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A B S T R A C T

Large deep learning models are impressive, but they struggle when real-time data is not available. Few-
shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new
tasks from just a few labeled samples without forgetting the previously learned ones. This setup can easily
leads to catastrophic forgetting and overfitting problems, severely affecting model performance. Studying
FSCIL helps overcome deep learning model limitations on data volume and acquisition time, while improving
practicality and adaptability of machine learning models. This paper provides a comprehensive survey on
FSCIL. Unlike previous surveys, we aim to synthesize few-shot learning and incremental learning, focusing on
introducing FSCIL from two perspectives, while reviewing over 30 theoretical research studies and more than
20 applied research studies. From the theoretical perspective, we provide a novel categorization approach that
divides the field into five subcategories, including traditional machine learning methods, meta learning-based
methods, feature and feature space-based methods, replay-based methods, and dynamic network structure-
based methods. We also evaluate the performance of recent theoretical research on benchmark datasets of
FSCIL. From the application perspective, FSCIL has achieved impressive achievements in various fields of
computer vision such as image classification, object detection, and image segmentation, as well as in natural
language processing and graph. We summarize the important applications. Finally, we point out potential
future research directions, including applications, problem setups, and theory development. Overall, this paper
offers a comprehensive analysis of the latest advances in FSCIL from a methodological, performance, and
application perspective.

1. Introduction

In recent years, significant advancements in computing technology
and the widespread availability of large-scale datasets have enabled
deep neural networks (DNNs) to make remarkable progresses in various
computer vision tasks (He, Zhang, Ren, & Sun, 2016; Krizhevsky,
Sutskever, & Hinton, 2017). However, many of these successes rely
on idealized assumptions and massive amounts of available training
data, which may not accurately reflect the real-world scenarios where
high-quality data is often scarce. For instance, in scenarios where data
arrives incrementally in batches and newly added categories contain
very few samples, many existing methods prove to be ineffective.

The goal of few-shot class-incremental learning (FSCIL) is to endow
AI with the capability to address the aforementioned challenges. This
requires DNN models to learn new tasks incrementally from a small

∗ Corresponding authors.
E-mail addresses: tiansongsong@semi.ac.cn (S. Tian), lusili@cs.odu.edu (L. Li), wjli@semi.ac.cn (W. Li), ranhang@semi.ac.cn (H. Ran), ningxin@semi.ac.cn

(X. Ning), prayag.tiwari@ieee.org (P. Tiwari).

number of labeled samples, without forgetting the previously learned
ones (Tao et al., 2020). Since Tao first proposed the concept of FSCIL
in Tao et al. (2020), many scholars have extended it to various ap-
plication scenarios beyond visual tasks because it conforms to human
learning patterns and is suitable for real-world applications.

An intuitive method for FSCIL is to fine-tune a base model on a
new training set. However, it would lead to catastrophic forgetting (Mc-
Closkey & Cohen, 1989) and overfitting, corresponding to two core
challenges: the stability-plasticity dilemma and unreliable empirical
risk minimization.

• Stability-plasticity dilemma
The stability-plasticity dilemma reflects the contradiction between
stability and plasticity. Stability means that a neural network
should maintain its learned knowledge and resist changes caused
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Fig. 1. (a) Stability and plasticity cannot be achieved simultaneously. When a model has high stability, it performs well on old data but struggles with new data. As plasticity
increases, the model demonstrates enhanced generalization on new data while gradually forgetting old data; (b) Given a hypothesis space  and initial parameters ℎ𝜃 , ℎ̂ is the
function that minimizes the expected risk, ℎ∗ is the function in  that minimizes the expected risk. ℎ𝑓 and ℎ𝑠 correspond to the functions of minimizing the empirical risk when
data samples are few and sufficient, respectively. When the data is sufficient, ERM yields results closer to ℎ∗.

by new inputs. Conversely, plasticity means that the network
should have the ability to adapt to new inputs or tasks. Catas-
trophic forgetting can be seen as a manifestation of the stability-
plasticity dilemma. In incremental learning (IL), an overly stable
model might fail to learn new tasks or data effectively. In contrast,
an exceedingly plastic model might rapidly lose information about
previously learned tasks or data. See Fig. 1(a) for more details.

• Unreliable empirical risk minimization
In traditional machine learning frameworks, empirical risk mini-
mization (ERM) aims to optimize the average loss on training data.
This strategy works well in large-scale data environments where
there are enough samples to ensure statistical consistency during
training. However, in the context of few shot learning (FSL), this
strategy faces a challenge known as the unreliable empirical risk
minimizer problem (Wang, Yao, Kwok, & Ni, 2020). The core of
this problem lies in the fact that when the number of training
samples is limited or when there is noise in the samples, the ERM
strategy may lead to overfitting. Overfitting means that the model
performs well on the training data but has poor generalization
performance on new, unseen data. This shortfall arises because
limited data may not fully represent the true distribution of the
entire data generation process, causing the model to capture ran-
dom noise in the data rather than the underlying true patterns.
Fig. 1(b) shows that when training samples are insufficient, the
ERM function cannot accurately approximate the optimal expected
risk minimization function.

FSCIL, needs to overcome these two challenges, is even more diffi-
cult. In addition to the challenges mentioned above, due to the large
difference in the number of samples between old and new categories,
the model tends to bias towards the larger set of old-class training
samples during training or prediction, and the imbalance between base
and novel class samples also makes it difficult for the model to learn
new categories (Chen & Lee, 2021; Hou, Pan, Loy, Wang, & Lin, 2019;
Tao et al., 2020).

Although FSCIL has great potential in real-world applications and
has gained significant attentions from researchers, it remains a rela-
tively underexplored area, with a lack of comprehensive reviews. Ex-
isting reviews primarily focus on either FSL or IL separately, rather than
their combination in FSCIL. For example, Parisi, Kemker, Part, Kanan,
and Wermter (2019) focus on continual lifelong learning, though much
of the content may not reflect recent advancements. Wang, Yao, et al.
(2020) introduced the theoretical foundation of FSL and classified FSL
methods from different perspectives. Belouadah, Popescu, and Kanellos
(2021) provide a summary of Class-IL in visual tasks only. Zhou et al.

(2023) summarized the latest progress in deep Class-IL from three
aspects: data, model, and algorithm.

Our contributions to the field of FSCIL can be summarized as
follows:

(1) We conducted an in-depth analysis of fundamental and applied
research of FSCIL. Our comprehensive review explores various
FSCIL approaches, highlighting their advantages, limitations, and
performance on benchmark datasets.

(2) We revisited the theoretical foundations and practical imple-
mentations of various FSCIL approaches and proposed a tax-
onomy of methods based on the underlying approach or tech-
nique. This framework provides a useful guide for researchers and
practitioners working on FSCIL.

(3) We evaluated the performance of various FSCIL approaches on
benchmark datasets, providing insights into the strengths and
weaknesses of different methods.

(4) We discussed the potential applications of FSCIL in various do-
mains, such as computer vision, natural language processing,
and graph analysis. This analysis highlights the broad range of
applications for FSCIL and its potential impact on these fields.

(5) We identified open research challenges and opportunities for
future work in the field of FSCIL. This provides a roadmap for
future research in the area and helps to guide the direction of
future work.

The remainder of this paper is organized as follows. Section 2
introduces the problem definition of FSCIL and the relevant research
background. Section 3 reviews the approaches and notable architec-
tures used in FSL. Section 4 summarizes the existing FSCIL approaches,
including traditional machine learning methods, meta learning-based
methods, feature and feature space-based methods, replay-based meth-
ods, and dynamic network structure-based methods. Section 5 presents
the performance of different FSCIL approaches on benchmark datasets.
Section 6 discusses the applications of FSCIL in different domains.
Section 7 outlines the future research directions in the FSCIL field.
Finally, Section 8 concludes the paper.

2. Problem definition

In supervised learning, we want to learn a function 𝑓 ∈  ∶  → 
that is able to predict the target vector 𝑦 ∈  , for a given input
sample 𝑥 ∈  . To do so, a model is fed with the training data with
sufficient instances: 𝐷 =

{(

𝑥𝑖, 𝑦𝑖
)}𝑁

𝑖=1, which contains independent and
identically distributed samples from the distribution 𝑃 ( ,). 𝑥𝑖 ∈ R𝑛

is a training instance from class 𝑦𝑖 ∈  and  is the corresponding label

Stability-plasticity dilemma 
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Fig. 2. Dataset setting.
Source: Figure adapted
from Zheng and Zhang
(2021).

space. In order to train this function 𝑓 , we minimize the expected risk
over the instance distribution 𝑃 :

𝜀𝑒𝑥 = E(𝑥,𝑦)∼𝑃 ( ,) [𝓁 (𝑓 (𝑥) , 𝑦)] , (1)

where 𝓁(⋅, ⋅) captures the discrepancy between prediction and ground-
truth label. However, the joint distribution 𝑃 in unknown, therefore the
learning algorithm actually aims at minimizing the empirical risk:

𝜀𝑒𝑚 = E(𝑥,𝑦)∼𝐷 [𝓁 (𝑓 (𝑥) , 𝑦)] , (2)

2.1. Problem formalization

Fig. 2 shows the form of dataset split and the way of FSCIL experi-
ment setup. FSCIL task comprises a base session with sufficient training
data and multiple incremental sessions with limited training data. The
learning process within each session involves only the data relevant
to the current task, while the model is also required to preserve the
knowledge of previous tasks when acquiring new ones. The task is to
train the model from a continuous data stream in a class-incremental
form.

The FSCIL problem is defined as follows. Here we assume an 𝑚-step
FSCIL task. Let

{

𝐷(0)
𝑡𝑟𝑎𝑖𝑛, 𝐷

(1)
𝑡𝑟𝑎𝑖𝑛,… , 𝐷(𝑚)

𝑡𝑟𝑎𝑖𝑛

}

and
{

𝐷(0)
𝑡𝑒𝑠𝑡, 𝐷

(1)
𝑡𝑒𝑠𝑡,… , 𝐷(𝑚)

𝑡𝑒𝑠𝑡

}

de-
note the training and testing data for sessions {0, 1,… , 𝑚}, respectively.
For session 𝑗, it has training data 𝐷(𝑗)

𝑡𝑟𝑎𝑖𝑛 with the corresponding label
space of 𝑗 . Training data from different sessions are disjoint, that is,
𝑎 ∩ 𝑏 = ∅ (𝑎 ≠ 𝑏). The limited instances in 𝐷(𝑗)

𝑡𝑟𝑎𝑖𝑛 can be organized
as 𝑁-way 𝐾-shot data format, i.e., there are 𝑁 classes in the dataset,
and each class has 𝐾 training images. Facing a new dataset 𝐷(𝑗)

𝑡𝑟𝑎𝑖𝑛, a
model should learn new classes and meanwhile maintain performance
over old classes, i.e., minimize the expected risk 𝑅 over all the seen
classes:

E(𝑥,𝑦)∼𝐷(0)
𝑡𝑟𝑎𝑖𝑛∪𝐷

(1)
𝑡𝑟𝑎𝑖𝑛∪⋯∪𝐷(𝑗)

𝑡𝑟𝑎𝑖𝑛

[

𝓁
(

𝑓
(

𝑥;𝐷(𝑗)
𝑡𝑟𝑎𝑖𝑛,𝑊

𝑗−1
)

, 𝑦
)]

, (3)

In Eq. (3), the learning algorithm 𝑓 should build the new model based
on new dataset 𝐷(𝑗)

𝑡𝑟𝑎𝑖𝑛 and current old model 𝑊 𝑗−1, and minimize the
loss over all seen classes. During testing, the model will be evaluated
on all seen classes so far. For session 𝑗, its testing data 𝐷(𝑗)

𝑡𝑒𝑠𝑡 has the
corresponding label space of 0 ∪ 1... ∪ 𝑖.

2.2. Relevant learning problems

Few-shot Learning. Humans are very skilled at identifying a new
object with very few samples. For example, a child can recognize
what a ‘‘zebra’’ or ‘‘rhinoceros’’ is with just a few pictures from a
book. Inspired by human’s rapid learning ability, researchers hope that
machine learning models can quickly learn new categories with only
a small number of samples after learning a large amount of data for
a certain number of categories. This is the problem that FSL aims to
solve. In recent years, the concept of FSL has received widespread
attention, and there have been many outstanding algorithm models in
the field of image classification (Finn, Abbeel, & Levine, 2017; Snell,
Swersky, & Zemel, 2017; Zhang, Sung, Qiang, Yang, & Hospedales,
2018). There are mainly three categories of FSL methods: fine-tune
based, data augmentation based, and transfer learning based.

Considering a learning task 𝑇 , FSL deals with a dataset 𝐷 =
{

𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑡𝑒𝑠𝑡
}

. It consists of a training set 𝐷𝑡𝑟𝑎𝑖𝑛 =
{(

𝑥𝑖, 𝑦𝑖
)}𝐼

𝑖=1, where
𝐼 is small, and a testing set 𝐷𝑡𝑒𝑠𝑡 =

{

𝑥𝑡𝑒𝑠𝑡
}

. Usually, one considers the
𝑁-way 𝐾-shot classification in which 𝐷𝑡𝑟𝑎𝑖𝑛 contains 𝐼 = 𝐾𝑁 examples
from 𝑁 classes each with 𝐾 examples. FSL is mainly a supervised
learning problem (Wang, Yao, et al., 2020). Due to the small size of
𝐷𝑡𝑟𝑎𝑖𝑛, the model bias, 𝜀 = |

|

𝜀𝑒𝑥 − 𝜀𝑒𝑚||, is too large, making it hard to
learn a high-quality prediction function 𝑓 ∈  ∶  →  .

One-shot Learning. In the late 1980s and 1990s, some researchers
already noticed the problem of one-shot learning. It was not until
2003 that Fe-Fei et al. (2003) formally introduced the concept. They
believed that when there is only one or a few labeled samples for a
new category, the previously learned old categories can help predict
the new category (Fei-Fei, Fergus, & Perona, 2006). In the 𝑁-way 𝐾-
shot paradigm, when 𝑁 = 1, FSL is called one-shot learning problem.
Since the settings are similar, it is not necessary to distinguish between
the two concepts in most cases.

Zero-shot Learning. In the 𝑁-way 𝐾-shot paradigm, FSL becomes a
zero-shot learning problem (ZSL) when 𝑁 = 0. ZSL was first introduced
by Palatucci, Pomerleau, Hinton, and Mitchell (2009). Since ZSL does
not contain examples with supervised information, it recognizes new
sample categories by utilizing semantic label attribute information in
the absence of training samples. This approach is inspired by human
learning and reasoning capabilities, allowing computers to possess
transfer and reasoning abilities. Specifically, a training data for ZSL is
formulated as 𝑆 =

{

(𝑥, 𝑦, 𝑎 (𝑦)) |𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 , 𝑎 (𝑦) ∈ 
}

, where 𝑆 is
set of image/features from seen classes, 𝑆 is set of seen class labels,
𝑎(𝑦) is semantic embedding for class 𝑦. The test set is formulated as
𝑈 =

{

(𝑥, 𝑦, 𝑎 (𝑦)) |𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 , 𝑎 (𝑦) ∈ 
}

, where 𝑈 is set of unseen
class image/features, 𝑈 is set of unseen class labels, 𝑈 ∩ 𝐶 = ∅.

Meta Learning. Meta learning is often understood as learning
to learn. It is the process of extracting the experience of multiple
learning episodes and using this experience to improve future learning
performance (Hospedales, Antoniou, Micaelli, & Storkey, 2022). Meta
learning is usually divided into two stages. In the meta-training stage,
the model is trained using multiple source (or training) tasks to obtain
initial network parameters with strong generalization ability. In the
meta-testing stage, the settings of the new tasks are the same as those
of the source tasks, but these samples have not been seen during the
training process. Each task in the training tasks or testing tasks is
divided into a support set and a query set. Meta learning has wide
applications in the fields of computer vision, reinforcement learning,
and architecture search. Meta learning is naturally suitable for FSL,
and many studies have used meta-learning as a means of FSL, enabling
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the model to learn from a small number of new task samples (Elsken,
Staffler, Metzen, & Hutter, 2020; Jamal & Qi, 2019; Ren et al., 2018).

Transfer Learning. Transfer Learning (Zhuang et al., 2020) focuses
on the transfer of knowledge across different domains, enabling the
transfer of knowledge from domains/tasks with abundant training data
to novel domains/tasks with scarce training data. Its definition is as
follows.

Definition 1 (Transfer Learning). Given a source domain 𝐷𝑆 and a
corresponding task 𝑇𝑆 , a target domain 𝐷𝑇 and a corresponding task 𝑇𝑇 .
The primary aim of transfer learning is to leverage the knowledge obtained
from 𝐷𝑆 and 𝑇𝑆 to enhance the learning performance of 𝐷𝑇 and 𝑇𝑇 , where
𝐷𝑆 ≠ 𝐷𝑇 or 𝑇𝑆 ≠ 𝑇𝑇 (Pan & Yang, 2010).

The key to successful knowledge transfer is the presence of a con-
nection between the two learning activities. If there are few commonal-
ities between domains, knowledge transfer may fail and have a negative
impact on the new task. In everyday life, people engage in many
instances of transfer learning, such as learning to ride a bike, which
makes it easier to learn how to ride a motorcycle. Transfer learning
can reduce the reliance on large amounts of target domain data when
constructing learning machines. As a result, it has broad applications
in zero-shot and few-shot domains, including style transfer, feature
space transfer for data augmentation, and label-efficient learning of
transferable representations across domains (Azadi et al., 2018; Liu,
Wang, Dixit, Kwitt, & Vasconcelos, 2018; Luo, Zou, Hoffman, & Fei-Fei,
2017).

Incremental Learning. The definition of IL can also be expressed
using Eq. (3), but the difference from FSCIL is that there are plenty of
samples for each incremental category. IL is also known as continuous
learning, lifelong learning, or never-ending learning, is a field of ma-
chine learning that is gaining increasing attention. It is typically used to
address the problem of catastrophic forgetting, where performance on
previously learned tasks deteriorates sharply after learning new tasks.
The ability of IL is to continuously process a stream of information
from the real world while retaining, integrating, and optimizing old
knowledge at the same time. The methods proposed in IL are broadly
categorized into three categories: replay-based methods, regularization-
based methods, and parameter isolation methods (De Lange et al.,
2021). Van de Ven and Tolias (2019) proposed three scenarios for IL,
including Task-IL, Domain-IL, and Class-IL. And Class-IL is considered
the most difficult one since the newly added classes often exhibit high
similarity with the already learned classes. Currently, only replay-based
methods produce acceptable results for Class-IL.

2.3. Variants of few-shot class incremental learning

Generalized few-shot incremental learning. Before the emer-
gence of FSCIL, similar settings had been proposed in previous research,
such as those presented by Gidaris and Komodakis (2018), Qi, Brown,
and Lowe (2018), Xie, Li, Lin, Lay Nwe, and Dong (2019), Yoon, Kim,
Seo, and Moon (2020). These studies introduced Generalized Few-
Shot Incremental Learning (GFSIL). Specifically, a pre-trained model
will learn new classes with limited instances. The goal of GFSIL is
to maintain classification performance for both old and new classes.
However, GFSIL only has one incremental phase, and its data par-
titioning format is different from FSCIL. For example, CIFAR-100 is
randomly divided into 40, 10, and 50 categories, which serve as
the meta-training, meta-validation, and meta-testing sets respectively.
GFSIL is considered less challenging than FSCIL. To address the chal-
lenge of GFSIL, Qi et al. (2018) proposes a solution that utilizes the
average feature initialization method with few shots to initialize new
class representations. Meanwhile, Gidaris and Komodakis (2018) intro-
duces dynamic few-shot learning to avoid forgetting, which employs a
novel attention-based weight generator for few-shot classification. The
dot-product calculation method is replaced with the cosine-similarity

function to incorporate the few-shot classification weight generator into
the recognition system. Ren, Liao, Fetaya, and Zemel (2019) proposes
an Attention Attractor Network to regulate the learning of novel classes.
Additionally, Yoon et al. (2020) suggests a method for fusing base
features, while Ye, Hu, and Zhan (2021) puts forward the idea of
synthesizing few-shot classifiers with a shared neural dictionary. Xie
et al. (2019) introduces Meta Module Generation (MetaMG) which
utilizes meta-learning to learn a set of meta-modules, which are small
neural networks that can be quickly adapted to new tasks. During the
IL process, the MetaMG approach uses the learned meta-modules to
generate task-specific modules for new classes.

Few-shot incremental learning. Similar to FSCIL, Ayub and Wag-
ner (2020a) examines the problem of few-shot incremental learning
(FSIL) and proposes a cognitively-inspired approach. They represent
each image class as a centroid. In the experimental setting of FSIL, the
number of classes for both base and incremental is the same, which
differs from the rich base data setting in FSCIL. Additionally, in order to
tackle the issue of the inability to learn from data streams in ZSL, Wei,
Deng, Yang, and Tao (2021), Wei et al. (2020) have proposed the
concept of incremental zero-shot learning (IZSL). Unlike traditional
ZSL, IZSL involves multiple learning phases for new classes.

Incremental few-shot object detection. In the setting of incre-
mental few-shot object detection (iFSD) Perez-Rua, Zhu, Hospedales,
and Xiang (2020), abundant base-class samples and a few novel-class
samples are available. The model can use all the base-class samples for
bootstrapping as prior knowledge is required for the model to learn
in the few-shot way. Equipped with the prior knowledge of base-class
data, the model cannot visit base-class samples again when learning
knowledge of novel classes. In other words, the model with prior
knowledge should be able to learn from the few samples of unseen
categories without relearning basic knowledge, which is aligned with
the practical application scenes where the pre-trained model should be
competent to adapt to unseen information incrementally.

Despite many studies sharing similar settings to FSCIL, the current
mainstream in academia still focuses on FSCIL. Therefore, this review
primarily focuses on the more challenging FSCIL research.

3. Methods for few-shot learning

For FSL tasks, specialized network architectures or tricks are typ-
ically required to handle limited annotated data. In FSCIL research,
many methods build upon advancements in FSL. In this section, we
focus on providing a brief overview of commonly used network archi-
tectures in FSL, without discussing the novelty or effectiveness of the
methods. And they might not represent the latest research.

Numerous surveys have been conducted on the topic of FSL, propos-
ing various classification approaches (Jadon, 2020; Song, Wang, Cai,
Mondal, & Sahoo, 2023; Wang, Yao, et al., 2020). One straightfor-
ward approach is to categorize FSL into four categories: data aug-
mentation methods, metric-based methods, model-based methods, and
optimization-based methods (Jadon, 2020). Hereafter, we will provide
a brief introduction to the commonly used network architectures within
these four categories.

3.1. Data augmentation methods

In FSL, data augmentation is an important strategy. It alleviates
the problem of data scarcity by increasing the diversity of existing
data, rather than collecting new data. Data augmentation significantly
reduces the risk of overfitting and effectively enhances the model’s gen-
eralization ability. Data augmentation can be categorized by its source:
transforming samples from the training set, transforming samples from
a weakly labeled or unlabeled data set, or transforming samples from
similar data sets (Wang, Yao, et al., 2020). Besides directly augmenting
the data, one can also train a model to generate new samples or
features (Kong, Kim, Han, & Kwak, 2022), such as VAEs or GANs, to
achieve the goal of data augmentation.
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Fig. 3. Common network architectures in metric-based methods: (a) Siamese Networks: Utilize twin subnetworks to extract features from two input samples and compute the
distance between these features; (b) Matching Networks: By using the attention mechanism to dynamically match and aggregate the support set and query set examples, Matching
Networks can generate class-related feature representations for query samples; (c) Prototypical Networks: Represent each class by the mean of their features. Thus, in the
embedding space, closer features are more likely to belong to the same class.

3.2. Metric-based methods

Methods based on metrics classify objects in the embedded space by
computing the similarity or distance between samples in the support set
and the query set. For instance, by calculating the Euclidean distance
between a test sample and each class in the support set, the test
sample is assigned to the category of the nearest support set sample.
In FSL, commonly used metric learning methods include Siamese Net-
work (Koch et al., 2015), Matching Network (Vinyals et al., 2016), and
Prototypical Network (Snell et al., 2017). Fig. 3 illustrates the network
structure differences among these three methods. These methods do not
require extensive data but optimize metrics to ensure similar samples
are close, while samples of different classes are distant.

3.3. Model-based methods

Model-based methods primarily refer to designing or using spe-
cific network architectures to address FSL challenges. For instance,
Memory-Augmented Neural Networks (MANN) (Santoro, Bartunov,
Botvinick, Wierstra, & Lillicrap, 2016) use external memory spaces
to explicitly store class information, thus leveraging the long-term
memory capabilities inherent in neural networks for FSL tasks. Meta
Networks (Munkhdalai & Yu, 2017) learn meta-level knowledge across
tasks and adjust their inductive biases through quick parameterization
for swift generalization. These network structures efficiently utilize a
limited number of labeled samples for rapid learning and adaptation.

3.4. Optimization-based methods

Optimization-based methods focus on adjusting the training strat-
egy of models to adapt to situations with limited annotated data. It
typically involves modifying the loss function, regularization terms,
or the optimization algorithm itself to ensure that the models can
quickly converge on few-shot data without overfitting. For example,

Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017) is a common
optimization technique that quickly learns knowledge from limited new
data. It trains the model’s initial parameters using various datasets
to ensure peak performance when tackling new tasks. Building on
MAML, Reptile (Nichol & Schulman, 2018) simplifies computational
complexity by reducing gradient calculations from two steps to one,
thereby increasing computational speed.

4. Few-shot class-incremental learning: taxonomy

For fundamental research on FSCIL, there is currently no unified
classification standard. Zou, Zhang, Li, and Li (2022) divided FSCIL into
metric-based and fine-tuning-based methods. The metric-based method
is similar to the concept of FSL (Snell et al., 2017; Vinyals et al., 2016),
and its key issue lies in the prototype representation and similarity
metric. In FSCIL, the fine-tuning-based approaches are widely used, and
we refer to this method as Base Classes Pretraining and Novel Classes
Fine-tuning (BPNF).

Definition 2. Base Classes Pretraining and Novel Classes Fine-
tuning (BPNF) is a common approach used in FSCIL, which involves
pre-training a model on data-rich base data and fine-tuning the model
to better fit the novel classes in the incremental phase. This approach
leverages the knowledge learned from the base classes to improve the model’s
performance on novel, unseen classes.

However, the above classification method is too broad and not
suitable for many FSCIL studies. In this paper, we have summarized
33 advanced studies and categorized them into five families based on
the key point or technique used in FSCIL:

• Traditional machine learning methods
• Meta learning-based methods
• Feature and feature space-based methods
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Fig. 4. Chronological overview of key FSCIL research developments.

• Replay-based methods
• Dynamic network structure-based methods

Fig. 4 displays an approach classification chart for corresponding
years chronologically. It is worth noting that although the experimental
settings in FSCIL often involve the idea of meta-learning, these methods
are not classified as meta learning-based methods because the key
points of the methods used are not based on meta-learning techniques.

4.1. Traditional machine learning methods

4.1.1. Supervised learning strategies
The capacity of a model that has undergone fine-tuning through an

incremental process is limited by the amount of new class sample data
available. To alleviate this constraint, certain studies have introduced
additional semi-supervised or unsupervised data, in addition to relying
solely on labeled supervised data, to refine the supervision method.

In Cui, Xiong, Tavakolian, and Liu (2021), semi-supervised learning
was introduced to FSCIL and, based on the setting in Tao et al. (2020),
50 unlabeled data were introduced in each incremental session. During
the training process, the unlabeled data were combined with labeled
data to enhance the performance of FSCIL. In Ahmad, Dhamija, Cruz,
et al. (2022), leveraging self-supervised learning was proposed to alle-
viate overfitting and catastrophic forgetting. Specifically, in addition to
training the ResNet-18 model with base-class data, a deeper ResNet-50
network was trained using self-supervised methods on a large dataset.
These two networks were then frozen to possess two powerful feature
extractors. Two sets of feature vectors were input into a Gaussian
Generator to learn models for new classes while passing their features.
Subsequently, through feature fusion plus classifier, the forgetting can
be effectively countered, and adaptation to the emergence of new
classes can be achieved. For the first time, Kalla and Biswas (2022)
proposed the self-supervised stochastic classifier (S3C) to solve FS-
CIL. The stochasticity of the classifier avoids overfitting to few-shot
novel classes, while combining self-supervised training enables better
preservation of base-class knowledge.

4.1.2. Statistical distribution
From the statistical distribution perspective, solving the FSCIL prob-

lem involves fitting models to existing datasets and predicting the data
distribution of the classes, which has excellent model interpretability.
To address the limitations of common Gaussian process classification in
large-scale class classification tasks, Achituve, Navon, Yemini, Chechik,
and Fetaya (2021) proposed GP-Tree. GP-Tree is a tree-based hierar-
chical model that uses Polya-Gamma data augmentation to fit data to
a Gaussian process, which can adapt well to the number of classes and
data size. Liu, Yang, et al. (2022) proposed the learnable distribution
calibration (LDC) approach, which is rooted in a parameterized calibra-
tion unit (PCU). PCU initializes the feature distribution of each class
by using a Gaussian sampler defined by the mean vector and stored

covariance matrix to generate a set of feature samples. Specifically, the
Gaussian sampler generates enough feature samples during IL to form
biased distributions for old and new classes. The PCU cyclically updates
the generated feature samples, thereby restoring the old class distribu-
tion and calibrating the new class distribution. Due to the fixed size
of the covariance matrix, this method has low memory consumption.
Both methods achieve good results in FSCIL, but the drawback is that
the modeling process is complex.

4.1.3. Function optimization
Existing methods focus on overcoming catastrophic forgetting when

learning new tasks, while Shi, Chen, Zhang, Zhan, and Wu (2021) have
analyzed this issue from the perspective of function optimization and
found that flat local minima obtained during training on base classes
have better generalization ability than sharp minima. Flat minima is a
crucial concept in machine learning and optimization theory (Hochre-
iter & Schmidhuber, 1997). In the vicinity of flat minima, minor
parameter alterations do not significantly impact the loss function,
leading to models with robustness. Furthermore, flat minima serve as a
natural form of regularization, typically preventing models from over-
fitting and enhancing their generalization capabilities. Specifically, Shi
et al. (2021) suggest searching for flat local minima of the base training
objective function and then fine-tune the model parameters within the
flat region on new tasks, substantially reducing catastrophic forgetting.

4.2. Meta learning-based methods

In the realm of FSL or IL, meta-learning can leverage existing
knowledge to address current learning problems, and improve the
stability and reliability of the system through continuous knowledge
accumulation. In FSL, meta-learning enhances the learning effect of
the current task by utilizing data from other related tasks (Finn et al.,
2017; Liu, Song, & Qin, 2020; Rusu et al., 2019; Snell et al., 2017).
In IL, meta-learning can be used to reduce dependence on new data,
thereby avoiding overfitting (Riemer et al., 2019). It is natural to apply
meta-learning to FSCIL.

Here, we divide the meta learning-based FSCIL method into two
categories: prototype learning-based, and meta process-based method.

4.2.1. Prototype learning
Prototype learning aims to identify a small set of exemplars that

accurately represent a given dataset, and then use the similarity be-
tween the data points and the prototypes to classify new data points
or complete other visual tasks. Commonly used class prototypes are
defined as follows:

𝝁𝑐 =
1

|

|

𝑆𝑐
|

|

∑

𝒙∈𝑆𝑐

𝑓𝜃 (𝒙), (4)

where 𝑆𝑐 is the set of all samples from class 𝑐; 𝑓𝜽 is the embedding net-
work parameterized by 𝜽. Compared to traditional supervised learning
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methods, prototype learning requires less labeled data and has stronger
generalization ability.

However, simply aggregating all learned class prototypes using
traditional prototype-based methods may render some prototypes in-
distinguishable from one another. To address this problem, Zheng and
Zhang (2021) introduced the class structure regularizer to regulate the
distribution of the learned classes in the embedding space of FSCIL. By
using class distribution as prior knowledge to regularize the learning
of new classes, this approach ensures that classes from the same or
different sessions are distinguishable from one another.

In FSL, prototype-based methods face challenges in IL scenarios,
primarily due to two issues: (i) With the increase in data volume,
sample features or label distributions change because of potential con-
cept drift or data distribution drift, making prototype samples fail to
accurately represent the latest data distribution; (ii) Newly introduced
later-task classes might differ conceptually from earlier classes, causing
conflicts within the prototype space, thereby affecting the efficacy of
prototype distance measurement and consequently influencing clas-
sification accuracy. To address these issues, Zhu, Cao, Zhai, Cheng,
and Zha (2021) proposes an incremental prototype learning scheme
consisting of random episode selection and dynamic relation projection.
Random episode selection improves the extensibility of the feature
representation by adapting gradients to different simulated incremental
processes generated randomly. Dynamic relation projection utilizes the
relationship matrix between new class samples and old class prototypes
to update existing prototypes.

Learning Vector Quantization (LVQ) is a prototype clustering
method that selects vector points as prototypes based on distance as
the clustering criterion. Chen and Lee (2021) uses a non-parametric
method based on LVQ in deep embedding space. They compress the
information of the learning task into a few quantized reference vectors.
These include within-class variation, less forgetting regularization, and
calibrated reference vectors to alleviate catastrophic forgetting. Based
on the idea of the CIL algorithm, Mazumder, Singh, and Rai (2021)
proposes few-shot lifelong learning (FSLL). This algorithm selects some
parameters to update in each incremental session to resist overfitting.
At the same time, it minimizes the cosine similarity between the new
class prototypes and old class prototypes to maximize their separation,
thereby improving classification performance.

According to Hersche et al. (2022), the input images are mapped to
quasi-orthogonal prototypes from the perspective of hyperdimensional
computing. The proposed C-FSIL comprises a frozen meta-learned
feature extractor, a trainable fixed-size fully connected layer, and a
rewritable dynamically growing memory. The three parameter update
forms provided effectively balance accuracy and compute-memory
cost. In Yao, Zhu, Zhou, and Li (2022), a human cognition-inspired
prototype representation enhancement scheme is proposed for FSCIL.
This method uses prototype representations and iteratively learns the
knowledge of novel classes by exploring similarity correlations with
previously learned classes. Yang et al. (2023) argue that misalignment
between the feature and classifier of old classes caused by fine-tuning
the backbone or previous classifier prototypes is the reason for for-
getting. Inspired by the neural collapse theory, they align a set of
prototypes during neural collapse with prototypes required for FSL,
which improves the classifier’s performance.

The aforementioned methods exhibit conciseness in their algo-
rithms, but the semantic gap between the few-shot class prototypes and
the real data distribution is a major obstacle to improving the accuracy
of prototype-based methods.

4.2.2. Meta process
Inspired by the multi-task optimization method MAXL (Liu, Davison,

& Johns, 2019), Chi et al. (2022) proposed MetaFSCIL, which directly
transforms adapting to new knowledge and retaining old knowledge
into a meta-objective. They mimicked the scenario during meta-testing

by sampling a sequence of incremental tasks from base classes. Fur-
thermore, they proposed a bi-directional guided modulation based on
meta-learning to automatically adapt to new knowledge. Drawing on
metric learning within the context of meta-learning, Zou et al. (2022)
discovered that using large margin classification improves the perfor-
mance of the base classes but leads to a decrease in performance when
learning new classes, a phenomenon termed class-level overfitting. The
authors explain that this is due to the easily satisfied constraint of
learning shared or class-specific patterns. Subsequently, they propose
the boundary-based CLOM framework, which introduces an additional
constraint that effectively addresses the aforementioned issue.

4.3. Feature and feature space-based methods

4.3.1. Feature decoupling
Feature decoupling, which entails dividing features into distinct

representations, allows models to concentrate on more pertinent in-
formation. According to Zhao et al. (2021), the disentanglement of
features results in low-frequency components playing a more significant
role in preserving old knowledge. Specifically, they employed discrete
cosine transform to disentangle features and proposed a frequency-
aware regularization method to enhance inter-space learning perfor-
mance. Moreover, the proposed feature space composition operation
further improves the inter-space learning performance.

4.3.2. Feature space
The representation of subspaces increases the efficiency of algo-

rithms by mapping the original data to a low-dimensional space while
preserving its useful features. Based on subspace representation, FSCIL
projects new-class data into the subspace composed of base or old-
class features, thereby enabling the model to better adapt to new
classes. In Cheraghian, Rahman, Ramasinghe, et al. (2021), a mixture
of subspaces is proposed to describe the visual and semantic domain
distribution of the data, which helps to avoid forgetting old classes.
Additionally, a variational autoencoder is utilized to generate synthe-
sized visual samples that enhance the performance of pseudo-features
and prevent overfitting during IL of new classes. In Akyürek, Akyürek,
Wijaya, and Andreas (2022), the authors propose a subspace regulariza-
tion scheme that encourages the weight representation of new classes
to be close to the subspace spanned by the weights of existing old
classes. This regularization term is straightforward and user-friendly,
and can incorporate more prior knowledge. From the perspective of
parameter feature space, Kim, Han, Seo, and Moon (2023) proposed
WaRP by fusing the advantages of F2M (Shi et al., 2021) for finding
flat minimums of the loss function and FSLL (Mazumder et al., 2021)
for parameter fine-tuning. They seek directions in the parameter space
that are flat with respect to the loss function, and use the method
of singular value decomposition to represent the parameter space. In
each incremental session, they fine-tune unimportant parameters in the
parameter space to learn novel classes.

Recently, Song, Zhao, et al. (2023) presents the concept of fantasy
space to enhance semantic knowledge. The core idea is to introduce
placeholders for unseen classes within the fantasy space. These place-
holders derive from the original classes using discrete transformation.
By learning to recognize and contrast in the fantasy space fostered
by virtual classes, it boosts base classes separation and novel classes
generalization.

4.3.3. Prospective learning
Backward compatibility is an issue that requires special considera-

tion in the process of software updates. It demands that newer versions
of software be able to accept data from previous versions. Conversely,
forward compatibility requires that older versions of software be able
to accept data from newer versions. From this perspective, the ability of
the FSCIL model to overcome forgetting represents its backward com-
patibility (Zhou, Wang, et al., 2022). This means that a model trained
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on a new session should not forget old class samples. Few studies have
addressed the model’s forward compatibility, which involves preparing
for possible novel classes and updates during current training sessions.
Here, we define:

Definition 3. Prospective Learning refers to a certain method or
technique in FSCIL, where the model is trained on base dataset to have
forward compatibility performance, thus enabling the model to better handle
incremental few shot novel classes.

In order to enable the model to handle new classes, Zhou, Wang,
et al. (2022) proposed forward compatible training (FACT), which
allocates multiple virtual prototypes as a reserved space in the feature
space to make the model scalable. FACT optimizes virtual prototypes
to minimize intra-class distances and reserves more space for upcoming
new classes. The model is made prospective through instance mix-
ing to generate virtual instances. In subsequent research, Zhou, Ye,
et al. (2022) proposed LIMIT, which creates fake FSCIL tasks from
the base dataset and obtains generalizable features through meta-
learning from different fake tasks to prepare the model for real FSCIL
tasks. Additionally, an instance-specific embedding is generated by
a transformer-based meta-calibration module to further improve per-
formance. From the perspective of open-set recognition, Peng, Zhao,
Wang, Li, and Lovell (2022) linked FSCIL with open-set tasks to prepare
the model for new classes. Specifically, they proposed using angular
penalty loss in face recognition to obtain good clustering features
instead of cross-entropy loss. They combined class enhancement and
data augmentation to improve the feature extractor’s generalization
ability for future incremental classes.

4.4. Replay-based methods

Based on the rehearsal technique, FSCIL approaches replay pre-
viously learned information for the task solver when presented with
a new task. Replay-based methods employ episodic memory  to
replay the examples from previous tasks while updating the model with
the current task 𝑡. There are two types: direct replay involves saving
examples from old tasks to , while generative replay involves using
a generative model to remember the distribution of data from old tasks
and generate examples to . When fine-tuning the model with data
𝐷𝑡, the loss function can be expressed as:

 = 1
|𝐷(𝑡) ∪(𝑡)

|

∑

(𝑥,𝑦)∈(𝐷(𝑡)∪(𝑡))
𝓁 (𝑓 (𝑥) , 𝑦), (5)

4.4.1. Direct replay
Kukleva, Kuehne, and Schiele (2021) proposed a three-stage frame-

work, wherein the first two stages train the network on base and novel
classes separately and employ a model parameter constraint method
to prevent forgetting of old classes. In the third stage, a small set of
stored samples are used for replay and calibration of the classifier’s
performance across all classes (both base and novel classes). IL meth-
ods based on knowledge distillation usually store a set of old class
exemplars and add additional distillation loss to transfer and preserve
old knowledge (Castro, Marín-Jiménez, Guil, Schmid, & Alahari, 2018;
Hou, Pan, Loy, Wang, & Lin, 2018; Rebuffi, Kolesnikov, Sperl, &
Lampert, 2017; Wu et al., 2019). However, due to class imbalance in
few-shot scenarios and performance trade-offs between novel and base
classes (Hou et al., 2019), knowledge distillation is not the preferred
method for FSCIL. Cheraghian, Rahman, Fang, et al. (2021) proposed
the semantic-aware knowledge distillation method by storing a small
number of samples for the previous classes. By incorporating word em-
beddings as auxiliary information and mapping images to vector space,
the effectiveness of knowledge distillation for FSCIL has been demon-
strated. Unlike CIL based on individual knowledge distillation (Park,

Kim, Lu, & Cho, 2019), Dong et al. (2021) applied graph distillation
techniques to FSCIL for the first time. They proposed a scheme for
exemplar relation distillation incremental learning (ERDIL) based on
graph relation knowledge distillation for knowledge extraction and
representation. It effectively transfers old knowledge to the model
for learning new tasks by maintaining a graph that represents the
relationship between classes.

4.4.2. Generative replay
In light of the privacy issues caused by storing real old data, Liu,

Gu, et al. (2022) proposes a data-free replay scheme for synthesiz-
ing old samples. By imposing entropy regularization, the generator
is encouraged to produce uncertain examples that are closer to the
decision boundary. Since the traditional generative replay paradigm
in CIL cannot be applied to FSCIL, Agarwal, Banerjee, Cuzzolin, and
Chaudhuri (2022) proposes few-shot incremental learning GAN (FSIL-
GAN), which consists of a pre-trained feature extractor, a generator,
a discriminator, and a semantic projection module. This is used to
address the problem of approximating the real data distribution with a
small amount of data. They first match class-specific synthesized visual
features with their respective latent semantic vectors, and then ensure
the diversity and distinguishability of the synthetic features through
an anti mode-collapse regularizer. However, this method’s performance
cannot be guaranteed for multi-domain data.

4.5. Dynamic network structure-based methods

Dynamic network structures (Chen et al., 2020; Sabour, Frosst, &
Hinton, 2017) enable automatic adjustment of network architecture
during runtime, based on input data features, thereby possessing strong
generalization capabilities and reduced risks of overfitting. Due to their
flexibility and robust scalability, dynamic architectures have been ex-
tensively researched for their applications in IL (Aljundi, Chakravarty,
& Tuytelaars, 2017; Rosenfeld & Tsotsos, 2018; Rusu et al., 2016).
Leveraging these advancements, researchers have recently applied dy-
namic network structures in the context of FSCIL. Depending on the
initial network structure employed, these methods can be categorized
into three distinct groups.

4.5.1. Neural gas network
Tao et al. (2020) proposed the TOPIC framework, which utilizes a

neural gas (NG) network to learn the topological structure of the feature
space formed by different categories for knowledge representation. The
stability of the NG’s topology is maintained to prevent forgetting of
old categories. With the dynamic growth of NG to accommodate new
samples, the representation of few-shot new classes is improved. Fig. 5
(left) displays the stabilization and adaptation of TOPIC.

4.5.2. Graph attention network
The Graph attention network can dynamically process different

types of graph data and make dynamic decisions based on the impor-
tance of nodes and edges learned on the graph. Zhang et al. (2021)
have pointed out that decoupling the training process into embed-
ding learning and classifier learning can effectively prevent knowledge
forgetting in the backbone. They proposed the Continually Evolved
Classifier (CEC), which first trains the backbone with base data to
give the network strong feature extraction capabilities. Then, the graph
attention model is introduced, and the graph attention network is used
in the classifier layer to adapt to the changes of incremental tasks. With
the arrival of incremental tasks, the nodes and weights of the Graph
model dynamically increase. Fig. 5 (middle) illustrates the continual
evolution of classifier.
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Fig. 5. During training, the network structure dynamically adjusts. Left: Sample features form the neural graph’s topology. With new nodes added, TOPIC (Tao et al., 2020) uses
loss constraints for topology updates. Middle: To make the classifier suitable for all categories, CEC (Zhang et al., 2021) applies graph models to the classifier. As new tasks
emerge and categories increase, the classifier’s topology continuously evolves. Right: When training on new classes, DSN (Yang et al., 2022) temporarily expands network nodes
to learn new class features, and then compresses redundant nodes to provide a compact feature representation.

4.5.3. Dynamic neural networks
Yang et al. (2021) proposed a learnable expansion-and-compression

network (LEC-Net) which enhances the feature representation capabil-
ity by selectively expanding the network nodes and reduces feature drift
from a model regularization perspective. Furthermore, they introduce
the dynamic support network (DSN) (Yang et al., 2022) which can
adaptively expand the network. DSN leverages compressive network
expansion to enrich feature representation in each incremental task
and dynamically adjusts the feature space by invoking the old class
distribution. During each training, DSN selectively expands the network
nodes to enhance the feature representation capability of incremental
classes. Then, it dynamically compresses and expands the network
through node self-activation to pursue a compact feature representa-
tion, thereby alleviating overfitting. Fig. 5 (right) shows the expansion
and compression of DSN.

In the latest study, Yoon et al. (2023) explores a masking-based
method in network structure. They utilize non-binary masks to con-
struct soft-subnetworks from the original network, effectively balancing
forgetting and overfitting. In the base classes session, soft-subnetwork
parameters and weight score are learned. In the incremental learning
session, minor parameters of the subnetwork are updated.

4.6. Methods summary

This section reviews recent advancements in FSCIL. The following
critically examines the strengths and weaknesses of various families.

Traditional machine learning methods offer promising research
prospects. By carefully designing the supervised approach of the model,
introducing additional data proves effective. Studying FSCIL from a
statistical distribution or function optimization perspective enhances
model interpretability. However, the complexity of statistical distribu-
tion modeling still presents difficulties.

Meta learning-based methods aim to make machine learning models
more flexible and adaptive. But meta-learning typically assumes all
tasks are from the same or similar data distributions and has high
dependence on the meta-training set. When incremental tasks have

different distributions from the base classes, model performance can
be affected.

Feature and feature space-based methods leverage the core idea of
learning more robust and efficient feature representations. In particu-
lar, prospective learning methods are worth exploring for their natural
capability in handling unseen samples.

Replay-based methods directly address catastrophic forgetting in
FSCIL. However, direct replay faces constraints in storage space, sample
selection, and privacy. In contrast, generative replay partially alleviates
these issues and offers a more flexible approach. Nevertheless, the
challenges of training complexity and subpar data quality persist in
generative replay methods.

Dynamic network structure-based methods serve as vital solutions
to FSCIL challenges. They adapt to continuously changing data streams
by adjusting model structures or inter-class relationships, thereby learn-
ing new knowledge while retaining old knowledge. Dynamic Networks
have gained traction in IL (Wang, Zhang, et al., 2022; Wang, Zhou, Ye,
& Zhan, 2022), and exploring their application in FSCIL is encouraged.

Overall, there remains an open research challenge to develop meth-
ods that harmoniously balance performance, scalability, efficiency, and
complexity.

5. Model performance

In this section, we will present the performance of typical FS-
CIL methods on three different datasets. Firstly, we will outline the
methodology for model selection, followed by an introduction to the
classical datasets and evaluation metrics. Finally, we will summarize
the performance results of various models.

5.1. Model selection

Comparing the performance of different methods is necessary, but
currently, many of these methods’ codes are not publicly available. As
most studies follow the standards set forth by Tao et al. (2020) (see
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Table 1
Experimental setup for the three datasets.

Dataset Base classes Incremental sessions setup Sessions

CIFAR-100 (Krizhevsky et al., 2009) 60 5-way, 5-shot 8
MiniImageNet (Vinyals et al., 2016) 60 5-way, 5-shot 8
CUB-200 (Wah et al., 2011) 100 10-way, 5-shot 10

Table 2
AA (%) and PD (%) in CIFAR-100, MiniImageNet and CUB-200.

Families Methods Venue CIFAR-100 MiniImageNet CUB-200

AA↑ PD↓ ResNet AA↑ PD↓ ResNet AA↑ PD↓ ResNet

Traditional
machine learning
methods

SSFSCIL (Cui et al., 2021) ICIP 2021 – – – – – – 50.78 34.64 18
GP-Tree (Achituve et al., 2021) ICML 2021 – – – – – – 54.26 30.12 18
F2M (Shi et al., 2021) NeurIPS 2021 53.65 20.04 18 54.89 22.63 18 69.49 20.81 18
LDC (Liu, Yang, et al., 2022) arXiv 2022 – – – – – – 68.32 16.31 18
FeSSSS (Ahmad, Dhamija, Cruz, et al., 2022) CVPR 2022 – – – 68.24 22.63 18 62.86 26.62 18

Meta
learning-based
methods

FSLL (Mazumder et al., 2021) AAAI 2021 – – – – – – 62.62 19.81 18
SPPR (Zhu et al., 2021) CVPR 2021 54.51 20.85 18 52.75 19.53 18 49.32 31.35 18
CSR (Zheng & Zhang, 2021) ICDMW 2021 59.07 23.02 20 54.11 23.15 18 62.32 19.60 18
C-FSCIL (Hersche et al., 2022) CVPR 2022 61.64 27.00 12 61.61 24.99 12 – – –
MetaFSCIL (Chi et al., 2022) CVPR 2022 60.79 24.53 20 58.85 22.85 18 61.93 23.26 18
CLOM (Zou et al., 2022) NeurIPS 2022 60.57 23.95 20 58.48 25.08 18 67.17 19.99 18
NC-FSCIL (Yang et al., 2023) ICLR 2023 67.50 26.41 12 67.82 25.71 12 67.28 21.01 18

Feature and
feature
space-based
methods

VAE-baseda (Cheraghian, Rahman, Ramasinghe, et al., 2021) ICCV 2021 50.86 20.36 18 50.63 19.30 18 51.84 25.55 18
FACT (Zhou, Wang, et al., 2022) CVPR 2022 – – – – – – 64.42 18.96 18
ALICE (Peng et al., 2022) ECCV 2022 63.21 24.90 18 63.99 24.90 18 65.75 17.30 18
LIMIT (Zhou, Ye, et al., 2022) PAMI 2022 61.84 22.58 20 59.06 23.13 18 65.48 18.48 18
MgSvF (Zhao et al., 2021) PAMI 2022 – – – – – – 62.37 17.96 18

Replay-based
methods

ERDR (Liu, Gu, et al., 2022) ECCV 2022 60.77 24.26 20 58.02 23.63 18 61.52 23.51 18

Dynamic
network
structure-based
methods

TOPIC (Tao et al., 2020) CVPR 2020 42.62 34.73 18 39.64 36.89 18 43.92 42.40 18
CEC (Zhang et al., 2021) CVPR 2021 59.53 23.93 20 57.75 24.37 18 61.33 23.57 18
LEC-Net (Yang et al., 2021) arXiv 2022 43.14 29.37 18 – – – 45.09 38.90 18
DSN (Yang et al., 2022) PAMI 2022 60.14 23.00 18 54.39 21.06 18 71.02 17.65 18

a The method name ‘‘VAE-based’’ is defined by us.

Section 2.1), it is feasible to use the data reported in the original papers
of the methods being compared, and we have adhered to this principle.
Thus, the results reported in this section are based on the original
paper’s reported data or the data processed from these original data.
We have selected and compared the performance of 22 methods from
five different families.

5.2. Datasets

At present, there is no specific dataset for FSCIL, and most of them
are made from existing datasets for new tasks. In the majority of
FSCIL experiments (Cheraghian, Rahman, Ramasinghe, et al., 2021;
Chi et al., 2022; Liu, Gu, et al., 2022; Peng et al., 2022; Shi et al.,
2021; Tao et al., 2020; Yang et al., 2022; Zhang et al., 2021; Zheng &
Zhang, 2021; Zhou, Ye, et al., 2022; Zhu et al., 2021), the three image
classification datasets CIFAR-100 (Krizhevsky et al., 2009), MiniIma-
geNet (Vinyals et al., 2016) and CUB-200 (Wah, Branson, Welinder,
Perona, & Belongie, 2011) are commonly used.

CIFAR-100 contains 100 classes with 600 RGB images per class,
where each class has 500 training images and 100 testing images. The
size of each image is 32 × 32 pixels.

MiniImageNet contains 60000 RGB images of size 84 × 84 pixels
from ImageNet-1k (Deng et al., 2009). It possesses the same number of
classes and samples as CIFAR-100, but its content is more complex and
valuable for FSCIL research.

CUB-200 is currently the most widely used benchmark image
dataset for fine-grained classification and recognition research. The
dataset has a total of 11,788 bird images, including 200 bird subclasses,
of which the training dataset has 5,994 images and the test set has
5,794 images. Each image has a size of 224 × 224 pixels. It provides
more sessions and incremental classes for comparing the sensitivity of
different methods.

The performance of the selected method was evaluated on the three
benchmark datasets mentioned above. For detailed dataset settings
refer to Table 1.

5.3. Metrics

Considering the scarcity of original data reported in the paper, we
solely compared the accuracy of each session, average accuracy (AA) of
all sessions and Performance dropping rate (PD) (Zhang et al., 2021).
PD measures the absolute accuracy drops in the last session w.r.t. the
accuracy in the base session, defined as

PD = 0 −𝑁 , (6)

where 0 is the classification accuracy in the base session and 𝑁 is
the accuracy in the last session.

5.4. Results

5.4.1. Benchmark results
Average performance. Table 2 presents the performance of typical

FSCIL methods on different datasets. In the comparative experiments,
all methods utilized ResNet as the backbone. However, there were
variations in the specific ResNet models used (e.g., ResNet-12, ResNet-
18, ResNet-20). These differences are detailed in the table. We observe
substantial performance disparities among different methods for vari-
ous datasets. For the small-sized CIFAR-100 dataset, NC-FSCIL (Yang
et al., 2023) exhibits outstanding performance at 67.50%, outper-
forming other methods by a large margin. For the more challenging
MiniImageNet dataset, FeSSSS (Ahmad, Dhamija, Cruz, et al., 2022)
utilizes self-supervised learning for data augmentation and achieves a
performance of 68.24%, surpassing NC-FSCIL (Yang et al., 2023) while
also exhibiting lower knowledge forgetting. For the fine-grained CUB-
200 dataset, only DSN (Yang et al., 2022) with AA surpasses 70% with
a performance of 71.02%, demonstrating a better ability to capture the
differences between categories.

Performance comparison by session. The accuracy of each session
during the incremental process of various models on the CUB-200
dataset is illustrated in the line chart in Fig. 6. The accuracy of the
model on the base classes limits the accuracy improvement during
the incremental phase. With the exception of some early methods
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Fig. 6. Accuracy curves of different methods on each session of CUB-200 dataset.

Fig. 7. Performance comparison of various methods on CIFAR100: FPS vs. Accuracy.

(TOPIC (Tao et al., 2020), SPPR (Zhu et al., 2021), VAE-based (Cher-
aghian, Rahman, Ramasinghe, et al., 2021)), most methods have an
accuracy of 70% to 80% on the base dataset, and few methods have
an accuracy above 80% on the base dataset (F2M (Shi et al., 2021),
DSN (Yang et al., 2022), NC-FSCIL (Yang et al., 2023)). As the earliest
research, TOPIC (Tao et al., 2020) was no longer competitive in each
session of the training. F2M (Shi et al., 2021) based on function
optimization and DSN (Yang et al., 2022) based on dynamic neural
networks still demonstrate high performance advantages.

5.4.2. Performance comparison of accuracy and inference speed
Due to the unavailability of source code for most methods, in this

part, we only select methods with publicly available code. We test
the accuracy and inference speed of these methods on the CIFAR100
dataset. All experiments are conducted 50 times on an NVIDIA TITAN
V GPU with 12 GB of memory, and the average values are reported
as the final results. The experimental results are presented in Fig. 7. It
is noticeable that NC-FSCIL (Yang et al., 2023), based on the neural
collapse theory, leads in both accuracy and inference speed. While
SAVC (Song, Zhao, et al., 2023) and CEC (Zhang et al., 2021) methods
exhibit lower accuracy, they benefit from reduced model complexity,
achieving the fastest inference speeds.

6. Research on few-shot incremental learning applications

In Section 3, the focus lies on fundamental research in FSCIL. In
this section, we primarily introduce research that concentrates on im-
plementing FSCIL techniques to resolve practical predicaments. We do

not distinguish between the variants of FSCIL, such as FSCIL and FSIL,
but rather focus on their applications. FSCIL, originating from computer
vision (CV), has presently gained extensive usage in natural language
processing (NLP) and Graph technology as well. Further subdivisions
can be observed in Table 3.

6.1. Few-shot incremental learning in computer vision

6.1.1. Applications in image classification
To address the increasing demand for classification in hyperspectral

imaging, Bai et al. (2020) proposes a linear programming IL classifier.
In pedestrian attribute recognition for video surveillance, as the need
for identifying new attributes increases, old models become inadequate.
Based on the idea of meta-learning, Xiang et al. (2019) uses an at-
tribute prototype generator module and attribute relationship module
to generate novel classification weights from annotated data.

The FSCIL method mentioned in Section 3 is mainly used for general
classification tasks and neglects the discrimination power of learned
representations, making it unsuitable for fine-grained image tasks.
Based on the idea of meta-learning, Wang, Liu, et al. (2020) pro-
poses the MetaSearch model to attempt to solve the few-shot incre-
mental product search problem in shopping and checkout processes.
MetaSearch extracts different features between various novel categories
to perform incremental product search. The designed multipooling-
based feature extractor can capture subtle differences between fine-
grained product categories, thereby improving classification accuracy.
To address the fine-grained vehicle recognition problem, a compact
and separable feature learning method (CSFL) is proposed in Li and
Huang (2022). CSFL first decouples the feature extractor from the
classifier and uses metric learning to train the feature extractor. In the
class incremental stage, only the classifier is updated, and incremental
LDA is introduced to learn intra-class compact and inter-class separa-
ble features, thereby giving the model fine-grained image recognition
capabilities. For the even more challenging ultra-fine-grained visual
categorization task, Pan et al. (2023) proposes the use of self-supervised
learning and knowledge distillation to enhance the feature extraction
ability of the network backbone, achieving better performance on
fine-grained datasets than the classic FSCIL method.

6.1.2. Applications in object detection
Equipping computer systems with the ability to learn from few

examples for object detection has strong practical significance. In-
spired by meta learning, Kang (Kang et al., 2019) proposed a novel
few-shot detection model. Since the model lacks the ability to incre-
mentally learn new targets from data streams over time, it cannot be
extended to real-world deployments in open environments and edge
devices. There are also some researchers (Chen, Yu, & Chen, 2019;
Liu, Kuang, et al., 2020; Shmelkov, Schmid, & Alahari, 2017) who
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Table 3
Summary of FSCIL applied research, including CV, NLP, and graph domains.

Domain Scenario Method Content Dataset Metrics

CV

Hyperspectral image LPILC (Bai et al.,
2020)

Propose a linear programming IL classifier PaviaU, Indian Pines, . . . AA

Pedestrian attribute
recognition

APGM (Xiang, Jin,
Ding, Han, & Li,
2019)

Incremental few-shot learning for pedestrian
attribute recognition

PETA (Deng, Luo, Loy, &
Tang, 2014), RAP (Li,
Zhang, Chen, Ling, &
Huang, 2016)

mA, Precision,
Recall, F1

Fine-grained image

MetaSearch (Wang,
Liu, et al., 2020)

Few-shot incremental fine-grained product search Mini-ImageNet (Vinyals
et al., 2016), RPC (Wei,
Cui, Yang, Wang, & Liu,
2019)

Accuracy

CSFL (Li & Huang,
2022)

FSCIL for fine-grained vehicle recognition Stanford Cars (Krause,
Stark, Deng, & Fei-Fei,
2013), CompCars (Yang,
Luo, Change Loy, &
Tang, 2015)

Accuracy, AA,
PD

SSFE-Net (Pan, Yu,
Zhang, & Gao, 2023)

A self-supervised approach is proposed for
ultra-fine-grained FSCIL

Cotton (Yu, Zhao, Gao,
Yuan, & Xiong, 2021),
SoyCultivarLocal (Yu
et al., 2021), . . .

Accuracy

Object detection

ONCE (Perez-Rua
et al., 2020)

The first study on incremental few-shot object
detection

Pascal-VOC, COCO AP, AR

Meta-Learning-Based*
(Cheng, Wang, &
Long, 2022)

Introducing meta-learning and redesigning the base
framework

Pascal-VOC, COCO AP, AR

Sylph (Yin,
Perez-Rua, & Liang,
2022)

Designing a class-conditional hypernetwork for
incremental few-shot object detection

COCO, LVIS AP

Incremental-DETR
(Dong, Zhang, Ding,
& Lee, 2022)

DETR method based on fine-tuning and
self-supervised learning

Pascal-VOC, COCO AP

MCH, BPMCH (Feng,
Zhang, Yang, & Liu,
2022)

Analogous to the maintenance of new knowledge
by establishing new connections in human cells

Pascal-VOC, COCO AP, AR

Road object detection DualFusion
(Tambwekar,
Agrawal, Majee, &
Subramanian, 2021)

Few-shot batch incremental road object detection IDD (Varma,
Subramanian,
Namboodiri, Chandraker,
& Jawahar, 2019), COCO

AP

Surface defect detection DKAN (Sun, Gao, Li,
& Gao, 2022)

Knowledge distillation network for incremental
few-shot surface defect detection

NEU-DET (Song & Yan,
2013)

AP

Semantic
segmentation

PIFS (Cermelli,
Mancini, Xian, Akata,
& Caputo, 2021)

Prototype-based incremental few-shot semantic
segmentation

Pascal-VOC 2012
(Everingham, Van Gool,
Williams, Winn, &
Zisserman, 2012), COCO
(Lin et al., 2014)

mIoU

EHNet (Shi et al.,
2022)

Adaptive-update and hyper-class representation for
incremental few-shot semantic segmentation

PASCAL-5 (Shaban,
Bansal, Liu, Essa, &
Boots, 2017), COCO

mIoU

Instance segmenter

iMTFA (Ganea,
Boom, & Poppe,
2021)

The first study on incremental few-shot instance
segmentation

Pascal-VOC (Everingham,
Van Gool, Williams,
Winn, & Zisserman,
2010), COCO

AP

iFS-RCNN (Nguyen &
Todorovic, 2022)

Incremental few-shot instance segmentation with
Bayesian learning

COCO, LVIS (Gupta,
Dollar, & Girshick, 2019)

AP

NLP

Intent recognition GAL (Zhang, Jiang,
Chen, Zheng, & Pan,
2022)

IL structure for few-shot intent recognition CLINC-150 (Cavalin,
Ribeiro, Appel, &
Pinhanez, 2020), ATIS
(Hemphill, Godfrey, &
Doddington, 1990)

Accuracy

Relation learning ERDA (Qin & Joty,
2022)

Continual few-shot relation learning FewRel (Han et al.,
2018), TACRED (Zhang,
Zhong, Chen, Angeli, &
Manning, 2017)

Accuracy

Named entity recognition NER* (Wang, Yu,
et al., 2022)

FSCIL for named entity recognition CoNLL03 (Sang &
De Meulder, 2003),
Ontonote 5.0 (Weischedel
et al., 2013)

F1

Language learning LFPT5 (Qin & Joty,
2021)

Lifelong few-shot language learning based on
prompt tuning

CoNLL03, AGNews
(Zhang, Zhao, & LeCun,
2015), CNNDM (Nallapati
et al., 2016), . . .

F1, Accuracy,
ROUGE scores

NLP+CV Label-to-image translation FILIT (Chen, Zhang,
Li, & Sun, 2022)

FSIL for label-to-image translation ADE20K (Zhou et al.,
2017), COCO-Stuff
(Caesar, Uijlings, &
Ferrari, 2018)

mIoU, accu,
. . .

(continued on next page)
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Table 3 (continued).
Domain Scenario Method Content Dataset Metrics

Graph FSCIL in graph

HAG-Meta (Tan,
Ding, Guo, & Liu,
2022)

The first GFSCIL research and solved based on
prospective learning

Amazon-Clothing
(McAuley, Pandey, &
Leskovec, 2015), DBLP
(Tang et al., 2008),
Reddit (Hamilton, Ying,
& Leskovec, 2017)

Accuracy, PD,
RPD

Geometer (Lu, Gan,
Yang, Zhang, Fu, &
Wang, 2022)

GFSCIL based on class prototype representation Cora-ML (Bojchevski &
Günnemann, 2018),
Cora-Full (Bojchevski &
Günnemann, 2018),
Flickr (Zeng, Zhou,
Srivastava, Kannan, &
Prasanna, 2020), . . .

Accuracy

1 * The method name ’’Meta-Learning-Based’’ is defined by us.
2 Below are explanations of the evaluation metrics used in the table:

AA: Average accuracy.
PD: Performance dropping rate, see Eq. (6).
RPD: Relative performance dropping rate, which is the PD normalized by the initial accuracy, 𝑅𝑃𝐷 = 𝑃𝐷∕𝐴0 .
mIoU: Mean Intersection-over-Union.
accu: Pixel accuracy.

study the problem of incremental target detection from the perspective
of IL. But none of these methods can cope with the situation where
the novel target data is few. Perez-Rua et al. (2020) introduced the
incremental few-shot object detection (iFSD) paradigm, where new
classes are made available gradually through different sessions. Perez
proposed the ONCE model to solve the iFSD problem, which is based on
the CenterNet (Zhou, Wang, & Krähenbühl, 2019) one-stage detection
method. First, the model uses abundant base dataset to train a class-
generic feature extractor. Then, a meta-learning algorithm is used to
train a class-specific code generator for each novel category to register
new classes. Incrementally appearing new class samples only need to
be registered in the meta-training phase through forward propagation
without revisiting base classes or iteratively updating, making it suit-
able for deployment on embedded devices. Most subsequent methods
employ class-agnostic feature extractors trained on abundant base data,
following the BPNF strategy (see Definition 2), and continuously reg-
ister new embeddings when novel classes emerge. Cheng et al. (2022)
also utilize CenterNet as the fundamental framework, similar to Perez-
Rua et al. (2020), but introduce a novel meta-learning method for
fine-tuning the model, thus retaining the knowledge related to base
classes. During meta-learning optimization, they draw inspiration from
the model-agnostic meta-learning algorithm (Finn et al., 2017), a few-
shot meta-learning algorithm that uses gradient descent to identify an
appropriate initialization that can quickly adapt to the few samples
of unseen classes. However, due to overfitting of the feature extractor
on base class samples, the model’s generalization of output features is
inadequate, limiting the proposed model’s performance on new classes.
Yin et al. (2022) proposed a hypernetwork framework for iFSD called
Sylph. It uses a base detector and hypernetwork architecture similar to
ONCE. Unlike ONCE, they trained a base detector with class-agnostic
localization capability on abundant base dataset, thus decoupling local-
ization from classification. This simplifies the task, but when the size
of the base dataset is small or the dataset quality is poor, the class-
agnostic detector’s localization ability is poor. They further improved
the detection accuracy by modifying the network structure and adding
normalization to the predicted parameters. Dong et al. (2022) first
introduced the DETR object detector (Zhu et al., 2020) into few-shot
object detection and proposed Incremental-DETR. They still followed
the BPNF guideline. The entire model is divided into two stages. First,
the entire network is pre-trained using a large amount of data from base
classes, and a self-supervised algorithm is used to fine-tune the class-
specific projection layer and classification head. Then, the backbone
is frozen, and the class-specific projection layer and classification head
are fine-tuned for novel classes. In contrast, Feng et al. (2022) proposed
a multi-class head model that mimics the mechanism of maintaining
new knowledge by building new connections in human cells. The
classification header is continuously added as new data appears. The

classification head performs classification detection by using features
learned from the data, simulating the way humans learn and maintain
new knowledge. Furthermore, by adding a new backbone to the multi-
class head model, a bi-path multi-class head model is formed to achieve
the transfer from old knowledge to new knowledge.

In practical applications, Tambwekar et al. (2021) proposed a few-
shot batch incremental road object detection method specifically de-
signed for road objects. The DualFusion architecture they proposed
consists of a Faster R-CNN used for base classes detection, a novel
class detection network, and a fusion network. When detecting each
new class, only 10 annotated instances are used. The limitation of this
method is that although access to the base dataset is only required
once, all novel few-shot data must be retained to permanently access
novel class data. In the field of hot-rolled steel strip surface defects, Sun
et al. (2022) proposes a new knowledge distillation network called dual
knowledge align network. Following the BPNF guidelines, a knowledge
distillation framework is designed for fine-tuning. They convert NEU-
DET (Song & Yan, 2013) into an incremental few-shot dataset, and the
experiment shows that they achieve great performance compared to
other methods. Furthermore, the few-shot incremental object learning
problem for robotic vision is highly valuable. Previous studies have
explored the use of a small set of visual examples to incrementally train
robots and enhance their recognition capabilities (Ayub & Wagner,
2020b). However, the few-shot incremental object learning problem for
robotic vision remains unresolved (Ayub & Wagner, 2021).

6.1.3. Applications in image segmentation
Unlike image classification and object detection, image segmenta-

tion requires classification of each pixel, making it more challenging
than the other two tasks. Instance segmentation, a subtask of image
segmentation, is even more difficult than semantic segmentation as it
requires distinguishing boundaries between different instances, while
semantic segmentation only requires distinguishing objects and back-
ground. In the following, we will discuss some applications of FSCIL in
semantic and instance segmentation. Cermelli et al. (2021) proposed
the first attempt to solve incremental few-shot semantic segmentation.
They proposed PIFS, which combines prototype learning with knowl-
edge distillation. In the base stage, PIFS trains the network on base
data to develop the capability of feature extraction. In the FSL stage,
PIFS exploits prototypes to initialize classifiers of new classes and fine-
tunes the network to refine its feature representation. The subsequently
added prototype-based distillation loss enables the model to avoid
overfitting and forgetting. Shi et al. (2022) proposed the Embedding
adaptive-update and Hyper-class representation Network (EHNet) for
incremental few-shot learning. The category embedding describes ex-
clusive semantic properties, and the hyper-class knowledge expresses
class-shared semantic properties. The category embedding is stored in



Neural Networks 169 (2024) 307–324

320

S. Tian et al.

the memory pool and can be updated adaptively. Subsequently, in
the segmentation stage, EHNet guides the query image to segment the
corresponding category.

For more challenging incremental few-shot instance segmentation,
Ganea et al. (2021) introduced Model agnostic methods and proposed
the first approach to solving this problem: iMTFA. It repurposes the
Mask R-CNN network (He, Gkioxari, Dollár, & Girshick, 2017) to train
feature extractors to generate discriminative embeddings for different
instances. The average of those class embeddings is used as the repre-
sentation for each class in the cosine similarity classifier. Thanks to the
ability to predict localization and segmentation in a class-agnostic man-
ner, adding new classes simply uses the representation of each class.
When a new class appears, Nguyen and Todorovic (2022) fine-tunes the
Mask-RCNN that was pre-trained on base classes. Specifically, they use
Bayesian learning to estimate the class-weight distribution to modify
the classification head and compute the uncertainty of prediction to
modify the bounding-box head. This results in better performance than
iMTFA on the COCO dataset. However, they do not successfully explain
why their estimation of the uncertainty of bounding-box localization
surpasses a Gaussian-based uncertainty estimation (He, Zhu, Wang,
Savvides, & Zhang, 2019).

6.2. Few-shot incremental learning in natural language processing

FSIL is first proposed in the computer vision field, but with its
increasing influence, many studies have applied its ideas to natural
language processing (NLP). For instance, in few-shot intent recognition
used for text data, Zhang et al. (2022) proposes constructing an undi-
rected fully connected geometry structure based on the spatial distri-
bution of selected samples in the embedding space. Subsequently, they
apply a multisource contrastive-based loss to prevent the forgetting of
the base classes and avoid overfitting of the novel classes.

Qin and Joty (2022) define relation learning in few-shot and incre-
mental scenarios as continual few-shot relation learning and propose
a method based on embedding space regularization and data aug-
mentation to solve this problem. Wang, Yu, et al. (2022) use the
generation-replay method to solve FSCIL for named entity recognition,
which generates synthetic data of old entity classes for distillation. Qin
and Joty (2021) propose a unified framework for lifelong few-shot lan-
guage learning, LFPT5, based on prompt tuning of T5. LFPT5 performs
well on three different tasks: sequence labeling, text classification, and
text generation, and is suitable for real-world applications.

In addition, FSIL has also been applied to the fusion field of images
and NLP. For example, in the label-to-image translation field, which
uses deep learning algorithms to learn the mapping relationship from
semantic space to image space. Chen et al. (2022) propose a FSIL
method for label-to-image translation, which solves this task with
semantically-adaptive filters and normalization.

6.3. Few-shot incremental learning in graph

Recent studies have applied FSCIL to graphs (Lu et al., 2022; Tan
et al., 2022). To maintain consistency with existing literature, we refer
to this as graph Few-shot class incremental learning (GFSCIL). One of
the pioneering studies in this field is the HAG-Meta method proposed
by Tan et al. (2022), which incorporates the previously mentioned
Prospective Learning concept. HAG-Meta is based on the graph pseudo
incremental learning paradigm and enables the model to learn new
classes incrementally by cyclically adopting them from the base classes.
Furthermore, it addresses class imbalance problems using hierarchical-
attention-based modules. Lu et al. (2022) proposed Geometer to tackle
GFSCIL problems. Geometer predicts the label of a node by identifying
the nearest class prototype in the metric space and adjusts the attention-
based prototypes by observing the geometric proximity, uniformity,
and separability of novel classes. To mitigate catastrophic forgetting

and unbalanced labeling issues, teacher–student knowledge distilla-
tion and biased sampling are also introduced. However, both of these
methods are unable to handle dynamic graph structures.

7. Future works

In this section, we discuss three key directions for the further
development of FSCIL, namely, (i) theories, (ii) FSCIL settings and (iii)
applications.

7.1. Theories

In order to further advance the field of FSCIL, there are several
key areas that require attention in future research. Firstly, researchers
should aim to enhance the efficiency of the algorithm by considering
both performance and complexity. While many studies have solely
focused on improving performance, it is important to also take into
account the resource requirements of these methods. Secondly, it is
crucial to improve testing standards to more accurately evaluate per-
formance across multiple tasks and on the base dataset. Although the
average accuracy metric is widely used, it fails to account for the issue
of imbalanced base classes and novel classes data. Additionally, the
performance dropping rate solely focuses on accuracy of the base and
final tasks, without considering the accuracy of intermediate processes.
In comparison, relative performance dropping rate (Tan et al., 2022)
and harmonic accuracy (Peng et al., 2022) offer more comprehensive
means of measuring model performance. Thirdly, as the ViT (Dosovit-
skiy et al., 2021) continues to gain importance, it may be worthwhile to
explore its potential for use in FSCIL, as exemplified in Zhou, Ye, et al.
(2022). By addressing these key areas, future research can build upon
the current state-of-the-art and continue to advance this important area
of machine learning.

7.2. FSCIL settings

The current experimental guidelines for FSCIL largely follow the
setting proposed in Tao et al. (2020), which assumes a fixed number of
new classes and samples per class in each incremental phase. However,
this setting is difficult to meet in real-world applications. To better
address this issue, Ahmad, Dhamija, Jafarzadeh, et al. (2022) extended
FSCIL to be variable, where in each incremental session, a learning
agent can expect up to N ways and up to K shots. Additionally, Kalla
and Biswas (2022) proposed a more general setting, where novel classes
have different numbers of samples, known as FSCIL-imbalanced, and
the number of base classes is not abundant, known as FSCIL-less base.
Exploring approaches closer to real-world applications, such as how to
handle variable numbers of new classes and shots in different sessions,
has practical significance. It is also worth investigating the fusion of FSL
with Task-IL and Domain-IL, which are promising research directions.

7.3. Applications

The application of FSCIL in various interdisciplinary fields is a
promising avenue for exploration in the future. For instance, recent
research has introduced FSIL into the field of audio (Wang, Bryan,
Cartwright, Bello, & Salamon, 2021), dynamic few-shot learning for
multi-label audio classification (Gidaris & Komodakis, 2018), auto-
matic radar modulation recognition (Luo, Si, & Deng, 2022), intrusion
detection (Wang, Lv, Hu, & Sun, 2021), and medical time-series classi-
fication (Sun, Zhang, Wang, & Tiwari, 2023). However, these methods
are limited to single-scene settings, thus lacking scalability. Therefore,
establishing a unified theoretical framework that is applicable to a wide
range of scenarios is one of the future directions to address complex and
multimodal tasks.
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8. Conclusion

Few-shot class-incremental learning is a challenging yet crucial task.
It reflects how humans learn in real-world scenarios where high-quality
data is often limited and learning data is continually presented. In this
paper, we have provided a comprehensive survey of existing FSCIL ap-
proaches and attempted to categorize them into five families, including
traditional machine learning methods, meta learning-based methods,
feature and feature space-based methods, replay-based methods, and
dynamic network structure-based methods. Integrating these method-
ologies to balance performance, scalability, efficiency, and complexity
may provide a direction for future research. We have also discussed the
performance of classic FSCIL methods and the applications of FSCIL in
various fields of deep learning. However, FSCIL remains an underex-
plored area, and further research is required to explore its potential
applications and theories. Due to limitations of space, some theoretical
derivations of the content were not extensively introduced. With the
increasing demand for real-world AI applications, FSCIL research will
continue to attract more attention and drive new innovations in the
field of deep learning.
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