45 research outputs found

    On the Relative Strength of Pebbling and Resolution

    Full text link
    The last decade has seen a revival of interest in pebble games in the context of proof complexity. Pebbling has proven a useful tool for studying resolution-based proof systems when comparing the strength of different subsystems, showing bounds on proof space, and establishing size-space trade-offs. The typical approach has been to encode the pebble game played on a graph as a CNF formula and then argue that proofs of this formula must inherit (various aspects of) the pebbling properties of the underlying graph. Unfortunately, the reductions used here are not tight. To simulate resolution proofs by pebblings, the full strength of nondeterministic black-white pebbling is needed, whereas resolution is only known to be able to simulate deterministic black pebbling. To obtain strong results, one therefore needs to find specific graph families which either have essentially the same properties for black and black-white pebbling (not at all true in general) or which admit simulations of black-white pebblings in resolution. This paper contributes to both these approaches. First, we design a restricted form of black-white pebbling that can be simulated in resolution and show that there are graph families for which such restricted pebblings can be asymptotically better than black pebblings. This proves that, perhaps somewhat unexpectedly, resolution can strictly beat black-only pebbling, and in particular that the space lower bounds on pebbling formulas in [Ben-Sasson and Nordstrom 2008] are tight. Second, we present a versatile parametrized graph family with essentially the same properties for black and black-white pebbling, which gives sharp simultaneous trade-offs for black and black-white pebbling for various parameter settings. Both of our contributions have been instrumental in obtaining the time-space trade-off results for resolution-based proof systems in [Ben-Sasson and Nordstrom 2009].Comment: Full-length version of paper to appear in Proceedings of the 25th Annual IEEE Conference on Computational Complexity (CCC '10), June 201

    Hardness of Approximation in PSPACE and Separation Results for Pebble Games

    Full text link
    We consider the pebble game on DAGs with bounded fan-in introduced in [Paterson and Hewitt '70] and the reversible version of this game in [Bennett '89], and study the question of how hard it is to decide exactly or approximately the number of pebbles needed for a given DAG in these games. We prove that the problem of eciding whether ss~pebbles suffice to reversibly pebble a DAG GG is PSPACE-complete, as was previously shown for the standard pebble game in [Gilbert, Lengauer and Tarjan '80]. Via two different graph product constructions we then strengthen these results to establish that both standard and reversible pebbling space are PSPACE-hard to approximate to within any additive constant. To the best of our knowledge, these are the first hardness of approximation results for pebble games in an unrestricted setting (even for polynomial time). Also, since [Chan '13] proved that reversible pebbling is equivalent to the games in [Dymond and Tompa '85] and [Raz and McKenzie '99], our results apply to the Dymond--Tompa and Raz--McKenzie games as well, and from the same paper it follows that resolution depth is PSPACE-hard to determine up to any additive constant. We also obtain a multiplicative logarithmic separation between reversible and standard pebbling space. This improves on the additive logarithmic separation previously known and could plausibly be tight, although we are not able to prove this. We leave as an interesting open problem whether our additive hardness of approximation result could be strengthened to a multiplicative bound if the computational resources are decreased from polynomial space to the more common setting of polynomial time

    Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling

    Full text link
    We establish an exactly tight relation between reversible pebblings of graphs and Nullstellensatz refutations of pebbling formulas, showing that a graph GG can be reversibly pebbled in time tt and space ss if and only if there is a Nullstellensatz refutation of the pebbling formula over GG in size t+1t+1 and degree ss (independently of the field in which the Nullstellensatz refutation is made). We use this correspondence to prove a number of strong size-degree trade-offs for Nullstellensatz, which to the best of our knowledge are the first such results for this proof system

    Understanding Space in Proof Complexity: Separations and Trade-offs via Substitutions

    Full text link
    For current state-of-the-art DPLL SAT-solvers the two main bottlenecks are the amounts of time and memory used. In proof complexity, these resources correspond to the length and space of resolution proofs. There has been a long line of research investigating these proof complexity measures, but while strong results have been established for length, our understanding of space and how it relates to length has remained quite poor. In particular, the question whether resolution proofs can be optimized for length and space simultaneously, or whether there are trade-offs between these two measures, has remained essentially open. In this paper, we remedy this situation by proving a host of length-space trade-off results for resolution. Our collection of trade-offs cover almost the whole range of values for the space complexity of formulas, and most of the trade-offs are superpolynomial or even exponential and essentially tight. Using similar techniques, we show that these trade-offs in fact extend to the exponentially stronger k-DNF resolution proof systems, which operate with formulas in disjunctive normal form with terms of bounded arity k. We also answer the open question whether the k-DNF resolution systems form a strict hierarchy with respect to space in the affirmative. Our key technical contribution is the following, somewhat surprising, theorem: Any CNF formula F can be transformed by simple variable substitution into a new formula F' such that if F has the right properties, F' can be proven in essentially the same length as F, whereas on the other hand the minimal number of lines one needs to keep in memory simultaneously in any proof of F' is lower-bounded by the minimal number of variables needed simultaneously in any proof of F. Applying this theorem to so-called pebbling formulas defined in terms of pebble games on directed acyclic graphs, we obtain our results.Comment: This paper is a merged and updated version of the two ECCC technical reports TR09-034 and TR09-047, and it hence subsumes these two report

    Linear-time algorithms for testing the satisfiability of propositional horn formulae

    Get PDF
    AbstractNew algorithms for deciding whether a (propositional) Horn formula is satisfiable are presented. If the Horn formula A contains K distinct propositional letters and if it is assumed that they are exactly P1,
, PK, the two algorithms presented in this paper run in time O(N), where N is the total number of occurrences of literals in A. By representing a Horn proposition as a graph, the satisfiability problem can be formulated as a data flow problem, a certain type of pebbling. The difference between the two algorithms presented here is the strategy used for pebbling the graph. The first algorithm is based on the principle used for finding the set of nonterminals of a context-free grammar from which the empty string can be derived. The second algorithm is a graph traversal and uses a “call-by-need” strategy. This algorithm uses an attribute grammar to translate a propositional Horn formula to its corresponding graph in linear time. Our formulation of the satisfiability problem as a data flow problem appears to be new and suggests the possibility of improving efficiency using parallel processors

    LIPIcs

    Get PDF
    We study space complexity and time-space trade-offs with a focus not on peak memory usage but on overall memory consumption throughout the computation. Such a cumulative space measure was introduced for the computational model of parallel black pebbling by [Alwen and Serbinenko ’15] as a tool for obtaining results in cryptography. We consider instead the non- deterministic black-white pebble game and prove optimal cumulative space lower bounds and trade-offs, where in order to minimize pebbling time the space has to remain large during a significant fraction of the pebbling. We also initiate the study of cumulative space in proof complexity, an area where other space complexity measures have been extensively studied during the last 10–15 years. Using and extending the connection between proof complexity and pebble games in [Ben-Sasson and Nordström ’08, ’11] we obtain several strong cumulative space results for (even parallel versions of) the resolution proof system, and outline some possible future directions of study of this, in our opinion, natural and interesting space measure

    Covering Numbers of the Cubes

    Get PDF
    How many triangles does it take to make a square? The answer is simple: two. This problem has a direct analogue in dimensions three and higher, but the answers are much harder to find. We provide new lower bounds in dimensions 4 through 13, an asymptotic lower bound which is inferior to the best known bound in high dimensions, and some new ideas which produce good upper bounds in both low and high dimensions

    Understanding space in resolution: optimal lower bounds and exponential trade-offs

    Get PDF
    We continue the study of tradeoffs between space and length of resolution proofs and focus on two new results: begin{enumerate} item We show that length and space in resolution are uncorrelated. This is proved by exhibiting families of CNF formulas of size O(n)O(n) that have proofs of length O(n)O(n) but require space Omega(n/logn)Omega(n / log n). Our separation is the strongest possible since any proof of length O(n)O(n) can always be transformed into a proof in space O(n/logn)O(n / log n), and improves previous work reported in [Nordstr"{o}m 2006, Nordstr"{o}m and H{aa}stad 2008]. item We prove a number of trade-off results for space in the range from constant to O(n/logn)O(n / log n), most of them superpolynomial or even exponential. This is a dramatic improvement over previous results in [Ben-Sasson 2002, Hertel and Pitassi 2007, Nordstr"{o}m 2007]. end{enumerate} The key to our results is the following, somewhat surprising, theorem: Any CNF formula FF can be transformed by simple substitution transformation into a new formula F2˘7F\u27 such that if FF has the right properties, F2˘7F\u27 can be proven in resolution in essentially the same length as FF but the minimal space needed for F2˘7F\u27 is lower-bounded by the number of variables that have to be mentioned simultaneously in any proof for FF. Applying this theorem to so-called pebbling formulas defined in terms of pebble games over directed acyclic graphs and analyzing black-white pebbling on these graphs yields our results

    Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling

    Get PDF
    We establish an exactly tight relation between reversible pebblings of graphs and Nullstellensatz refutations of pebbling formulas, showing that a graph G can be reversibly pebbled in time t and space s if and only if there is a Nullstellensatz refutation of the pebbling formula over G in size t+1 and degree s (independently of the field in which the Nullstellensatz refutation is made). We use this correspondence to prove a number of strong size-degree trade-offs for Nullstellensatz, which to the best of our knowledge are the first such results for this proof system
    corecore