367 research outputs found

    Microcalcification and Macrocalcification Detection in Mammograms Based on GLCM and ODCM Texture Features Using SVM Classifier

    Full text link
    Breast cancer is a common cancer in women and the second leading cause of cancer deaths worldwide. Photographing the changes in internal breast structure due to formation of masses and microcalcification for detection of Breast Cancer is known as Mammogram, which are low dose x-ray images. These images play a very significant role in early detection of breast cancer. Usually in pattern recognition texture analysis is used for classification based on content of image or in image segmentation based on variation of intensities of gray scale levels or colours. Similarly texture analysis can also be used to identify masses and microcalcification in mammograms. However Grey Level Co-occurrence Matrices (GLCM) technique introduced by Haralick was initially used in study of remote sensing images. Radiologists f i n d i t d i f f i c u l t to identify the mass in a mammogram, since the masses are surrounded by pectoral muscle and blood vessels. In breast cancer screening, radiologists usually miss approximately 10% - 30% of tumors because of the ambiguous margins of tumors resulting from long-time diagnosis. Computer-aided detection system is developed to aid radiologists in detecting ma mammographic masses which indicate the presence of breast cancer. In this paper the input image is pre-processed initially that includes noise removal, pectoral muscle removal, thresholding, contrast enhancement and suspicious mass is detected and the features are extracted based on the mass detected. A feature extraction method based on grey level co- occurrence matrix and optical density features called GLCM -OD features is used to describe local texture characteristics and the discrete photometric distribution of each ROI. Finally, a support vector machine is used to classify abnormal regions by selecting the individual performance of each feature. The results prove that the proposed system achieves an excellent detection performance using SVM classifier

    Automated pectoral muscle identification on MLOâ view mammograms: Comparison of deep neural network to conventional computer vision

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149204/1/mp13451_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149204/2/mp13451.pd

    An Image Processing Framework for Breast Cancer Detection Using Multi-View Mammographic Images

    Get PDF
    Breast cancer is the leading cause of cancer death in women. The early phase of breast cancer is asymptomatic, without any signs or symptoms. The earlier breast cancer can be detected, the greater chance of cure. Early detection using screening mammography is a common step for detecting the presence of breast cancer. Many studies of computer-based using breast cancer detection have been done previously. However, the detection process for craniocaudal (CC) view and mediolateral oblique (MLO) view angles were done separately. This study aims to improve the detection performance for breast cancer diagnosis with CC and MLO view analysis. An image processing framework for multi-view screening was used to improve the diagnostic results rather than single-view. Image enhancement, segmentation, and feature extraction are all part of the framework provided in this study. The stages of image quality improvement are very important because the contrast of mammographic images is relatively low, so it often overlaps between cancer tissue and normal tissue. Texture-based segmentation utilizing the first-order local entropy approach was used to segment the images. The value of the radius and the region of probable cancer were calculated using the findings of feature extraction. The results of this study show the accuracy of breast cancer detection using CC and MLO views were 88.0% and 80.5% respectively. The proposed framework was useful in the diagnosis of breast cancer, that the detection results and features help clinicians in making treatment

    Visual perception driven registration of mammograms

    Get PDF
    International audienceThis paper aims to develop a methodology to register pairs of temporal mammograms. Control points based on anatomical features are detected in an automated way. Thereby, image semantic is used to extract landmarks based on these control points. A referential is generated from these control points based on this referential the studied images are realigned using different levels of observation leading to both rigid and non-rigid transforms according to expert mammogram reading

    Computer assisted screening of digital mammogram images

    Get PDF
    The use of computer systems to assist clinicians in digital mammography image screening has advantages over traditional methods. Computer algorithms can enhance the appearance of the images and highlight suspicious areas. Screening provides a more thorough examination of the images. Any computer system that does screening of digital mammograms contains components to address multiple tasks such as: image segmentation, mass lesion detection and classification, and microcalcification detection and classification. This dissertation provides both effective and efficient improvements to existing algorithms, which segment mammogram images and locate mass lesions. In addition, we provide a new algorithm to evaluate and report the results for mass lesion detection. The algorithm presented for mammogram segmentation uses a histogram based operator to define the boundaries between the different components of a mammogram image. It employs a unique clustering algorithm to produce closed, labeled sets of pixels which represent the distinct image components. The mass location algorithm uses a variation of template matching to locate suspicious areas. An evaluation of potential templates and algorithms is included. The method for testing and recording the results of the mass location algorithm groups suspicious pixels into regions and then compares them to the pathology
    corecore