophic forgetting and overfitting problems, severely affecting model performance. Studying FSCIL helps overcome deep learning model limitations on data volume and acquisition time, while improving practicality and adaptability of machine learning models. This paper provides a comprehensive survey on FSCIL. Unlike previous surveys, we aim to synthesize few-shot learning and incremental learning, focusing on introducing FSCIL from two perspectives, while reviewing over 30 theoretical research studies and more than 20 applied research studies. From the theoretical perspective, we provide a novel categorization approach that divides the field into five subcategories, including traditional machine learning methods, meta-learning based methods, feature and feature space-based methods, replay-based methods, and dynamic network structure-based methods. We also evaluate the performance of recent theoretical research on benchmark datasets of FSCIL. From the application perspective, FSCIL has achieved impressive achievements in various fields of computer vision such as image classification, object detection, and image segmentation, as well as in natural language processing and graph. We summarize the important applications. Finally, we point out potential future research directions, including applications, problem setups, and theory development. Overall, this paper offers a comprehensive analysis of the latest advances in FSCIL from a methodological, performance, and application perspective

    Learning Discriminative Visual-Text Representation for Polyp Re-Identification

    Full text link
    Colonoscopic Polyp Re-Identification aims to match a specific polyp in a large gallery with different cameras and views, which plays a key role for the prevention and treatment of colorectal cancer in the computer-aided diagnosis. However, traditional methods mainly focus on the visual representation learning, while neglect to explore the potential of semantic features during training, which may easily leads to poor generalization capability when adapted the pretrained model into the new scenarios. To relieve this dilemma, we propose a simple but effective training method named VT-ReID, which can remarkably enrich the representation of polyp videos with the interchange of high-level semantic information. Moreover, we elaborately design a novel clustering mechanism to introduce prior knowledge from textual data, which leverages contrastive learning to promote better separation from abundant unlabeled text data. To the best of our knowledge, this is the first attempt to employ the visual-text feature with clustering mechanism for the colonoscopic polyp re-identification. Empirical results show that our method significantly outperforms current state-of-the art methods with a clear margin

    VGSG: Vision-Guided Semantic-Group Network for Text-based Person Search

    Full text link
    Text-based Person Search (TBPS) aims to retrieve images of target pedestrian indicated by textual descriptions. It is essential for TBPS to extract fine-grained local features and align them crossing modality. Existing methods utilize external tools or heavy cross-modal interaction to achieve explicit alignment of cross-modal fine-grained features, which is inefficient and time-consuming. In this work, we propose a Vision-Guided Semantic-Group Network (VGSG) for text-based person search to extract well-aligned fine-grained visual and textual features. In the proposed VGSG, we develop a Semantic-Group Textual Learning (SGTL) module and a Vision-guided Knowledge Transfer (VGKT) module to extract textual local features under the guidance of visual local clues. In SGTL, in order to obtain the local textual representation, we group textual features from the channel dimension based on the semantic cues of language expression, which encourages similar semantic patterns to be grouped implicitly without external tools. In VGKT, a vision-guided attention is employed to extract visual-related textual features, which are inherently aligned with visual cues and termed vision-guided textual features. Furthermore, we design a relational knowledge transfer, including a vision-language similarity transfer and a class probability transfer, to adaptively propagate information of the vision-guided textual features to semantic-group textual features. With the help of relational knowledge transfer, VGKT is capable of aligning semantic-group textual features with corresponding visual features without external tools and complex pairwise interaction. Experimental results on two challenging benchmarks demonstrate its superiority over state-of-the-art methods.Comment: Accepted to IEEE TI

    Recent Advances in Multi-modal 3D Scene Understanding: A Comprehensive Survey and Evaluation

    Full text link
    Multi-modal 3D scene understanding has gained considerable attention due to its wide applications in many areas, such as autonomous driving and human-computer interaction. Compared to conventional single-modal 3D understanding, introducing an additional modality not only elevates the richness and precision of scene interpretation but also ensures a more robust and resilient understanding. This becomes especially crucial in varied and challenging environments where solely relying on 3D data might be inadequate. While there has been a surge in the development of multi-modal 3D methods over past three years, especially those integrating multi-camera images (3D+2D) and textual descriptions (3D+language), a comprehensive and in-depth review is notably absent. In this article, we present a systematic survey of recent progress to bridge this gap. We begin by briefly introducing a background that formally defines various 3D multi-modal tasks and summarizes their inherent challenges. After that, we present a novel taxonomy that delivers a thorough categorization of existing methods according to modalities and tasks, exploring their respective strengths and limitations. Furthermore, comparative results of recent approaches on several benchmark datasets, together with insightful analysis, are offered. Finally, we discuss the unresolved issues and provide several potential avenues for future research

    Soft Biometric Analysis: MultiPerson and RealTime Pedestrian Attribute Recognition in Crowded Urban Environments

    Get PDF
    Traditionally, recognition systems were only based on human hard biometrics. However, the ubiquitous CCTV cameras have raised the desire to analyze human biometrics from far distances, without people attendance in the acquisition process. Highresolution face closeshots are rarely available at far distances such that facebased systems cannot provide reliable results in surveillance applications. Human soft biometrics such as body and clothing attributes are believed to be more effective in analyzing human data collected by security cameras. This thesis contributes to the human soft biometric analysis in uncontrolled environments and mainly focuses on two tasks: Pedestrian Attribute Recognition (PAR) and person reidentification (reid). We first review the literature of both tasks and highlight the history of advancements, recent developments, and the existing benchmarks. PAR and person reid difficulties are due to significant distances between intraclass samples, which originate from variations in several factors such as body pose, illumination, background, occlusion, and data resolution. Recent stateoftheart approaches present endtoend models that can extract discriminative and comprehensive feature representations from people. The correlation between different regions of the body and dealing with limited learning data is also the objective of many recent works. Moreover, class imbalance and correlation between human attributes are specific challenges associated with the PAR problem. We collect a large surveillance dataset to train a novel gender recognition model suitable for uncontrolled environments. We propose a deep residual network that extracts several posewise patches from samples and obtains a comprehensive feature representation. In the next step, we develop a model for multiple attribute recognition at once. Considering the correlation between human semantic attributes and class imbalance, we respectively use a multitask model and a weighted loss function. We also propose a multiplication layer on top of the backbone features extraction layers to exclude the background features from the final representation of samples and draw the attention of the model to the foreground area. We address the problem of person reid by implicitly defining the receptive fields of deep learning classification frameworks. The receptive fields of deep learning models determine the most significant regions of the input data for providing correct decisions. Therefore, we synthesize a set of learning data in which the destructive regions (e.g., background) in each pair of instances are interchanged. A segmentation module determines destructive and useful regions in each sample, and the label of synthesized instances are inherited from the sample that shared the useful regions in the synthesized image. The synthesized learning data are then used in the learning phase and help the model rapidly learn that the identity and background regions are not correlated. Meanwhile, the proposed solution could be seen as a data augmentation approach that fully preserves the label information and is compatible with other data augmentation techniques. When reid methods are learned in scenarios where the target person appears with identical garments in the gallery, the visual appearance of clothes is given the most importance in the final feature representation. Clothbased representations are not reliable in the longterm reid settings as people may change their clothes. Therefore, developing solutions that ignore clothing cues and focus on identityrelevant features are in demand. We transform the original data such that the identityrelevant information of people (e.g., face and body shape) are removed, while the identityunrelated cues (i.e., color and texture of clothes) remain unchanged. A learned model on the synthesized dataset predicts the identityunrelated cues (shortterm features). Therefore, we train a second model coupled with the first model and learns the embeddings of the original data such that the similarity between the embeddings of the original and synthesized data is minimized. This way, the second model predicts based on the identityrelated (longterm) representation of people. To evaluate the performance of the proposed models, we use PAR and person reid datasets, namely BIODI, PETA, RAP, Market1501, MSMTV2, PRCC, LTCC, and MIT and compared our experimental results with stateoftheart methods in the field. In conclusion, the data collected from surveillance cameras have low resolution, such that the extraction of hard biometric features is not possible, and facebased approaches produce poor results. In contrast, soft biometrics are robust to variations in data quality. So, we propose approaches both for PAR and person reid to learn discriminative features from each instance and evaluate our proposed solutions on several publicly available benchmarks.This thesis was prepared at the University of Beria Interior, IT Instituto de Telecomunicações, Soft Computing and Image Analysis Laboratory (SOCIA Lab), Covilhã Delegation, and was submitted to the University of Beira Interior for defense in a public examination session
    corecore