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Abstract

For current state-of-the-art satisfiability algorithms based on the DPLL procedure and clause learn-
ing, the two main bottlenecks are the amounts of time and memory used. Understanding time and
memory consumption, and how they are related to one another, is therefore a question of considerable
practical importance. In the field of proof complexity, these resources correspond to the length and space
of resolution proofs for formulas in conjunctive normal form (CNF). There has been a long line of re-
search investigating these proof complexity measures, but while strong results have been established for
length, our understanding of space and how it relates to length has remained quite poor.

The key technical contribution of this paper is the following, somewhat surprising, theorem: Any
CNF formula F can be transformed by simple substitution into a new formula F ′ such that if F has the
right properties, F ′ can be proven in resolution in essentially the same length as F but the minimal space
needed for F ′ is lower-bounded by the number of variables that have to be mentioned simultaneously in
any proof for F . As immediate corollaries of this, we get simpler proofs for previously known optimal
lower bounds for space and for the recent space-length separation in [Ben-Sasson and Nordström 2008].

Moreover, applying our theorem to so-called pebbling formulas defined in terms of pebble games
on directed acyclic graphs, and then studying black-white pebblings on these graphs, we obtain a host
of space-length trade-off results for space in the range from constant to O(n/ log log n), most of them
superpolynomial or even exponential.
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tion Blanceflor Boncompagni-Ludovisi, née Bildt.
‡Part of this work performed while at the Royal Institute of Technology (KTH) and while visiting the Technion.

Dagstuhl Seminar Proceedings 08381 
Computational Complexity of Discrete Problems  
http://drops.dagstuhl.de/opus/volltexte/2008/1781

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 INTRODUCTION

1 Introduction

1.1 Previous Work

Resolution length and space The resolution proof system, introduced by Blake [Bla37] in 1937 is
the single-most studied proof system in propositional proof complexity. The interest in resolution is due
to its lying at the very base of the important bounded-depth Frege hierarchy of propositional proof systems
and because the proof complexity of resolution is tightly connected to the computational complexity of the
prominent family of SAT solvers based on the DPLL algorithm of [DLL62, DP60, Rob65].

The interest in resolution has lead to an extensive study of the complexity of refutations in this system.
The most important proof complexity measure is the length of refutations and the most important question
regarding this measure has been (and still is) to establish techniques for proving lower bounds on length.
Over the past half century, starting with the seminal superpolynomial lower bound for regular resolution by
Tseitin in 1968 [Tse68], several techniques for proving superpolynomial lower bounds on this complexity
measure have been discovered. Notable examples include [Hak85, Urq87, CS88, Pud97, BKPS02, BSW01,
Raz03, Raz04]. We refer to the surveys [Tor04, Seg07] for more information on this topic.

The study of resolution space complexity was initiated more recently—about ten years ago—by Esteban
and Torán [ET01, Tor99]. Intuitively, the space of a refutation is the maximal amount of memory needed
while verifying it, and the space of refuting the CNF formula F is defined as the minimal space of any
resolution refutation of F . Over the past decade, a number of upper and lower bounds for refutation space
in resolution have been presented in, for example, [ABSRW02, BSG03, EGM04, ET03].

There are two main ways to measure the amount of memory needed to verify a refutation and these
measures are known as clause space and variable space. The former measure is defined as the number of
different clauses in the memory, regardless of the amount of memory each clause requires. The latter is
the number of literals kept in memory, i.e., it is the sum of the sizes of the clauses kept in memory. While
variable space is more clearly related to the actual amount of memory required to verify a proof—the actual
memory is at most log n times the variable space—clause space has attracted most of the attention. The
reason for this seems to be that clause space has interesting connections to refutation length and width,
which is the size of a largest clause in the refutation. Esteban and Torán [ET01] proved that clause space is
at most logarithmic in the minimal length of a tree-like refutation of a formula, which implies that clause
space is bounded by the number of variables appearing in the formula, and Atserias and Dalmau [AD03]
proved that space is lower bounded by width.

The question of the relation between clause space and length of general resolution proofs was raised
by the first author in [BS02] and has also been discussed in, for instance, [ET03, Seg07, Tor04]. A pair of
works of the second author and Håstad [Nor06, NH08b] have shown that, in contrast to the case of tree-like
resolution, length and clause space of general resolution proofs are not strongly related. By this we mean
that the existence of a short proof does not necessarily imply the existence of a proof that can be carried out
in small clause space. In our recent joint work [BSN08] we showed that the separation of clause space and
length can be “maximally” large. More precisely, the main result in our paper is an explicit construction of
k-CNF formulas of size n (for arbitrarily large n) that have refutations of size O(n) but require clause space
Ω(n/ log n). We say this separation is “maximal” because these bounds are tight up to constant factors.

Length-space trade-offs The focus of this paper is the fundamental question of the trade-off between
length and space in resolution. Informally, this question asks how much time one can save when verifying
a refutation by allowing more working memory during the verification process. Notice that the above-
mentioned lower bounds on length and on space do not deal with this question, but rather state absolute
lower bounds on each individual complexity measure. Consider for instance the maximal separation of
length and space described in the previous paragraph. This separation is maximal since by combining
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UNDERSTANDING SPACE IN RESOLUTION

results from [ET01, HPV77] we know that any formula refutable in time O(n) can also be refuted in space
O(n/ log n). But can this linear-length refutation be carried out in space, say, 100 · n/ log n? As we show
later in this paper, the answer is no in general. Sometimes short refutations require large space, and small
space implies long proofs. Analogous time-space trade-offs are well-known in computational complexity
(see, e.g., [CS80, CS82, LT82]) and one of the main results of this work is to show how such classical
time-space results can be “lifted” to give length-space trade-offs for resolution.

The question of length-space trade-offs in resolution was first studied by the first author in [BS02] and
more recently by Hertel and Pitassi in [HP07] and by the second author in [Nor07]. These works have a
number of limitations that are overcome in the current paper. The results of [BS02] are limited to the very
restricted case of tree-like resolution. The paper [HP07] deals with variable space only and in addition re-
quire formulas with rapidly growing width, and [Nor07] uses a somewhat artificial construction of formulas
“glued together” from two different unsatisfiable subformulas over disjoint variable sets. Moreover, both
trade-off results for general resolution apply only for a very carefully selected ratio of space-to-formula-
size and display a sharp and abrupt decay of proof length when space is increased even by small amounts.
For instance, the refutation length of the formulas of [HP07] drops exponentially once the variable space is
increased to 3 literals above the bare minimal variable space required.

1.2 Our contribution

This paper contains two main results regarding resolution length and space, and one auxiliary result about
“classical” time-space trade-offs. Our first result is a new method to obtain clause space lower bounds from
lower bounds on a space measure related to variable space. The second result, which builds upon the first,
is a technique to convert time-space trade-offs from the “classical” computational setting to resolution.

The Substitution Space Theorem To describe our first result we define the variable support size
of a refutation as the maximal number of distinct variables appearing simultaneously in memory during
the refutation. Thus, in particular, variable support size is a lower bound on variable space. We present a
general method to transform lower bounds on the variable support size for F to clause space lower bounds
on a formula F ′ obtained from F as follows. Suppose F mentions variables x1, . . . , xn. To produce F ′

all we do is substitute each variable xi with the exclusive-or1 (xor) of two copies of xi, denoted x
(1)
i , x

(2)
i

and expand the resulting “clauses” (which became disjunctions of xors after substitution) to obtain a CNF
formula in the standard way. Our first main theorem can now be stated (informally) as follows.

Theorem 1.1 (Substitution Space Theorem (Informal)). For any CNF formula F over the set of variables
{x1, . . . , xn}, let F ′ denote the formula with the exclusive-or x

(1)
i ⊕ x

(2)
i substituted for xi, written in CNF

in the canonical way.
Then any refutation π of F in bounded width can be transformed into a refutation π′ of F ′ such that the

length and variable space of π′ is at most a constant times the length and variable space of π′, respectively.
In the other direction, any refutation π′ of the substitution formula F ′ can be translated back into a

refutation π of F such that the length of π is upper-bounded by the length of π′ and the variable support size
of π is at most the clause space of π′.

The most surprising aspect of this theorem, which is also the hardest to prove, is that one can convert
support size lower bounds for F to clause space lower bounds for F ′. This reduces tha problem of proving
lower bounds on clause space to the easier task of proving lower bounds on variable support size.

1There is nothing magical about the exclusive-or of two variables. Substituting each variable with any function whose value is
never dictated by only one variable will lead to essentially the same Substitution Space Theorem.
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1 INTRODUCTION

The proof of the Substitution Space Theorem is outlined in Section 4. We believe it is of independent
interest; to wit, in subsequent work (not included in this report) we generalize it to understand the con-
nection between length and space of the stronger proof system known as k-DNF resolution. Let us briefly
describe the main ideas in the proof of the clause space–variable support size connection. A refutation π′

of F ′ is a sequence of clause configurations where the tth configuration is a set of clauses over variables
x

(1)
1 , x

(2)
1 , . . . , x

(1)
n , x

(2)
n corresponding to the content of the memory at time t in the proof. We start by

“projecting” each memory configuration down on a set of clauses over the original variables x1, . . . , xn.
Next, we argue that the sequence of projected sets is (almost) a resolution refutation of F , which we call π.
Finally, we show that the variable support of each projected set in π is a lower bound on the clause space of
its projecting clause configuration in π′.

The Substitution Space Theorem is inspired by our recent work [BSN08] and indeed our main theorem
there is a special case of this new theorem. Let us highlight the important novel aspects of this more general
theorem. First and foremost, our previous statement applied only to a very special kind of formulas known
as pebbling contradictions whereas the Substitution Space Theorem can be applied convert any CNF for-
mula requiring large variable support size into a new and closely related CNF formula requiring large clause
space. Second, the proof of the Substitution Space Theorem is much cleaner and simpler than the previous
one. There is no longer any need to assume the existence of any “underlying directed acyclic graphs” and
construct intricate intermediate resolution-like pebble games on these DAGs. Third, the Substitution Space
Theorem gives length-preserving reductions from π to π′ and vice versa, whereas it was unclear how to
derive similar reductions from our previous work. And length-preserving reductions are crucial for our
length-space trade-offs described below.

We end the discussion of the Substitution Space Theorem by pointing out that the space bounds obtained
from the Substitution Space Theorem apply to both clause and variable space. This is because the lower
bound on space of π′ is in terms of clause space. Thus, it implies a similar lower bound on the variable
space of π′ because variable space is always at least as large as clause space. In the other direction, the
upper bound on the space of π′ is in terms of the larger of the two space measures,variable space, and hence
applies also to clause space. The “tightness of bounds” of the Substitution Space Theorem plays a pivotal
role in our second main result, namely, the length-space trade-offs described next.

Trade-offs in resolution Our second main result is a new method to “lift” classical time-space trade-off
results to the proof complexity world and obtain a host of “robust” length-space trade-offs for resolution.
By “robust” we mean that the trade-off is not significantly affected by small changes to either space or time
and displays a rather slow and gradual decrease in one parameter (say, length) as the other (say, space) is
increased. Prior to this work such “robust” trade-offs were known only for tree-like resolution [BS02].

All trade-off results reported here follow the same proof strategy, which is described in loose terms
next (the full details appear in Appendix C). We start with a computational time-space trade-off which is
typically stated as a result about the pebbling price of a directed acyclic graph. The use of pebbling in the
context of space lower bounds is by now standard and we refer the reader to [Pip80] for a survey of pebbling
results and to [Nor08] for a discussion of pebbling and resolution. (Relevant formal definitions appear in
Appendix A). The pebbling trade-off results we need are of the following nature.

“There exists (arbitrarily large) directed acyclic graphs G over n vertices and bounded indegree
that (i) can be pebbled with p pebbles in time t, but (ii) any pebbling strategy of G using s < p
pebbles requires time f(s), where f monotonically decreases in s.”

One should think of t as linear in n and of f(s) as being much larger than t for small values of s (We will
discuss later how “large” can f(s) get to be.)

With such a pebbling trade-off in hand, we construct from G a CNF formula F , known as a pebbling
contradiction (see Definition A.8) and promptly substitute each variable by (say) the exclusive-or of two
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copies of the variable, as described above. Our hope is that the resulting formula, denoted F ′, will display a
length-space trade-off similar in spirit to the pebbling trade-off of the underlying graph. More to the point,
the upper bound of t on the time required to pebble G using p pebbles should imply that F ′ can be refuted
in length ≈ t and variable space ≈ p (consequently, the upper bound on clause space is also ≈ p). And the
Substitution Space Theorem says that a refutation π′ of F ′ in time t′ and clause space s implies a refutation
π of F in time ≈ t′ and variable space ≈ s. Finally, by a close reading of the construction in [BS02], we
deduce that any refutation of length t′ and variable support size s yields a pebbling strategy for G of time t′

and space s, which implies t′ > f(s).
Unfortunately, things are not that simple. We know how to convert a pebbling strategy into a short

and space-efficient refutation only if the pebbling strategy is a so-called black pebbling (which corresponds
to deterministic space). On the other hand, the result of [BS02] converts the proof π into a black-white
pebbling strategy (which corresponds to nondeterministic space). To complicate matters further, it is known
that black white pebbling can be asymptotically more efficient than black pebbling [KS88, Wil85].

Thus, to obtain our trade-off results we need a strong form of “dual” pebbling trade-offs, where the upper
bound (i) is stated in terms of black pebbling while the matching lower bound (ii) applies to the stronger
model of black-white pebbling. Appealing to the Substitution Space Theorem, we can show that any such
strong pebbling trade-off translates into a length-space trade-off for resolution.

Using this method of proof we present a number of robust size-space trade-offs for resolution. Before
giving a few examples we explain why we the need arises for different trade-offs (as opposed to just one
global statement). In a nutshell, this is a mirror-picture of the state of size-space trade-offs for pebbling
graphs upon which we rely. For instance, suppose G can be pebbled in constant space. Then counting
arguments show that G can be pebbled in polynomial time and constant space simultaneously. Thus, if we
want to present a nontrivial size-space trade-off for a formula that can be refuted in constant space we cannot
hope to get this trade-off to be superpolynomial. Similarly, if G can be pebbled in, say, polylogarithmic
space, we cannot obtain exponential time-space trade-offs. We are interested in deriving robust trade-offs
for a large range of space complexity parameters and thus we must rely on diverse size-space trade-off
results which each come from a different family of graphs. We end this section by describing a couple of
trade-off results (many more appear in Appendix E).

Our strong pebbling trade-offs come from three sources. First, we prove a new strong trade-off result
for a family of graphs introduced by Carlson and Savage in [CS80, CS82]. Carlson and Savage prove time-
space trade-offs for these graphs in the black pebbling model, but to get a strong dual trade-off we need
to modify their construction a bit and above all apply different ideas to prove lower bounds in the more
challenging black-white pebbling setting. (Details appear in Appendix D.2.) One of the results derived from
this is the rather striking statement that superpolynomial length-space trade-offs can occur for arbitrarily
slowly growing non-constant space. (The formal statement appears as Theorem E.2.)

Theorem 1.2 (Superpolynomial trade-offs for super-constant space (Informal)). For any arbitrarily
slowly growing function ω(1) = s(n) = O(n1/7) and any ε > 0 there exists a family of k-CNF formulas{
Fn

}∞
n=1

of size O(n) refutable in length O(n), refutable in space s(n), but not simultaneously so. On the

contrary, these formulas are refutable in length O(n) and variable space O
((

n/s2(n)
)1/3

)
simultaneously,

but any refutation of Fn in clause space O
((

n/s2(n)
)1/3−ε

)
must have superpolynomial length.

Three remarks should be made. First, notice that the trade-off applies to both clause and variable space.
This is because the upper bounds are stated in terms of the larger of these two measures (variable space)
while the lower bounds are in terms of the smaller one (clause space). This optimality of bound–type is
inherited from the Substitution Space Theorem. Second, observe the “robust” nature of the trade-off, which
is displayed by the long range of space complexity (from ω(1) up to≈ n1/3) which requires superpolynomial
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2 PRELIMINARIES

length. Finally, we remark that the lower bound on length reaches up till very close to where our upper bound
kicks in.

A second source of trade-off results for resolution comes from studying the graphs appearing in the study
of “classical” time-space trade-offs but deriving strictly better upper bounds on their refutation complexity
than what can provably be obtained for black pebbling. To do this, we cannot use the machinery developed
in this paper as a black box, but need to prove upper bounds in resolution directly. Our quadratic length-
space trade-off for constant space in Theorem E.1, the statement of which is omitted here due to space
contraints, is of this type.

Our third and final source of trade-off results comes from the seminal work of Lengauer and Tar-
jan [LT82], in which they showed strong pebbling trade-offs for variety of graphs. For instance, we can
obtain the following very strong trade-off in this way.

Theorem 1.3 (Exponential trade-offs for nearly-linear space (Informal)). There exists constants K <
K ′ and ε > 0 and a family of k-CNF formulas

{
Fn

}∞
n=1

of size O(n) that are refutable in length O(n), in
space K ·n/ log n, but not simultaneously so. On the contrary, any refutation π of Fn in space≤ K ′·n/ log n
must be of length exp(nε).

1.3 Organization of the Rest of This Paper

After a few basic definitions in Section 2 (more definitions appear in Appendix A) we state our first main
result, the Substitution Space Theorem, in Section 3, along with two immediate corollaries that follow from
it. We sketch the proof of the Substitution Space Theorem in Section 4 and complete it (due to space
limitations) in Appendix B. Our second main result, namely, the method for converting strong pebbling
trade-offs into length-space trade-offs for resolution, is described in Appendix C. In Appendix D, we derive
our new pebbling trade-off and survey some previously known ones. These results are needed for the robust
length-space trade-offs that conclude our paper in Appendix E.

2 Preliminaries

In this section we present a few definitions regarding resolution that are crucial to what follows. Due to space
limitations we moved some essential but commonly known definitions regarding resolution and pebbling to
Appendix A.

2.1 The Resolution Proof System

When we want to study length and space simultaneously in resolution, we have to be slightly careful with
the definitions so that we will be able to capture length-space trade-offs. Just listing the clauses used in a
resolution refutation does not tell us how the refutation was performed, and essentially the same refutation
can be carried out in vastly different time depending on the space constraints (as is shown in this paper).
Following the exposition in [ET01], a resolution refutation can be seen as a Turing machine computation,
with a special read-only input tape from which the axioms can be downloaded and a working memory where
all derivation steps are made. Then the length of a proof is essentially the time of the computation and space
measures memory consumption. The formal definitions follow.

Definition 2.1 (Resolution ([ABSRW02])). A clause configuration C is a set of clauses. A sequence of
clause configurations {C0, . . . , Cτ} is a resolution derivation from a CNF formula F if C0 = ∅ and for all
t ∈ [τ ], Ct is obtained from Ct−1 by one of the following rules:

Axiom Download Ct = Ct−1 ∪ {C} for some C ∈ F (an axiom).
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UNDERSTANDING SPACE IN RESOLUTION

Erasure Ct = Ct−1 \ {C} for some C ∈ Ct−1.

Inference Ct = Ct−1 ∪ {D} for some D inferred by resolution from C1, C2 ∈ Ct−1.

A resolution derivation π : F `A of a clause A from a formula F is a derivation {C0, . . . , Cτ} such that
Cτ = {A}. A resolution refutation of F is a derivation of the empty clause 0, i.e., the clause with no literals,
from F .

We will be interested in studying length and space in resolution, which are formalized as proof com-
plexity measures in the next definition. Also, it will be convenient to define what width in resolution is.

Definition 2.2 (Length, width and space). The length L(π) of a resolution derivation π is the total number
of axiom downloads and inferences made in π, i.e., the total number of clauses counted with repetitions.

The width W(C) of a clause C is the number of literals in it, the width W(F ) of a formula F is the size
of a widest clause in F , and the width W(π) of a derivation π is defined in the same way.

The clause space Sp(C) of a clause configuration C is |C|, i.e., the number of clauses in C, and the
variable space VarSp(C) is

∑
C∈C|C|, i.e., the total number of literals in C counted with repetitions.2

Taking the minimum over all refutations of a formula F , we define L(F ` 0) = minπ:F ` 0{L(π)} as
the length of refuting F , W(F ` 0) = minπ:F ` 0{W(π)} as the width of refuting F , and Sp(F ` 0) =
minπ:F ` 0{Sp(π)} and VarSp(F ` 0) = minπ:F ` 0{VarSp(π)} as the clause space and variable space,
respectively, of refuting F in resolution.

Note that this definition of length exactly captures the minimum length as the number of lines in a
listing of the refutation (just construct a refutation that only does downloads and inferences until it gets to
0, and only then erase all the other clauses). For tree-like resolution, we obtain the standard length measure
by insisting that every clause be used at most once before being erased. In general, Definition 2.2 unifies
previous definitions for various subsystems of resolution and gives us the possibility to measure length and
space simultaneously in a meaningful way.

We also need to define a new measure which is related to, but weaker than, variable space.

Definition 2.3 (Variable support size). Let us say that the variable support size, or just support size, of
a clause set C is SuppSize(C) = |Vars(C)|, i.e., the number of variables mentioned in C. We define the
support size of a resolution derivation π = {C0, . . . , Cτ} to be SuppSize(π) = maxt∈[τ ]{SuppSize(C)}
and the minimal support size of refuting F is then SuppSize (F ` 0) = minπ:F ` 0{SuppSize(π)}.

The difference between variable space and variable support size is that the variables space counts the
number of variable occurrences in C with repetitions, but for variable support size we only count each
variable once no matter how often it occurs. It follows that the support size of refuting a formula is always
at most linear in the formula size, while the refutation variable space could potentially be quadratic in the
formula size in the worst case. (It should be noted, though, that no such formulas are known to exist, and to
the best of our knowledge it is even an open problem to prove superlinear lower bounds on variable space.)

2.2 Substitution Formulas

Throughout this paper, we will let fd denote any (non-constant) Boolean function fd : {0, 1}d 7→ {0, 1}
of arity d. We use the shorthand ~x = (x1, . . . , xd), so that fd(~x) is just an equivalent way of writing
fd(x1, . . . , xd). Every function fd(x1, . . . , xd) is equivalent to a CNF formula over x1, . . . , xd with at

2Note that if one wanted to be really precise, space (as well as formula size) should probably measure the number of bits
rather than the number of literals. However, counting literals makes matters substantially cleaner, and the difference is at most a
logarithmic factor. Therefore, counting literals seems to be the established way of measuring formula size and variable space.
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3 THE SUBSTITUTION SPACE THEOREM

most 2d clauses. Fix a canonical way to represent functions as CNF formulas and let Cl [fd(~x)] denote
the canonical set of clauses representing fd. Similarly, let Cl [¬fd(~x)] denote the clauses in the canonical
representation of the negation of f. The following definition extends the notion of substitution to a CNF
formula F . For notational convenience, we assume that F only has variables x, y, z, et cetera, without
subscripts, so that x1, . . . , xd, y1, . . . , yd, z1, . . . , zd, . . . are new variables not occurring in F .

Definition 2.4 (Substitution formula). For a positive literal x and a non-constant Boolean function fd, we
define the fd-substitution of x to be x[fd] = Cl [fd(~x)], i.e., the canonical representation of fd(x1, . . . , xd)
as a CNF formula. For a negative literal y, the fd-substitution is y[fd] = Cl [¬fd(~y)]. The fd-substitution of
a clause C = a1 ∨ · · · ∨ ak is the CNF formula

C[fd] =
∧

C1∈a1[fd]

. . .
∧

Ck∈ak[fd]

(
C1 ∨ . . . ∨ Ck

)
(1)

and the fd-substitution of a CNF formula F is F [fd] =
∧

C∈F C[fd].

In Appendix A we list several useful properties of substituted formulas that appear later on in our proofs.

3 The Substitution Space Theorem

Let us now state formally our main technical result. It is phrased in terms of substitution using functions f
having the property that no single variable xi determines the value of f(x1, . . . , xd).

Definition 3.1 (Non-authoritarian function). We will call a Boolean function f over d variables x1, . . . , xd

non-authoritarian if for any variable xi and any truth value α(xi) = νi assigned to xi, α can be extended
to a truth value assignment α′ satisfying f(x1, . . . , xd) and another truth value assignment α′′ falsifying
f(x1, . . . , xd). If f does not satisfy this requirement, then we will call the function authoritarian.

Examples of non-authoritarian functions include exclusive-or and threshold functions over d variables
for which the threshold lies above 1 and below d.

Loosely put, the Substitution Space Theorem says that if a formula F can be refuted in resolution in
small length and width simultaneously, then so can the substitution formula F [fd]. There is an analogous
result in the other direction as well in the sense that we can translate any refutation πf of F [fd] into a
refutation π of the original formula F where the length of π is almost upper-bounded by the length of πf

(this will be made precise below). So far this is nothing very unexpected, but what is more interesting is
that if fd is non-authoritarian, then the clause space of πf is an upper bound on the number of variables
mentioned simultaneously in π. Thus, the theorem says that we can convert lower bounds on variable
support size into lower bounds on clause space by making substitutions using non-authoritarian functions.

Theorem 3.2 (Substitution Space Theorem). Let F be any unsatisfiable CNF formula and fd be any non-
constant Boolean function of arity d. Then it holds that the substitution formula F [fd] can be refuted in
width

W
(
F [fd] ` 0

)
= O

(
d ·W(F ` 0)

)
and length

L
(
F [fd] ` 0

)
≤ min

π:F ` 0

{
L(π) · exp

(
O(d ·W(π))

)}
.

In the other direction, any refutation πf : F [fd]` 0 of the substitution formula can be transformed into a
refutation π : F ` 0 of the original formula such that the number of axiom downloads in π is at most the num-
ber of axiom downloads in πf . If in addition fd is non-authoritarian, it holds that Sp(πf) > SuppSize(π),
i.e., the clause space of refuting the substitution formula F [fd] is lower-bounded by the variable support
size of refuting the original formula F .

7
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Note that if F is refutable simultaneously in linear length and constant width, then the bound in Theo-
rem 3.2 on L

(
F [fd] ` 0

)
becomes linear in L(F ` 0). It would be interesting to know if the bound in terms

of number of axiom downloads could in fact be strengthened to a bound in terms of length, but we do not
know if this is the case or not. Luckily enough, however, the bound in terms of axiom downloads turns out
to be exactly what we need for our applications.

Although this might not be immediately obvious, Theorem 3.2 is remarkably powerful as a tool for
understanding space in resolution. It will take some more work before we can present our main applications
of this theorem, which are the strong time-space trade-off results discussed in Appendix E. Let us note,
however, for starters, that without any extra work we immediately get lower bounds on space.

Esteban and Torán [ET01] proved that the clause space of refuting F is upper-bounded by the formula
size. In the papers [ABSRW02, BSG03, ET01] it was shown, using quite elaborate arguments, that there
are polynomial-size k-CNF formulas with lower bounds on clause space matching this upper bound up to
constant factors. Using Theorem 3.2 we can get a different proof of this fact.

Corollary 3.3 ([ABSRW02, BSG03, ET01]). There are k-CNF formula families {F}∞n=1 with Θ(n) clauses
over Θ(n) variables such that Sp(Fn ` 0) = Θ(n).

Proof. Just pick any formula family for which it is shown that any refutation of Fn must at some point in the
refutation mention Ω(n) variables at the same time (e.g., from [BSW01]), and then apply Theorem 3.2.

It should be noted, though, that when we apply Theorem 3.2 the formulas in [ABSRW02, BSG03,
ET01] are changed. We remark that there is another, and even more elegant way to derive Corollary 3.3
from [BSW01] without changing the formulas, namely by using the lower bound on clause space in terms
of width in [AD03].

For our next corollary, however, there is no other, simpler way known to prove the same result. Instead,
our proof in this paper actually improves the constants in the result.

Corollary 3.4 ([BSN08]). There are families {Fn}∞n=1 of k-CNF formulas of size O(n) refutable in linear
length L(Fn ` 0) = O(n) and constant width W(Fn ` 0) = O(1) such that the minimum clause space
required is Sp(Fn ` 0) = Ω(n/ log n).

Proof. In [BS02], the first author showed that there are formulas refutable simultaneously in linear length
and constant width, but for which any refutation must at some point mention Ω(n/ log n) distinct variables at
the same time (although the result was stated in slightly different terms). Corollary 3.4 follows immediately
from this by applying Theorem 3.2.

In fact, the ideas in [BS02], which provide a way of translating back and forth between resolution and
pebbling, are also what allows us to prove strong trade-off results for resolution. We will return to this in
Appendix C where we formalize this resolution-pebbling correspondence.

4 Outline of Proof of the Substitution Space Theorem

We divide the proof of Theorem 3.2 into three parts in Theorems 4.1, 4.4, and 4.5 below.

Theorem 4.1. For any CNF formula F and any non-constant Boolean function fd, it holds that

W
(
F [fd] ` 0

)
= O

(
d ·W(F ` 0)

)
and

L
(
F [fd] ` 0

)
≤ min

π:F ` 0

{
L(π) · exp

(
O(d ·W(π))

)}
.

8



4 OUTLINE OF PROOF OF THE SUBSTITUTION SPACE THEOREM

These upper bounds on refutation width and length for F [fd] are not hard to show. The proof proceeds
along the following lines. Given a resolution refutation π of F , we construct a refutation πf : F [fd]` 0
mimicking the derivation steps in π. When π downloads an axiom C, we download the exp

(
O(d ·W(C))

)
axiom clauses in C[fd]. When π resolves C1 ∨ x and C2 ∨ x to derive C1 ∨ C2, we use the fact that
resolution is implicationally complete to derive (C1 ∨ C2)[fd] from (C1 ∨ x)[fd] and (C2 ∨ x)[fd] in at
most exp

(
O(d ·W(C1 ∨ C2))

)
steps. We return to the details of the proof in Section B.1.

It is more challenging, however, to prove that we can get lower bounds on clause space for F [fd] from
lower bounds on support size for F . The idea is to look at refutations of F [fd] and “project” them down on
refutations of F . To do this, we first define a special kind of “precise implication.”

Definition 4.2 (Precise implication). Let F be a CNF formula and fd a non-constant Boolean function,
and suppose that D is a set of clauses derived from F [fd] and that P and N are (disjoint) subset of variables
of F . If

D �
∨
x∈P

fd(~x) ∨
∨

y∈N

¬fd(~y) (2a)

but for all strict subsets D′ $ D, P ′ $ P , and N ′ $ N it holds that

D′ 2
∨
x∈P

fd(~x) ∨
∨

y∈N

¬fd(~y) , (2b)

D 2
∨

x∈P ′

fd(~x) ∨
∨

y∈N

¬fd(~y) , and (2c)

D 2
∨
x∈P

fd(~x) ∨
∨

y∈N ′

¬fd(~y) , (2d)

we say that the clause set D implies
∨

x∈P fd(~x) ∨
∨

y∈N ¬fd(~y) precisely and write

D B
∨
x∈P

fd(~x) ∨
∨

y∈N

¬fd(~y) . (3)

Note that P = N = ∅ in Definition 4.2 corresponds to D being unsatisfiable.
Let us also use the convention that any clause C can be written C = C+∨C−, where C+ =

∨
x∈Lit(C) x

is the disjunction of the positive literals in C and C− =
∨

y∈Lit(C) y is the disjunction of the negative literals.

Definition 4.3 (Projected clauses). Let F be a CNF formula and fd a non-constant Boolean function, and
suppose that D is a set of clauses derived from F [fd]. Then we say that D projects the clause C = C+∨C−

on F—or, perhaps more correctly, on Vars(F )—if there is a subset DC ⊆ D such that

DC B
∨

x∈C+

fd(~x) ∨
∨

y∈C−

¬fd(~y) (4)

and we write projF (D) =
{
C

∣∣∃DC ⊆ D s.t. DC B
∨

x∈C+fd(~x) ∨
∨

y∈C−¬fd(~y)
}

to denote the set of
all clauses that D projects on F .

Given that we now know how to translate clauses derived from F [fd] into clauses over Vars(F ), the
next step is to show that this translation preserves resolution refutations.

Theorem 4.4. Suppose that πf =
{
D0, . . . , Dτ

}
is a resolution refutation of F [fd] for some arbitrary

unsatisfiable CNF formula F and some arbitrary non-constant function fd. Then the sets of projected
clauses

{
projF (D0), . . . , projF (Dτ )

}
form the “backbone” of a resolution refutation π of F in the sense

that:

9



UNDERSTANDING SPACE IN RESOLUTION

• projF (D0) = ∅.

• projF (Dτ ) = {0}.

• All transitions from projF (Dt−1) to projF (Dt) for t ∈ [τ ] can be accomplished by axiom downloads
from F , inferences, erasures, and possibly weakening steps in such a way that the variable support
size in π during these intermediate derivation steps never exceeds maxD∈πf

{
SuppSize(projF (D))

}
.

• The only time π performs a download of some axiom C in F is when πf downloads some axiom
D ∈ C[fd] in F [fd].

Using standard techniques we can get rid of the weakening moves in a postprocessing step, but allowing
them in the statement of Theorem 4.4 makes the proof much cleaner. Accepting Theorem 4.4 on faith for
the moment, the final missing link in the proof of the Substitution Space Theorem is the following lower
bound.

Theorem 4.5. Suppose that D is a set of clauses derived from F [fd] for some arbitrary unsatisfiable CNF
formula F and some non-authoritarian function fd. Then Sp(D) = |D| > SuppSize(projF (D)).

Combining Theorems 4.1, 4.4, and 4.5 (proven in Appendix B), the Substitution Space Theorem follows.

5 Directions for Further Research

We end by briefly mentioning a few open questions related to our reported work that we find most interesting.

Open Question 1. Are there polynomial-size k-CNF formulas which require variable refutation space
VarSp(F ` 0) = Ω

(
(size of F )2

)
?

The answer has been conjectured by [ABSRW02] to be “yes”, but as far as we are aware, there are no
stronger lower bounds on variable space known than those that follow trivially from corresponding linear
lower bounds on clause space. Thus, a first step would be to show superlinear lower bounds on variable
space.

Two other questions concern the possible trade-offs at the extremal points of the space interval, where
we can only get polynomial trade-offs for constant space and no trade-offs at all for linear space.

Open Question 2. Are there superpolynomial trade-offs for formulas refutable in constant space?

Open Question 3. Are there formulas with trade-offs in the range space > formula size? Or can every
refutation be carried out in at most linear space?

We find the Open Question 3 especially intriguing. Note that all bounds on clause space proven so far,
inlcuding the trade-offs in the current paper, are in the regime where the space is less than formula size
(which is quite natural, since by [ET01] we know the size of the formula is an upper bound on the minimal
clause space needed). It is unclear to what extent such lower bounds on space are relevant to state-of-the-art
SAT solvers, however, since such algorithms will presumably use at least a linear amount of memory to
store the formula to begin with. For this reason, it seems to be a highly interesting problem to determine
what can be said if we allow extra clause space above linear. Are there formulas exhibiting trade-offs in
this superlinear regime, or is it always possible to carry out a minimal-length refutation in, say, at most a
constant factor times the linear upper bound on the space required for any formula?

We point out that pebbling formulas cannot help answer these questions as these formulas are always
refutable in linear time and linear space simultaneously by construction, and since constant pebbling space
implies polynomial pebbling time.

10
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[NH08a] Jakob Nordström and Johan Håstad. Towards an optimal separation of space and length in res-
olution. Technical Report TR08-026, Electronic Colloquium on Computational Complexity
(ECCC), February 2008.
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A Additional Preliminary Definitions

A.1 The Resolution Proof System

A literal is either a propositional logic variable or its negation, denoted x and x, respectively, or sometimes
or x1 and x0. We define x = x. Two literals a and b are strictly distinct if a 6= b and a 6= b, i.e., if they refer
to distinct variables.

A clause C = a1 ∨ · · · ∨ ak is a set of literals. Without loss of generality, all clauses C are assumed to
be nontrivial in the sense that all literals in C are pairwise strictly distinct (otherwise C is trivially true). We
say that C is a subclause of D if C ⊆ D. A clause containing at most k literals is called a k-clause.

A CNF formula F = C1 ∧ · · · ∧ Cm is a set of clauses. A k-CNF formula is a CNF formula consisting
of k-clauses. We define the size S (F ) of the formula F to be the total number of literals in F counted with
repetitions. More often, we will be interested in the number of clauses |F | of F .

In this paper, when nothing else is stated it is assumed that A,B, C, D denote clauses, C, D sets of
clauses, x, y propositional variables, a, b, c literals, α, β truth value assignments and ν a truth value 0 or 1.
We write

αx=ν(y) =

{
α(y) if y 6= x,
ν if y = x,

(5)

yto denote the truth value assignment that agrees with α everywhere except possibly at x, to which it assigns
the value ν. We let Vars(C) denote the set of variables and Lit(C) the set of literals in a clause C.3 This
notation is extended to sets of clauses by taking unions. Also, we employ the standard notation [n] =
{1, 2, . . . , n}.

In its simplest form, a resolution derivation π : F `A of a clause A from a CNF formula F can be
viewed as a sequence of clauses π = {D1, . . . , Dτ} such that Dτ = A and each line Di, i ∈ [τ ], either is

3Although the notation Lit(C) is slightly redundant given the definition of a clause as a set of literals, we include it for clarity.
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one of the clauses in F (an axiom) or is derived from clauses Dj , Dk in π with j, k < i by the resolution
rule

B ∨ x C ∨ x

B ∨ C
. (6)

We refer to (6) as resolution on the variable x and to B ∨ C as the resolvent of B ∨ x and C ∨ x on x.

A.2 Some Auxiliary Technical Results for Resolution

We start off by an easy observation.

Observation A.1. Any unsatisfiable CNF formula F over n variables can be refuted in length at most
2n+1 − 1, clause space at most O(n), and variable space at most O

(
n2

)
simultaneously.

Proof sketch. Build a search tree where all vertices on level i query the ith variable and where we go to
the left, say, if the variable is false under a given truth value assignment α and to the right if the variable is
true. As soon as some axiom in F is falsified by the partial assignment defined by the path to a vertex, we
make that vertex into a leaf labelled by that clause. This tree has size at most 2n+1 − 1, and if we turn it
upside down we can obtain a legal tree-like refutation of F , possibly using weakening. This refutation can
be carried out in clause space linear in the tree depth and variable space upper-bounded by the clause space
times the number of distinct variables. We refer to, for instance, [BS02, ET01] for more details.

For technical reasons, it is sometimes convenient to add a rule for weakening, saying that we can always
derive a weaker clause C ′ ⊇ C from C. It is easy to show that any weakening steps can always be eliminated
from a resolution refutation without changing anything essential. Let us state this more formally since we
will need the precise formulation later on in this paper. The proof is an easy induction over the refutation
and we omit the details.

Proposition A.2. Any resolution refutation π : F ` 0 using the weakening rule can be transformed into a
refutation π′ : F ` 0 without weakening in at most the same length, width, clause space and variable space,
and performing at most the same number of axiom downloads, inferences and erasures as π.

Another tool that we will use to to simplify some of the proofs is the concept of restrictions.

Definition A.3 (Restriction). A partial assignment or restriction ρ is a partial function ρ : X 7→ {0, 1},
where X is a set of Boolean variables. We identify ρ with the set of literals {a1, . . . , am} set to true by ρ.
The ρ-restriction of a clause C is defined to be

C�ρ =

{
1 (i.e., the trivially true clause) if Lit

(
C

)
∩ ρ 6= ∅,

C \ {a | a ∈ ρ} otherwise.

This definition is extended to set of clauses by taking unions.
We write ρ(¬C) to denote the minimal restriction fixing C to false, i.e., ρ(¬C) = {a | a ∈ C}.

Proposition A.4. If π is a resolution refutation of F and ρ is a restriction on Vars(F ), then π�ρ can be
transformed into a resolution refutation of F�ρ in at most the same length, width, clause space and variable
space as π.

In fact, π�ρ is a refutation of F�ρ (removing all trivially true clauses), but possibly using weakening.
The proof of this is again an easy induction over the resolution refutation π.

In a resolution refutation of a formula F , there is nothing in Definition 2.1 that rules out that completely
unnecessary derivation steps are made on the way, such as axioms being downloaded and them immediately
erased again, or entire subderivations being made to no use. In our constructions it will be important that we
can rule out some redundancies and enforce the following requirements for any resolution refutation:
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• Every clause in memory is used in an inference step before being erased.

• Every clause is erased from memory immediately after having been used for the last time.

We say that a resolution refutation that meets these requirements is frugal. The formal definition, which is a
mildly modified version of that in [BS02], follows.

Definition A.5 (Frugal refutation). Let π = {C0 = ∅, C1, . . . , Cτ = {0}} be a resolution refutation of
some CNF formula F . The essential clauses in π are defined by backward induction:

• If Ct is the first configuration containing 0, then 0 is essential at time t.

• If D ∈ Ct is essential and is inferred at time t from C1, C2 ∈ Ct−1 by resolution, then C1 and C2 are
essential at time t− 1.

• If D is essential at time t and D ∈ Ct−1, then D is essential at time t− 1.

Essential clause configurations are defined by forward induction over π. The configuration Ct ∈ π is
essential if all clauses D ∈ Ct are essential at time t, if Ct is obtained by inference from a configuration
Ct−1 containing only essential clauses at time t− 1, or if Ct is obtained from an essential configuration
Ct−1 by an erasure step.

Finally, π = {C0, . . . , Cr} is a frugal refutation if all configurations Ct ∈ π are essential.

Without loss of generality, we can always assume that resolution refutations are frugal.

Lemma A.6. Any resolution refutation π : F ` 0 can be converted into a frugal refutation π′ : F ` 0 without
increasing the length, width, clause space or variable space. Furthermore, the axiom downloads, inferences
and erasures performed in π′ are a subset of those in π.

Proof. The construction of π′ is by backward induction over π. Set s = min{t : 0 ∈ Ct} and C′
s = {0}.

Assume that C′
s, C′

s−1, . . . C′
t+2, C′

t+1 have been constructed and consider Ct and the transition Ct  Ct+1.

Axiom Download Ct+1 = Ct ∪ {C}: Set C′
t = C′

t+1 \ {C}. (If C is not essential we get C′
t = C′

t+1.)

Erasure Ct+1 = Ct \ {D}: Ignore, i.e., set C′
t = C′

t+1.

Inference Ct+1 = Ct ∪ {D} inferred from C1, C2 ∈ Ct: If D 6∈ C′
t+1, ignore the step and set C′

t =
C′

t+1. Otherwise (using fractional time steps for notational convenience) insert the configurations
C′

t = C′
t+1 ∪ {C1, C2} \ {D}, C′

t+ 1
3

= C′
t+1 ∪ {C1, C2}, C′

t+ 2
3

= C′
t+1 ∪ {C2}.

Finally go through π′ and eliminate any consecutive duplicate clause configurations.
It is straightforward to check that π′ is a legal resolution refutation. Let us verify that π′ is frugal. By

backward induction, each C′
t for integral time steps t contains only essential clauses. By forward induction,

if C′
t+1 = C′

t ∪ {C} is obtained by axiom download, all clauses in C′
t+1 are essential. Erasures in π are

ignored. For inference steps, C′
t contains only essential clauses by induction, C′

t+ 1
3

is essential by inference,

and C′
t+ 2

3

and C′
t+1 are essential since they are derived by erasure from essential configurations. Finally, it

is clear that π′ performs a subset of the derivation steps in π and that the length, width, and space does not
increase.
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A ADDITIONAL PRELIMINARY DEFINITIONS

A.3 Pebble Games

Pebble games were devised for studying programming languages and compiler construction, but have found
a variety of applications in computational complexity theory. In connection with resolution, pebble games
have been employed both to analyze resolution derivations with respect to how much memory they consume
(using the original definition of space in [ET01]) and to construct CNF formulas which are hard for different
variants of resolution in various respects (see for example [AJPU02, BSIW04, BEGJ00, BOP03] and the
sequence of papers [Nor06, NH08b, BSN08] leading up to this work). An excellent survey of pebbling up
to ca 1980 is [Pip80].

The black pebbling price of a DAG G captures the memory space, i.e., the number of registers, required
to perform the deterministic computation described by G. The space of a non-deterministic computation is
measured by the black-white pebbling price of G. We say that vertices of G with indegree 0 are sources and
that vertices with outdegree 0 are sinks (or targets). In the following, unless otherwise stated we will assume
that all DAGs under discussion have a unique sink and this sink will always be denoted z. The next definition
is adapted from [CS76], though we use the established pebbling terminology introduced by [HPV77].

Definition A.7 (Black-white pebble game). Suppose that G is a DAG with sources S and a unique sink z.
The black-white pebble game on G is the following one-player game. At any point in the game, there are
black and white pebbles placed on some vertices of G, at most one pebble per vertex. A pebble configuration
is a pair of subsets P = (B,W ) of V (G), comprising the black-pebbled vertices B and white-pebbled
vertices W . The rules of the game are as follows:

1. If all immediate predecessors of an empty vertex v have pebbles on them, a black pebble may be
placed on v. In particular, a black pebble can always be placed on any vertex in S.

2. A black pebble may be removed from any vertex at any time.

3. A white pebble may be placed on any empty vertex at any time.

4. If all immediate predecessors of a white-pebbled vertex v have pebbles on them, the white pebble on
v may be removed. In particular, a white pebble can always be removed from a source vertex.

A black-white pebbling from (B0,W0) to (Bτ ,Wτ ) in G is a sequence of pebble configurations P =
{P0, . . . , Pτ} such that P0 = (B0,W0), Pτ = (Bτ ,Wτ ), and for all t ∈ [τ ], Pt follows from Pt−1 by one of
the rules above. A (complete) pebbling of G, also called a pebbling strategy for G, is a pebbling such that
(B0,W0) = (∅, ∅) and (Bτ ,Wτ ) = ({z}, ∅).

The time of a pebbling P = {P0, . . . , Pτ} is simply time(P) = τ and the space is space(P) =
max0≤t≤τ{|Bt ∪ Wt|}. The black-white pebbling price (also known as the pebbling measure or pebbling
number) of G, denoted BW-Peb(G), is the minimum space of any complete pebbling of G.

A black pebbling is a pebbling using black pebbles only, i.e., having Wt = ∅ for all t. The (black)
pebbling price of G, denoted Peb(G), is the minimum space of any complete black pebbling of G.

For any DAG G over n vertices with bounded indegree, the black pebbling price (and thus also the
black-white pebbling price) is at most O(n/ log n) [HPV77], where the hidden constant depends on the
indegree. A number of exact or asymptotically tight bounds on different graph families have been proven
in the whole range from constant to Θ(n/ log n), for instance in [GT78, Kla85, LT80, PTC77]. As to time,
obviously any DAG G over n vertices can be pebbled in time 2n − 1, and for all graphs we will study
this is also a lower bound, so studying the time measure in isolation is not that exciting. A very interesting
question, however, is how time and space are related in a single pebbling of G if one wants to optimize both
measures simultaneously. We will return to this question in Appendix D.
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UNDERSTANDING SPACE IN RESOLUTION

A.4 Pebbling Contradictions

A pebbling contradiction defined on a DAG G is a CNF formula that encodes the pebble game on G by
postulating the sources to be true and the target to be false, and specifying that truth propagates through
the graph according to the pebbling rules. These formulas have previously been studied in, for instance,
[BSW01, BEGJ00, RM99].

Definition A.8 (Pebbling contradiction). Suppose that G is a DAG with sources S and a unique sink z.
Identify every vertex v ∈ V (G) with a propositional logic variable v. The pebbling contradiction over G,
denoted PebG, is the conjunction of the following clauses:

• for all s ∈ S, a unit clause s (source axioms),

• For all non-source vertices v with immediate predecessors u1, . . . , u`, the clause u1 ∨ · · · ∨ u` ∨ v
(pebbling axioms),

• for the sink z, the unit clause z (target or sink axiom).

If G has n vertices and maximal indegree `, the formula PebG is an unsatisfiable (1+`)-CNF formula
with n clauses over n variables.

A.5 Substitution Formulas

The following observation is rather immediate, but nevertheless it might be helpful to state it explicitly.

Observation A.9. Suppose for any non-constant Boolean function fd that C ∈ Cl [fd(~x)] and that ρ is any
partial truth value assignment such that ρ(C) = 0. Then for all D ∈ Cl [¬fd(~x)] it holds that ρ(D) = 1.

Proof. If ρ(C) = 0 this means that ρ(fd) = 0. Then clearly ρ(¬fd) = 1, so, in particular, ρ must fix all
clauses D ∈ Cl [¬fd(~x)] to true.

We have the following easy observation, the proof of which is presented for completeness.

Observation A.10. For any non-constant Boolean function fd : {0, 1}d 7→ {0, 1}, it holds that F [fd] is
unsatisfiable if and only if F is unsatisfiable.

Proof. Suppose that F is satisfiable and let α be a truth value assignment such that α(F ) = 1. Then we can
satisfy F [fd] by choosing an assignment α′ for Vars

(
F [fd]

)
in such a way that fd

(
α′(x1), . . . , α′(xd)

)
=

α(x). For if C ∈ F is satisfied by some literal ai set to true by α, then α′ will satisfy all clauses Ci ∈ ai[fd]
and thus also the whole CNF formula C[fd] in (1).

Conversely, suppose F is unsatisfiable and consider any truth value assignment α′ for F [fd]. Then α′

defines a truth value assignment α for F in the natural way by setting α(x) = fd

(
α′(x1), . . . , α′(xd)

)
, and

we know that there is some clause C ∈ F that is not satisfied by α. That is, for every literal ai ∈ C =
a1 ∨ · · · ∨ ak it holds that α(ai) = 0. But then α′ does not satisfy ai[fd], so there is some clause C ′

i ∈ ai[fd]
such that α′(C ′

i) = 0. This shows that α′ falsifies the disjunction C ′
1 ∨ · · · ∨ C ′

k ∈ C[fd], and consequently
F [fd] must also be unsatisfiable.

B Completing the proof of the Substitution Theorem

In this section we prove Theorems 4.1, 4.4, and 4.5, from which the Substitution Space Theorem 3.2 follows.
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For convenience of notation, let us define the disjunction C ∨ D of two clause sets C and D to be the
clause set

C ∨ D = {C ∨D | C ∈ C, D ∈ D} . (7)

This notation extends to more than two clause sets in the natural way. Rewriting (1) in Definition 2.4 using
this notation, we have that

(D ∨ a)[fd] = D[fd] ∨ a[fd] =
∧

C1∈D[fd]

∧
C2∈a[fd]

(
C1 ∨ C2

)
. (8)

B.1 Proof of Theorem 4.1

Given π : F ` 0, we construct πf : D[fd]` 0 by maintaining the invariant that if we have C in memory for π,
then we have C[fd] in memory for πf . We get the following case analysis.

Axiom download If π downloads C, we download all of C[fd], i.e., less than 2d·W(C) clauses which all
have width at most d ·W(C).

Erasure If π erases C, we erase all of C[fd] in less than 2d·W(C) erasure steps.

Inference This is the only interesting case. Suppose that π infers C1∨C2 from C1∨x and C2∨x. Then by
induction we have (C1 ∨ x)[fd] and (C2 ∨ x)[fd] in memory in πf . It is a straightforward extension
of Observation A.10 that if C � D, then C[fd] � D[fd], so in particular it holds that (C1 ∨ x)[fd] and
(C2 ∨ x)[fd] imply (C1 ∨ C2)[fd]. By the implicational completeness of resolution, these clauses can
all be derived.

A not necessarily tight upper bound for the width of this derivation in πf is d · (W(C1 ∨ x) +
W(C2 ∨ x) + W(C1 ∨ C2)) = O

(
d ·W(π)

)
, as claimed.

To bound the length, note that (C1 ∨ C2)[fd]. contains less than 2d·W(C1∨C2) clauses. For every clause
D ∈ (C1 ∨ C2)[fd], consider the minimal restriction ρ(¬D) falsifying D. Since

(C1 ∨ x)[fd] ∧ (C2 ∨ x)[fd] � D (9)

we have that

(C1 ∨ x)[fd]�ρ(¬D) ∧ (C2 ∨ x)[fd]�ρ(¬D) � 0 . (10)

The number of variables is at most d · (W(C1 ∨ C2) + 1) = N , and by Observation A.1 there is a
refutation of (C1 ∨ x)[fd]�ρ(¬D) ∧ (C2 ∨ x)[fd]�ρ(¬D) in length at most 2N+1 − 1. Looking at this
refutation and removing the restriction ρ(¬D), it is straightforward to verify that we get a derivation
of D from (C1 ∨ x)[fd] ∧ (C2 ∨ x)[fd] in the same length (see, for instance, the inductive proof in
[BSW01]). We can repeat this for every clause D ∈ (C1 ∨ C2)[fd] to derive all of the less than
2d·(W(C1∨C2)) clauses in this set in total length at most

2d·(W(C1∨C2)) · 2d·(W(C1∨C2)+2) ≤ 23d·W(π) = 2O(d·W(π)) . (11)

Taken together, we see that we get a refutation πf in length at most L(π) · 2O(d·W(π)) and width at most
O

(
d ·W(π)

)
. Theorem 4.1 follows.
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B.2 Proof of Theorem 4.4

Let us use the convention that D and D denote clause sets and clauses derived from F [fd] while C and C
denote clause sets and clauses derived from F .

Let us also overload the notation and write D � C, D 2 C, and D B C for C = C+ ∨ C− when the
corresponding implications hold or do not hold for D with respect to

∨
x∈C+fd(~x) ∨

∨
y∈C−¬fd(~y). Note

that it will always be clear when we use the notation in this overloaded sense since D and C are defined over
different sets of variables, so the non-overloaded interpretation would not be very meaningful.

Recall from Definition 4.3 that projF (D) =
{
C

∣∣∃DC ⊆ D s.t. DC B
∨

x∈C+fd(~x) ∨
∨

y∈C−¬fd(~y)
}

is the set of clauses projected by D. In the spirit of the notational convention just introduced, we will let Ct

be a shorthand for projF (Dt).
Suppose now that πf =

{
D0, . . . , Dτ

}
is a resolution refutation of F [fd] for some arbitrary unsatisfiable

CNF formula F and some arbitrary non-constant function fd.
The first two bullets in Theorem 4.4 are immediate. For D0 = ∅ we have C0 = projF (D0) = ∅, and it

is easy to verify that Dτ = {0} yields Cτ = projF (Dτ ) = {0}. We note, however, that the empty clause
will have appeared in Ct = projF (Dt) earlier, namely for the first t such that Dt is contradictory.

Perhaps the trickiest part is to show that all transitions from Ct−1 = projF (Dt−1) to Ct = projF (Dt)
can be performed in such a way that the variable support size in our refutation under construction π : F ` 0
never exceeds max

{
SuppSize(Ct−1), SuppSize(Ct)

}
during the intermediate derivation steps needed in π.

The proof is by a case analysis of the derivation steps. Before plunging into the proof, let us make a simple
but useful observation.

Observation B.1. Using the above notation, if Dt � C then C = C+ ∨ C− is derivable from Ct =
projF (Dt) by weakening.

Proof. Pick D′ ⊆ Dt, C+
1 ⊆ C+, and C−

2 ⊆ C− minimal so that D′ � C+
1 ∨ C−

2 still holds. Then by
definition D′ B C+

1 ∨ C−
2 so C+

1 ∨ C−
2 ∈ Ct and C ⊇ C+

1 ∨ C−
2 can be derived from Ct by weakening as

claimed.

Consider now the rule applied in πf at time t to get from Dt−1 to Dt. We analyze the three possible
cases—inference, erasure and axiom download—in this order.

B.2.1 Inference

Since Dt ⊇ Dt−1, it is immediate from Definition 4.3 that no clauses in Ct−1 can disappear at time t, i.e.,
Ct−1 \ Ct = ∅. There can appear new clauses in Ct, but by Observation B.1 all such clauses are derivable
by weakening from Ct−1. During such weakening moves the variable support size increases monotonically
and is bounded from above by SuppSize(Ct).

B.2.2 Erasure

Since Dt−1 ⊆ Dt, it is immediate from Definition 4.3 that no new clauses can appear at time t. Any clauses
in Ct−1 \ Ct can simply be erased, which decreases the variable support size monotonically.

B.2.3 Axiom download

This is the only place in the case analysis where we need to do some work. Suppose that Dt = Dt−1 ∪ {D}
for some axiom clause D ∈ A[fd], where A in turn is an axiom of F . If C ∈ Ct \ Ct−1 is a new projected
clause, D must be involved in projecting it so there is some subset D ⊆ Dt−1 such that

D ∪ {D} B C . (12)
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B COMPLETING THE PROOF OF THE SUBSTITUTION THEOREM

Also note that if Dt−1 � C we are done since C can be derived from Ct−1 by weakening, so we can assume
that

Dt−1 2 C . (13)

We want to show that all such clauses C can be derived from Ct−1 = projF (Dt−1) by downloading A ∈ F ,
making inferences, and then possibly erasing A, and that this can be done without the variable support size
exceeding max

{
SuppSize(Ct−1), SuppSize(Ct)

}
. The key to our proof is the next lemma.

Lemma B.2. Suppose that D derived from D ∈ F [fd], D ∈ A[fd], and C a clause over Vars(F ) are such
that D ∪ {D} B C but D 2 C. Then if A = a1 ∨ · · · ∨ ak, for every ai ∈ A \ C there is a clause subset
Di ⊆ D and a subclause Ci ⊆ C such that Di B Ci ∨ ai. That is, all clauses C ∨ ai for ai ∈ A \ C can be
derived from C = projF (D) by weakening.

Proof. Consider any truth value assignment α such that α(D) = 1 but α(
∨

x∈C+fd(~x) ∨
∨

y∈C−¬fd(~y)) =
0. Such an assignment exists since D 2 C by assumption. Also, since by assumption D ∪ {D} B C we
must have α(D) = 0. If A = a1 ∨ · · · ∨ ak, we can write D ∈ A[fd] on the form D = D1 ∨ · · · ∨Dk for
Di ∈ ai[fd] (compare with (8)). Fix any a ∈ A and suppose for the moment that a = x is a positive literal.
Then α(Di) = 0 implies that α(fd(~x)) = 0. By Observation A.9, this means that α(¬fd(~x)) = 1. Since
exactly the same argument holds if a = y is a negative literal, we conclude that

D �
∨

x∈(C∨ai)+
fd(~x) ∨

∨
y∈(C∨ai)−

¬fd(~y) (14)

or, rewriting (14) using our overloaded notation, that

D � C ∨ ai . (15)

If ai ∈ C, the clause C ∨ ai is trivially true and thus uninteresting, but otherwise we pick Di ⊆ D and
Ci ⊆ C minimal such that (15) still holds (and notice that since D 2 C, the literal ai cannot be dropped
from the implication). Then by Definition 4.3 we have Di B Ci ∨ ai as claimed.

We remark that Lemma B.2 can be seen to imply that Vars(A) ⊆ Vars(Ct) = Vars(projF (Dt)). For
x ∈ Vars(A) ∩ Vars(C) this is of course trivially true, but for x ∈ Vars(A)\Vars(C) Lemma B.2 tells us
that already at time t− 1, there is a clause in Ct−1 = projF (Dt−1) containing x, namely the clause Ci ∨ ai

found in the proof above. Since Dt ⊇ Dt−1, this clause does not disappear at time t. This means that if
we download A ∈ F in our refutation π : F ` 0 under construction, we have SuppSize(Ct−1 ∪ {A}) ≤
SuppSize(Ct).

Thus, we can download A ∈ F , and then possibly erase this clause again at the end of our inter-
mediate resolution derivation to get from Ct−1 to Ct, without the variable support size ever exceeding
max

{
SuppSize(Ct−1), SuppSize(Ct)

}
. Let us now argue that all new clauses C ∈ Ct \ Ct−1 can be

derived from Ct−1 ∪ {A}.
If A\C = ∅, then the weakening rule applied on A is enough. Suppose therefore that this is not the case

and let A′ = A \C =
∨

a∈Lit(A)\Lit(C) a. Appealing to Lemma B.2 we know that for every a ∈ A there is a
Ca ⊆ C such that Ca∨a ∈ Ct−1. Note that by assumption (13) this means that if x ∈ Vars(A) ∩ Vars(C),
then x occurs with the same sign in A and C, since otherwise we would get the contradiction D � C∨a = C.
Summing up, Ct−1 contains Ca ∨ a for some Ca ⊆ C for all a ∈ Lit(A) \Lit(C) and in addition we know
that Lit(A) ∩ {a | a ∈ Lit(C)} = ∅. Let us write A′ = a1 ∨ · · · ∨ am and do the following weakening
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derivation steps from Ct−1 ∪ {A}:

A C ∨A′

Ca1 ∨ a1  C ∨ a1

Ca2 ∨ a2  C ∨ a2

...

Cam ∨ am  C ∨ am

(16)

Then resolve C ∨A′ in turn with all clauses C ∨ a1, C ∨ a2, . . . , Cam ∨ am, finally yielding the clause C.
In this way all clauses C ∈ Ct \ Ct−1 can be derived one by one, and we note that we never mention

any variables outside of Vars(Ct−1 ∪ {A}) ⊆ Vars(Ct) in these derivations.

B.2.4 Wrapping up the Proof of Theorem 4.4

We have proven that no matter what derivation step is made in the transition Dt−1  Dt, we can perform
the corresponding transition Ct−1  Ct for our projected clause sets without the variable support size going
above max

{
SuppSize(Ct−1), SuppSize(Ct)

}
. Also, the only time we need to download an axiom A ∈ F

in our projected refutation π of F is when πf downloads some axiom D ∈ A[fd]. This completes the proof
of Theorem 4.4.

B.3 Proof of Theorem 4.5

Recall the convention that x, y, z refer to variables in F while x1, . . . , xd, y1, . . . , yd, z1, . . . , zd refer to
variables in F [fd]. We start with an intuitively plausible lemma saying that for all variables x appearing in
some clause projected by D, the clause set D itself must contain at least one of the variables x1, . . . , xd.

Lemma B.3. Suppose that D is a set of clauses derived from F [fd] and that C ∈ projF (D). Then for all
variables x ∈ Vars(C) it holds that {x1, . . . , xd} ∩ Vars(D) 6= ∅.

Proof. Fix any D′ ⊆ D such that D′ B C. By definition, for all z ∈ Vars(C) we have D′ 2 C \ {z, z}.
Suppose that z appears as a positive literal in C (the case of a negative literal is completely analogous). This
means that there is an assignment α such that α(D′) = 1 but α

(∨
x∈C+\{z}fd(~x) ∨

∨
y∈C−¬fd(~y)

)
= 0.

Since D′ B C. it must hold that α(fd(~z)) = 1. Modify α into α′ by changing the assignments to z1, . . . , zd

in such a way that α′(fd(~z)) = 0. Then α′(∨
x∈C+fd(~x) ∨

∨
y∈C−¬fd(~y)

)
= 0, so we must have α′(D′) =

0. Since we only changed the assignments to (a subset of) the variables z1, . . . , zd, the clause set D′ ⊆ D
must mention at least one of these variables.

With Lemma B.3 in hand, we are ready to prove Theorem 4.5. Note that everything said so far in
Section 4 and Appendix B (in particular, all of the proofs) applies to any non-constant Boolean function. In
the proof of Theorem 4.5, however, it will be essential that we are dealing with non-authoritarian functions,
i.e., functions fd having the property that no single variable xi can fix the the value of fd(x1, . . . , xd).

Suppose that D is a set of clauses derived from F [fd] and write V ∗ = Vars(projF (D)) to denote the set
of all variables in Vars(F ) appearing in any clause projected by D. We want to prove that Sp(D) = |D| >∣∣V ∗∣∣ provided that fd is non-authoritarian.

To this end, consider the bipartite graph with the clauses in D labelling the vertices on the left-hand side
and variables in V ∗ labelling the vertices on the right-hand side. We draw an edge between D ∈ D and
x ∈ V ∗ if Vars(D) ∩ {x1, . . . , xd} 6= ∅. By Lemma B.3 it holds that Vars(D) ∩ {x1, . . . , xd} 6= ∅ for all
variables x ∈ V ∗, so in particular every variable x ∈ V ∗ is the neighbour of at least one clause D ∈ D. Let
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B COMPLETING THE PROOF OF THE SUBSTITUTION THEOREM

us write N(D) to denote the neighbours of a left-hand vertex D and extend this notation to sets of vertices
by taking unions.

Fix D1 ⊆ D to be any largest subset such that |D1| > N(D1). If D1 = D we are done (remember that
N(D) = V ∗), so suppose D1 6= D. We show that this assumption leads to a contradiction.

Let D2 = D\D1 6= ∅ and define the vertex sets V ∗
1 = N(D1) and V ∗

2 = V ∗\V ∗
1 . Note that we must have

V ∗
2 ⊆ N(D2) since N(D) = N(D1) ∪ N(D2) = V ∗. By the maximality of D1 it must hold for all D′ ⊆ D2

that |D′| ≤
∣∣N(D′)\V ∗

1

∣∣, because otherwise D′′ = D1 ∪ D′ would be a larger set with |D′′| > |N(D′′)|. But
this means that by Hall’s marriage theorem, there is a matching M of D2 into N(D2) \ V ∗

1 = V ∗
2 . Consider

any clause C ∈ projF (D) such that Vars(C) ∩ V ∗
2 6= ∅ and let D′ ⊆ D be any clause set such that

D′ B
∨

x∈C+fd(~x) ∨
∨

y∈C−¬fd(~y) (17)

(the existence of which is guaranteed by Definition 4.3). We claim that we can construct an assignment α
that makes D′ true but

∨
x∈C+fd(~x) ∨

∨
y∈C−¬fd(~y) false. This is clearly a contradiction, so if we can

prove this claim it follows that our assumption D1 6= D is false and that it instead must hold that D1 = D
and thus

∣∣N(D)
∣∣ =

∣∣V ∗∣∣ < |D|, which proves the theorem.
To establish the claim, let D′

i = D′ ∩ Di for i = 1, 2 and let Ci = C+
i ∨ C−

i for

C+
i =

∨
x∈C
x∈V ∗

i

x and C−
i =

∨
y∈C
y∈V ∗

i

y (18)

and i = 1, 2. We construct the assignment α satisfying D′ but falsifying
∨

x∈C+fd(~x) ∨
∨

y∈C−¬fd(~y) in
three steps:

1. Since C+
1 ∨ C−

i = C1 $ C by construction (recall that we chose our clause C in such a way that
Vars(C) ∩ V ∗

2 6= ∅), the minimality condition in Definition 4.3 yields that

D′
1 2

∨
x∈C+

1
fd(~x) ∨

∨
y∈C−

1
¬fd(~y) (19)

and hence we can find a truth value assignment α1 that sets D′
1 to true, all fd(x1, . . . , xd), x ∈

C+
1 , to false, and all fd(y1, . . . , yd), y ∈ C−

1 , to true. Note that α1 need only assign values to
{z1, . . . , zd | z ∈ Vars(C1)}.

2. For D′
2, we use the matching M into V ∗

2 found above to pick a distinct variable x(D) ∈ Vars(F ) for
every D ∈ D′

2 and then a variable x(D)i ∈ Vars(F [fd]) appearing in D, the existence of which is
guaranteed by the edge between D and x(D). Let α2 be the assignment that sets all these variables
x(D)i to the values that fix all D ∈ D′

2 to true. We stress that α2 assigns a value to at most one
variable x(D)i for every x(D) ∈ Vars(F ).

3. But since fd is non-authoritarian, this means that we can extend α2 to an assignment to all vari-
ables x(D)1, . . . , x(D)d that still satisfies D′

2 but sets all fd(x1, . . . , xd), x ∈ C+
2 , to false and all

fd(y1, . . . , yd), y ∈ C−
2 , to true.

Hence, α = α1 ∪ α2 is an assignment such that α(D′) = 1 but α(
∨

x∈C+fd(~x) ∨
∨

y∈C−¬fd(~y)) = 0,
which proves the claim. This concludes the proof of Theorem 4.5.

Since Theorems 4.1, 4.4, and 4.5 have now all been established, the proof of Theorem 3.2 is finished.
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C Reductions Between Resolution and Pebbling

It is not hard to see how a black pebbling P of a DAG G can be used to construct a resolution refutation
of the pebbling contradiction PebG in Definition A.8 in length and space upper-bounded by time(P) and
space(P), respectively. It is straightforward to show that this translation from pebblings to refutations
works even if we do an fd-substitution in the pebbling contradiction. We present a proof of this fact in
Section C.1.

Using our new results in Section 3, we can prove the more surprising fact that there is also a fairly tight
reduction in the other direction: provided that the function fd is non-authoritarian, any resolution refutation
of PebG[fd] translates into a black-white pebbling of G with the same time-space properties (adjusting for
constant factors depending on the function fd and the maximal indegree of G). This new reduction is given
in Section C.2.

Finally, in Section C.3 we appeal to both of these reductions to prove a meta-theorem saying that for
DAGs G having the right time-space trade-off properties, we can prove that pebbling contradictions defined
over such DAGs inherit the same trade-off properties. This will allow us, after having studied pebbling time-
space trade-offs in Appendix D, to prove a wealth of strong trade-offs for both clause space and variable
space in resolution in Appendix E.

C.1 From Black Pebblings to Resolution Refutations

Given any black-only pebblingP of a DAG G, we can mimic this pebbling in a resolution refutation of PebG

by deriving that a literal v is true whenever the corresponding vertex in G is pebbled (this was perhaps first
observed in [BSIW04]). This construction carries over also to substitution formulas PebG[fd] and we have
the following theorem.

Theorem C.1. Let fd be a non-constant Boolean function of arity d and let G be a DAG with indegree at
most ` and unique sink z. Then given any complete black pebbling P of G, we can construct a resolution
refutation π : PebG[fd]` 0 such that

L(π) ≤ time(P) · exp
(
O(d(` + 1))

)
,

W(π) ≤ d(` + 1) , and

VarSp(π) ≤ space(P) · exp
(
O(d(` + 1))

)
.

Before presenting the proof, we note that in our applications we will have the function arity d and the
DAG indegree ` fixed (we can for instance pick d = ` = 2), which means that the bounds on length and
space above turns into L(π) ≤ O

(
time(P)

)
and VarSp(π) ≤ O

(
space(P)

)
. We also remark that for

concrete functions fd, such as for instance XOR over two variables, we can easily compute explicit upper
bounds on the constants hidden in the asymptotic notation if we so wish, and that these constants are small.

Proof of Theorem C.1. The proof is by induction over the black pebbling P . We maintain the invariant
that if at time t we have black pebbles on the vertices in V , then π will contain exactly the clauses Ct =
{x[fd] | x ∈ V }. Again, to simplify the notation in the proof we will use fractional time steps in π, making
sure that it never takes more than exp

(
O(d(` + 1))

)
time steps to get from Ct−1 to Ct.

Consider the pebbling move made in P at time t :

1. If P places a pebble on a source vertex s, we download the less than 2d axioms in s[fd].

2. If P places a pebble on a non-source vertex v with immediate predecessors u1, . . . , u`′ , by induction
we have {ui[fd] | i = 1, . . . , `′} ⊆ Ct−1. The argument in this case is very similar to the one in
Section B.1.
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First download the less than 2d(`′+1) pebbling axioms in (u1 ∨ · · · ∨ u`′ ∨ v)[fd]. Now

{ui[fd] | i = 1, . . . , `′} ∪ {(u1 ∨ · · · ∨ u`′ ∨ v)[fd]} (20)

implies all clauses D ∈ v[fd]. If we apply the restriction ρ(¬D) to the clause set (20) we can obtain
a refutation in length and variable space at most exp

(
O(d(` + 1))

)
(and trivially in width at most

d(` + 1)) by Observation A.1. Removing the restriction ρ(¬D), this refutation turns into a derivation
of D. Doing this for all of the less than 2d clauses D ∈ v[fd] completes the induction step.

3. If P removes a pebble from any vertex v, we erase the less than 2d clauses in v[fd] from memory.

At the end of the pebbling P , we have Cτ = {z[fd]} for z the sink of G. We conclude the refutation by
downloading all the sink axioms in z[fd] and deriving the empty clause 0 in length exp(O(d)), width d and
variable space exp(O(d)).

C.2 From Resolution Refutations to Black-White Pebblings

Let us now see how we can go in the other direction from resolution refutations to pebbling strategies.

Theorem C.2. Let f be any non-authoritarian Boolean function and G be any DAG with unique sink and
bounded indegree `. Then from any resolution refutation π : PebG[f]` 0 we can extract a black-white
pebbling strategy Pπ for G such that time(Pπ) ≤ (` + 1) · L(π) and space(Pπ) ≤ Sp(π).

Note, however, that Theorems C.1 and C.2 are not perfect converses, since we do not know any way
of translating black-white pebbling strategies into resolution refutations that preserve the time and space
properties (and our guess would be that there is no way of doing this in general for an arbitrary black-white
pebbling, but this is an open problem).

The proof of Theorem C.2 is in three steps:

1. First, we convert π : PebG[f]` 0 to a refutation π′ of PebG such that SuppSize(π′) ≤ Sp(π) and the
number of axiom downloads in π′ is upper-bounded by the number of axiom downloads in π. This is
Theorem 3.2, which is the key technical contribution of this paper.

2. The refutation π′ : PebG ` 0 can contain weakening moves however, and we do not want that, so
we appeal to Proposition A.2 to get a refutation π′′ : PebG ` 0 without any weakening steps. By
Lemma A.6, without loss of generality we can assume that π′′ is frugal (Definition A.5). This part of
the proof just uses standard techniques, and the number of axiom downloads and the variable support
size can only decrease when going from π′ to π′′.

3. Finally, we show that π′′ corresponds to a black-white pebbling strategy P for G such that time(P)
is upper-bounded by the number of axiom downloads and space(P) by the maximal number of
variables occurring simultaneously in π′′. This final part relies heavily on the work [BS02] by the
first author. Since we need a more detailed result than can be read off from that paper, however, we
present the full construction below.

Putting together these three steps, Theorem C.2 clearly follows. What remains is thus to prove the
following lemma.

Lemma C.3. Let G be any DAG with unique sink and bounded indegree `, and suppose that π is any
resolution refutation of PebG without weakening that is also frugal. Then there is a black-white pebbling
strategy Pπ for G such that space(Pπ) ≤ SuppSize(π) and time(Pπ) is at most (` + 1) times the number
of axiom downloads in π.
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Proof. Given a refutation π =
{
C0 = ∅, C1, . . . , Cτ = {0}

}
of PebG, we translate every clause set Ct into

a black-white pebble configuration Pt = (Bt,Wt) using a slightly modified version of the ideas in [BS02],
and then show that P = {P0, . . . , Pτ} is essentially a legal black-white pebbling of G as in the statement
of the lemma. The translation will satisfy the invariant that Bt ∪ Wt = Vars(Ct) which yields the upper
bound on space in terms of variable support size. The first configuration C0 = 0 is thus translated into
P0 = (∅, ∅).

Suppose inductively that (Bt−1,Wt−1) has been constructed from Ct−1 and consider all the variables
x ∈ Vars(Ct) one by one. If x ∈ Vars(Ct) ∩ Bt−1, keep x in Bt. Otherwise, if x ∈ Lit(Ct) appears as a
positive literal, add x to Bt. Otherwise, if x ∈ Lit(Ct), add x to Wt. This is our translation of Ct into black
pebbles Bt and white pebbles Wt.

To see that this translation yields a legal pebbling, consider the derivation rule applied to get from Ct−1

to Ct.

Axiom download Suppose that we download the pebbling or source axiom for a vertex v with immediate
predecessors u1, . . . , u`′ (where we can have `′ = 0). All predecessors ui not having pebbles on them
at time t−1 get white pebbles. Then v gets a black pebble, if it is not already pebbled. Note that this is
a legal pebble placement since all immediate predecessors of v have pebbles at this point. We remark
that to black-pebble v, we might have to remove a white pebble from v first, but since all immediate
predecessors have pebbles on them this poses no problems. Also, downloading the sink axiom can at
most place a white pebble on the sink z, which is in order. By the bound on the indegree, this step
involves placing at most ` + 1 pebbles.

Inference In this case Vars(Ct−1) = Vars(Ct), so nothing happens.

Erasure Suppose that the clause erased in C. Just apply the translation function. Suppose that this results
in a pebble on x disappearing. Then we have x ∈ Vars(C) but x /∈ Vars(Ct). Before being erased,
C has been resolved with some other clause (recall that π is frugal). But as long as we did not resolve
over the variable x, we will still have x ∈ Vars(Ct), and hence C must have been resolved over x at
some time t′ < t. At this time x appeared both positively and negatively in Ct′ , and in view of how
we defined the translation from clauses to pebbles, this means that the vertex x has contained a black
pebble in the interval [t′, t− 1]. Thus the pebble disappearing at time t is black, and black pebbles
can always be removed freely.

To conclude the proof, note that during the course of the refutation all axioms must have been down-
loaded at least once, since PebG is easily seen to be minimally unsatisfiable. In particular, this means that
the sink z is black-pebbled at some time during the proof, and we can decide to keep the black pebble on
z from that moment onwards. (This potentially adds one pebble extra to the pebbling space, but this is fine
since the inequality in Theorem 3.2 is strict so there is margin for this.)

Since every time an axiom is downloaded it must also be erased at some later time, we get the time
bound of (` + 1) times the number of axiom downloads (and in fact it is easy to see that this bound can be
improved by taking into account the inference steps, when nothing happens in the pebbling). The lemma
follows.

As was discussed above, Lemma C.3 completes the proof of Theorem C.2.

C.3 Obtaining Resolution Trade-offs from Pebbling

Combining Theorems C.1 and C.2, we can now prove that if we can find DAGs G with appropriate pebbling
trade-off properties, such DAGs immediately yield trade-off results in resolution. And as we will see in
Appendix D, there are (explicitly constructible) such DAGs.
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In order not to clutter the statement of the next theorem, we assume that the arity d of the Boolean
function f and the indegree ` of the DAG are fixed, so that any dependence on d and ` can be hidden in the
asymptotical notation. (This is not much of a restriction since we will have d = ` = 2 in the applications
that we care about.)

Theorem C.4. Let d and ` be universal constants, and let f be some universally fixed non-authoritarian
Boolean function of arity d. Suppose that G is a DAG with n vertices, unique sink z, and bounded indegree `,
and that g, h : N+ 7→ N+ are functions satisfying the following properties:

• For every s ≥ Peb(G) there is a complete black pebbling P of G with space(P) ≤ s and time(P) ≤
g(s).

• For every s ≥ BW-Peb(G) and every complete black-white pebbling P of G with space(P) ≤ s it
holds that time(P) ≥ h(s).

Then the following holds for PebG[f]:

1. PebG[f] is a k-CNF formula for some fixed k = k(d, `, f) and has size O(n).

2. PebG[f] is refutable in length L(PebG[f] ` 0) = O(n) and width W(PebG[f] ` 0) = O(1) simulta-
neously, and is also refutable in variable space VarSp(PebG[f] ` 0) = O

(
Peb(G)

)
.

3. For every s ≥ Peb(G) there is a resolution refutation πs : PebG[f]` 0 in length L(πs) = O(g(s))
and variable space VarSp(πs) = O(s).

4. The clause space of any resolution refutation is lower-bounded by Sp(PebG[f] ` 0) ≥ BW-Peb(G),
and for every s ≥ BW-Peb(G) and every refutation πs : PebG[f]` 0 in clause space Sp(πs) ≤ s, it
holds that L(πs) = Ω(h(s)).

All hidden constants in the asymptotical notation depend only on d, `, and f, and are independent of G.

Proof. Item 1 is an easy consequence of Definition 2.4. Items 2 and 3 both follow from Theorem C.1 (to
get item 2, consider the trivial pebbling that black-pebbles all vertices of G in topological order). Finally,
Theorem C.2 yields item 4.

This theorem will be of particular interest when we can find graph families {Gn}∞n=1 with Peb(Gn) =
Θ

(
BW-Peb(Gn)

)
having trade-off functions gn(s) = Θ(hn(s)). For such families of DAGs, Theorem C.4

yields asymptotically tight trade-offs in resolution for both clause space and variable space with respect to
length (since the upper bounds are in terms of variable space and the lower bounds in terms of clause space).

D Some Old and New Pebbling Results

Having come this far in the paper, we know that if we can find graphs with trade-off results for black-white
pebbling and matching upper bounds for black pebbling, we can construct CNF formulas from these graphs
with similar time-space trade-off properties in resolution. And indeed, as we show in this section, we can
find graphs satisfying these properties (or in one case graphs that come sufficiently close for us to be able to
get the desired result via some extra work).

First, we present some auxiliary definitions, notation and terminology in Section D.1. Then, in Sec-
tion D.2, we prove a strong trade-off result for a very simple but surprisingly versatile family of graphs. Our
results build on [CS80, CS82] and extend the results there from black-only to black-white pebbling. Finally,
in Section D.3 we review a number of results from [LT82] that will also enable us to get strong trade-offs in
resolution.

We remark that all the pebbling trade-off results presented in this section are for explicitly constructible
graphs.
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D.1 Pebbling Preliminaries

We will use the following notational conventions:

• n denotes the size (i.e., the number of vertices) of a DAG, or, in some cases where it is more conve-
nient, the size to within a (small) constant factor.

• ` denotes the maximal indegree of a DAG.

• s denotes pebbling space (although s1, s2, . . . will sometimes denote source vertices of DAGs).

• S(G) denotes the source vertices of G and Z(G) denotes the sink vertices of G.

We say that the pebbling move at time σ is the move resulting in the pebble configuration Pσ.

D.1.1 Technical Definitions and Some Observations

We need to generalize our definition of pebbling slightly to distinguish slightly different variants of pebblings
and also to allow pebblings of graphs with more than one sink.

Definition D.1 (Conditional, persistent and visiting pebblings). Suppose that G is a DAG with sources S
and sinks Z (one or many). Let the pebble game rules be as in Definition A.7, and define pebbling space in
the same way.

We say that a pebbling P = {P0, . . . , Pτ} is conditional if P0 6= (∅, ∅) and unconditional otherwise.
Note that complete pebblings, or pebbling strategies, are always unconditional.

A complete black-white pebbling visiting Z is a pebbling P = {P0, . . . , Pτ} such that P0 = Pτ = (∅, ∅)
and such that for every z ∈ Z, there exists a time tz ∈ [τ ] such that z ∈ Btz ∪ Wtz . The minimum space of
such a visiting pebbling is denoted BW-Peb∅(G), and for black pebbling we have the measure Peb∅(G).

A persistent pebbling of G is a pebbling P such that Pτ = (Z, ∅). The minimum space of any complete
persistent black-white or black-only pebbling of G is denoted BW-Pebz(G) and Pebz(G), respectively.

That is, a visiting pebbling touches all sinks but leaves the graph empty at time τ , whereas a persistent
pebbling leaves black pebbles on all sinks at the end of the pebbling. If G is a DAG with m sinks, then it
clearly holds that BW-Pebz(G) ≤ BW-Peb∅(G) + m and Pebz(G) ≤ Peb∅(G) + m.

Intuitively, the pebblings that seem most natural and interesting are persistent pebblings of DAGs with
a single sink. In our proofs, however, we will mostly be focusing on visiting pebblings. The reason that
visiting pebblings will show up over and over again is that the graphs of interest will often be constructed
in terms of smaller subgraph components with useful pebbling properties, and that for such subgraphs we
have the following fact.

Observation D.2. Suppose that G is a DAG and that P is any complete pebbling of G. Let U ⊆ V (G) be
any subset of vertices of G and let H = H(G, U) denote the induced subgraph with vertices V (H) = U
and edges E(H) =

{
(u, v) ∈ E(G)

∣∣u, v ∈ U
}

. Then the pebbling P restricted to the vertices in U is a
complete visiting pebbling strategy for H .

Proof. It is easy to verify that if we only perform those pebbling moves in P that pertain to vertices in U ,
then these moves constitute a legal pebbling on H in the sense of Definition A.7. Moreover, any complete
pebbling of G must pebble all vertices in G, so P restricted to U will pebble all vertices in H including the
sinks of H .

To get trade-offs in resolution for minimally unsatisfiable k-CNF formulas, we want DAGs with unique
sinks. Most pebbling results in Section D are more natural to state and prove for DAGs with multiple sinks,
however, but this small technicality is easily taken care of. We do this next.
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Figure 1: Schematic illustration of single-sink version Ĝ of graph G.

Definition D.3 (Single-sink version). Let G be a DAG with sinks Z(G) = {z1, . . . , zm} for m > 1. The
single-sink version Ĝ of G consists of all vertices and edges in G plus the extra vertices z∗1 , . . . , z

∗
m−1 and

the edges (z1, z
∗
1), (z2, z

∗
1), (z∗1 , z

∗
2), (z3, z

∗
2), (z∗2 , z

∗
3), (z4, z

∗
3), et cetera up to (z∗m−2, z

∗
m−1), (zm, z∗m−1).

That is, Ĝ consists of G with a binary tree of minimal size added on top of the sinks. See Figure 1 for a
small example. The following observation is immediate.

Observation D.4. Let G be a DAG with sinks Z(G) = {z1, . . . , zm} for m > 1. Then for any flavour of
pebbling (visiting or persistent) it holds that BW-Peb

(
Ĝ

)
≤ BW-Peb(G)+1 and Peb

(
Ĝ

)
≤ Peb(G)+1.

Moreover, if there is a pebbling strategy P (visiting or persistent) for G in space s that can pebble the sinks
in arbitrary order, then there is a pebbling strategy P̂ of the same type for Ĝ with time

(
P̂

)
≤ time(P)+2m

and space(P̂) ≤ space(P) + 1.

To simplify the proofs of our lower bounds, we want that the pebblings under consideration do not
perform any obviously redundant moves. The following definition is a generalization of [GLT80] from
black-only to black-white pebbling.

Definition D.5 (Frugal pebbling). Let P be a complete pebbling of a DAG G. To every pebble placement
on a vertex v at time σ we associate the pebbling interval [σ, τ), where τ is the first time after σ when the
pebble is removed from v again (or τ = ∞, say, if this never happens).

If a sink zi ∈ Z(G) is pebbled for the first time at time σ, then the pebble on zi is essential during the
pebbling interval [σ, τ). A pebble on a non-sink vertex v is essential during [σ, τ) if either an essential black
pebble is placed on an immediate successor of v during (σ, τ) or an essential white pebble is removed from
an immediate successor of v during (σ, τ). Any other pebble placements on any vertices are non-essential.

The pebbling strategy P is frugal if all pebbles in P are essential at all times.

Without loss of generality, we can assume that all pebblings we deal with are frugal.

Lemma D.6. For any complete pebbling P (black or black-white, visiting or persistent) there is a frugal
pebbling P ′ of the same type such that time(P ′) ≤ time(P) and space(P ′) ≤ space(P).
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Proof. Just delete any non-essential pebbles from P and verify that what remains is a legal pebbling.

One minor technical snag is that we will need to assume not only that complete pebblings are frugal,
but that this also holds for conditional pebblings (Definition D.1). This is no real problem, however, since
we can always assume that the conditional pebblings we are dealing with are subpebblings of some larger,
unconditional pebbling. More formally, we can define a conditional pebbling to be frugal if it satisfies the
condition in Definition D.5 that any pebble placed on a non-sink vertex v stays until either a black pebble is
placed on an immediate successor of v or a white pebble is removed from an immediate successor of v.

D.1.2 Some Upper and Lower Bounds

If we do not care about space, the easiest way to pebble a DAG is to place black pebbles on the vertices in
topological order (and then remove all pebbles from non-sink vertices). Since we will have reason to use
this pebbling strategy on occasion in what follows, we give it a name for reference.

Observation D.7 (Trivial pebbling). Any DAG G can be completely, persistently black-pebbled in space
at most |V (G)| and time at most 2 · |V (G)| simultaneously.

Another easy upper bound on the black pebbling price can be given in terms of the fan-in and depth of
the DAG.

Definition D.8 (Depth). The depth of a DAG G is the length of a longest path from a source to a sink in G.

Observation D.9. Any DAG G with maximal indegree ` and depth d has a black pebbling strategy in space
at most d` + 1.

Proof. By induction over the depth. The base case is immediate. For a graph of depth d+1, pebble the sinks
one by one. For each sink we can pebble its immediate predecessors with d` + 1 pebbles each by induction.
Placing black pebbles on the immediate predecessors one by one and leaving them there, we never use more
than (d` + 1) + (`− 1) pebbles simultaneously. Finally, keeping the at most ` pebbles on the predecessors,
pebble the sink.

A simple but important lemma that lies at the heart of most black-white pebbling lower bounds follows
next.

Lemma D.10 ([GT78]). Suppose that Q : u  v is a path in a DAG G and that P = {Pσ, Pσ+1, . . . , Pτ}
is a pebbling such that the whole path Q is completely free of pebbles at times σ and τ but the endpoint v is
pebbled at some point in the time interval (σ, τ). Then the starting point u is pebbled during (σ, τ) as well.

Proof. By induction over the length of the path Q.

A common graph in many pebbling constructions is the pyramid.

Definition D.11 (Pyramid graph). The pyramid graph Πh of height h ≥ 1 is a layered DAG with h + 1
levels, where there is one vertex on the highest level (the sink z), two vertices on the next level et cetera
down to h + 1 vertices at the lowest level 0. The ith vertex at level L has incoming edges from the ith and
(i + 1)st vertices at level L− 1.

See Figure 2 for an example pyramid. The pebbling price of pyramids is well understood.

Theorem D.12. The black pebbling price of a pyramid of height h is Peb(Πh) = h+2 and there is a linear-
time pebbling achieving this bound. The black-white pebbling price is BW-Peb∅(Πh) = h/2 + O(1), and
for even height there is the exact bound BW-Peb∅(Π2h) = h + 2.
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Figure 2: Pyramid Π6 of height 6.

Proof sketch. The lower bound for black pebbling is from Cook [Coo74], and it is easy to construct a linear-
time pebbling matching this bound by pebbling the pyramid bottom-up, layer by layer.

The black-white pebbling strategy for pyramids in space h/2 + O(1) can be obtained from the strategy
for trees in Lengauer and Tarjan [LT80], and Klawe [Kla85] showed that h/2 + O(1) is also a lower bound.
The exact bound for pyramids of even height can be read off the exposition of Klawe’s proof in [NH08a].

Another important building block in many pebbling results are so-called superconcentrators.

Definition D.13 (Superconcentrator). A directed acyclic graph G is an N -superconcentrator if it has N
sources S = {s1, . . . , sN}, N sinks Z = {z1, . . . , zN}, and for any subsets S′ and Z ′ of sources and sinks
of size

∣∣S′∣∣ =
∣∣Z ′∣∣ = k it holds that there are k vertex-disjoint paths between S′ and Z ′ in G.

Note that we do not assume that we can specify which source in S′ should be connected to which sink
in Z ′.

For our pebbling purposes, we will be interested in superconcentrators with number of vertices and edges
linear in N (in addition, we will want them to have bounded indegree, but this extra requirement is easy to
take care of). Valiant [Val76] proved the existence of such graphs. Gabber and Galil [GG81] provided the
first explicit construction of linear-size superconcentrators, based on an earlier non-explicit construction by
Pippenger [Pip77]. We remark that the superconcentrators in [GG81] have logarithmic depth. The currently
best known construction (i.e., with lowest edges-to-vertices ratio) that we are aware of is due to Alon and
Capalbo [AC03].

Here is an important lemma that explains why superconcentrators are good building blocks if we want
to construct graphs that are hard to pebble.

Lemma D.14 (Basic Lower Bound Argument for superconcentrators ([LT82])). Suppose that the DAG
G is an N -superconcentrator and that P = {Pσ, Pσ+1, . . . , Pτ} is a conditional black-white pebbling such
that space(Pσ) ≤ sσ, space(Pτ ) ≤ sτ , and P pebbles at least sσ + sτ + 1 sinks during the closed time
interval [σ, τ ]. Then P pebbles and unpebbles at least N − sσ − sτ different sources during the open time
interval (σ, τ).

Proof. Suppose not. Then P pebbles some set of sσ +sτ +1 sinks without pebbling some set of sσ +sτ +1
sources. Fix such sets of sources and sink vertices and consider the vertex-disjoint paths from sources to
sinks. Then at least one path is empty both at time σ and at time τ and the end point of the path is pebbled
during the interval (σ, τ) but not the starting point. This contradicts Lemma D.10.

Following Lengauer and Tarjan, we will refer to this as the Basic Lower Bound Argument lemma, or just
BLBA-lemma, for superconcentrators. We immediately get the following corollary.
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s1 s2

γ1 γ2 γ3

Figure 3: Base case Γ3
1 for Carlson-Savage graph with 3 spines and sinks.

Corollary D.15 ([LT82]). Any complete black-white pebbling of an N -superconcentrator in space at most
s has to pebble at least Ω

(
N2/s

)
sources (so, in particular, this is a lower bound on the pebbling time).

D.2 A New Pebbling Trade-off Result

In this section we present the third main contribution of this paper, which is a graph family that provides
us with a number of interesting time-space trade-offs for different parameter settings. These trade-offs
have the property that the lower bounds are in terms of black-white pebbling while the upper bounds are
in terms of black-only pebbling, and thanks to this we can apply the machinery of Theorem 3.2 on page 7
and Theorem C.4 on page 27 on these graphs to derive corresponding trade-offs in proof complexity for
resolution.

D.2.1 Definition of Graph Family and Statement of Trade-off

Our graph family is built on a construction by Carlson and Savage [CS80, CS82]. Carlson and Savage only
prove their trade-off for black pebbling, however, and in order to get results for black-white pebbling we
have to modify the construction somewhat and also apply some new ideas in the proofs.

The next definition will hopefully be easier to parse if the reader first studies the illustrations in Figures 3
and 4.

Definition D.16 (Carlson-Savage graph). We define a two-parameter graph family Γc
r, for c, r ∈ N+, by

induction over r. The base case Γc
1 is a DAG consisting of two sources s1, s2 and c sinks γ1, . . . , γc with

directed edges (si, γj), for i = 1, 2 and j = 1, . . . , c, i.e., edges from both sources to all sinks. The graph
Γc

r+1 is a DAG with c sinks which is built from the following components:

• c disjoint copies Π1
2r, . . . ,Π

c
2r of a pyramid (Definition D.11) of height 2r, where we let z1, . . . , zc

denote the pyramid sinks.

• one copy of Γc
r, for which we denote the sinks by γ1, . . . , γc.

• c disjoint and identical spines, where each spine is composed of cr sections, and every section contains
2c vertices. We let the vertices in the ith section of a spine be denoted v[i]1, . . . , v[i]2c.

The edges in Γc
r+1 are as follows:

• All “internal edges” in Π1
2r, . . . ,Π

c
2r and Γc

r are present also in Γc
r+1.

• For each spine, there are edges
(
v[i]j , v[i]j+1

)
for all j = 1, . . . , 2c − 1 within each section i and

edges
(
v[i]2c, v[i + 1]1

)
from the end of a section to the beginning of next for i = 1, . . . , cr − 1, i.e.,

for all sections but the final one, where v[cr]2c is a sink.

• For each section i in each spine, there are edges
(
zj , v[i]j

)
from the jth pyramid sink to the jth vertex

in the section for j = 1, . . . , c, as well as edges
(
γj , v[i]c+j

)
from the jth sink in Γc

r to the (c + j)th
vertex in the section for j = 1, . . . , c.
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z1 z2 z3 γ1 γ2 γ3

Π1
2r Π2

2r Π3
2r

Γ3
r

Figure 4: Inductive definition of Carlson-Savage graph Γ3
r+1 with 3 spines and sinks.
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We now make the formal statements of the trade-off properties that these DAGs possess. The proofs of
allt the statements are postponed to Section D.2.2. First, we collect some basic properties.

Lemma D.17. The graphs Γc
r are of size

∣∣V (
Γc

r

)∣∣ = Θ
(
cr3 + c3r2

)
, and have black-white pebbling price

BW-Peb∅
(
Γc

r

)
= r + 2 and black pebbling price Peb∅

(
Γc

r

)
= 2r + 1.

This tells us that the minimum pebbling space required grows linearly with the recursion depth r but is
independent of the number of spines c of the DAG.

Next, we show that there is a linear-time completely black pebbling of Γc
r in space linear in the sum

of the parameters. This is in fact a strict improvement (though easily obtained) of the corresponding result
in [CS80, CS82].

Lemma D.18. The graph Γc
r has a persistent black pebbling strategy P in time linear in the size of the DAG

and with space O(c + r).

The proof is by induction, and the idea in the induction step for Γc
r+1 is to make a persistent pebbling of

Γc
r in space O(c + r), then pebble the pyramids Π1

2r, . . . ,Π
c
2r one by one in linear time and space O(r), and

finally, using the 2c black pebbles on z1, . . . , zc, γ1, . . . , γc that we have left in place, to pebble all c spines
in parallel with O(c) extra pebbles.

The main result of this section is the following theorem, which allows us to get a variety of pebbling
trade-off results if we choose the parameters c and r appropriately.

Theorem D.19. Suppose that P is a complete visiting black-white pebbling of Γc
r with

space(P) < BW-Peb∅
(
Γc

r

)
+ s = (r + 2) + s

for 0 < s ≤ c/8− 1. Then the time required to perform P is lower-bounded by

time(P) ≥
(

c− 2s

4s + 4

)r

· r! .

As has already been noted, we defer the proof of Theorem D.19 to Section D.2.2, but let us nevertheless
try to provide some intuition as to why the theorem should be true.

For simplicity, let us focus on black-only pebbling strategies. Inductively, suppose that the trade-off in
Theorem D.19 has been proven for Γc

r and consider Γc
r+1. Any pebbling strategy for this DAG will have

to pebble through all sections in all spines. Consider the first section anywhere, let us say on spine j, that
has been completely pebbled, i.e., there have been pebbles placed on and removed from all vertices in the
section. Let us say that this happens at time τ1. But this means that Γc

r and all pyramids Π1
2r, . . . ,Π

c
2r must

have been completely pebbled during this part of the pebbling as well. Fix any pyramid and consider some
point in time σ1 < τ1 when the number of pebbles in this pyramid reaches the space r + O(1) required by
the known lower bound on pyramid pebbling price. At this point, the rest of the graph must contain very
few pebbles. In particular, there are very few pebbles on the subgraph Γc

r at time σ1, so we can think of Γc
r

as being completely empty of pebbles for all practical purposes.
Let us now shift the focus to the next section in the spine j that is completed, say, at time τ2 > τ1. Again,

we can argue that some pyramid is completely pebbled in the time interval [τ1, τ2], and thus has r + O(1)
pebbles on it at some time σ2 > τ1 > σ1. This means that we can think of Γc

r as being completely empty at
time σ2 as well.

But note that all sinks in the subgraph Γc
r must have been pebbled in the time interval [σ1, σ2], and since

we know that Γc
r is (almost) empty at times σ1 and σ2, this allows us to apply the induction hypothesis.

Since P has to pebble through a lot of sections in different spines, we will be able to repeat the above
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argument many times and apply the induction hypothesis on Γc
r in each round. Adding up all the lower

bounds obtained in this way, we see that the induction step goes through.
This is essentially the proof in [CS80, CS82] for black pebbling, modulo a number of technical details

that we glossed over. For black-white pebbling, these technical complications grow more serious. The
main problem is that in contrast to a black pebbling, that has to proceed through the DAG in some kind of
bottom-up fashion, a black-white pebbling can place and remove pebbles anywhere in the DAG at any time.
Therefore, it is more difficult to control the progress of a black-white pebbling, and we have to work harder
in the proof of our theorem.

Also, it should be noted that the added complications when going from black to black-white pebbling
result in our bounds for black-white pebbling being slightly worse than the ones in [CS80, CS82] for black
pebbling only. More specifically, Carlson and Savage are able to prove their results for DAGs having only
Θ(r) sections per spine, whereas we need Θ(cr) sections. This blows up the number of vertices, which in
turn weakens the trade-offs measured in terms of graph size.

It would be interesting to find out whether our proof, presented below, could in fact be made to work for
graphs with only O(r) sections per spine. If so, this would immediately improve all the trade-off results for
resolution in Appendix E that we obtain based on the graphs in Definition D.16.

D.2.2 Proofs of Lemma D.17, Lemma D.18, and Theorem D.19

Before proving the results claimed in Section D.2.1, we establish a couple of useful auxiliary lemmas. The
first lemma below gives us information about how the spines in Γc

r are pebbled. We will use this information
repeatedly in what follows.

Lemma D.20. Suppose that G is a DAG and that v is a vertex in G with a path Q to some sink zi ∈ Z(G)
such that all vertices in Q \ {zi} have outdegree 1. Then any frugal black-white pebbling strategy pebbles
v exactly once, and the path Q contains pebbles during one contiguous time interval.

Proof. By induction from the sink backwards. The induction base is immediate. For the inductive step,
suppose v has immediate successor w and that w is pebbled exactly once.

If w is black-pebbled at time σ, then v has been pebbled before this and the first pebble placed on v
stays until time σ. No second placement of a pebble on v after time σ can be essential since v has no other
immediate successor than w. If w is white-pebbled and the pebble is removed at time σ, then the first pebble
placed on v stays until time σ and no second placement of a pebble on v after time σ can be essential.

Thus each vertex on the path is pebbled exactly once, and the time intervals when a vertex v and its
successor w have pebbles on them overlap. The lemma follows.

The second lemma speaks about subgraphs H of a DAG G whose only connection to the rest of the
DAG G \H are via the sink of H . Note that the pyramids in Γc

r satisfy this condition.

Lemma D.21. Let G be a DAG and H a subgraph in G such that H has a unique sink zh and the only edges
between V (H) and V (G) \ V (H) emanate from zh. Suppose that P is any frugal complete pebbling of G
having the property that H is completely empty of pebbles at some given time τ ′ but at least one vertex of H
has been pebbled during the time interval [0, τ ′]. Then P pebbles H completely during the interval [0, τ ′].

Proof. Suppose that v ∈ V (H) is pebbled at time σ′ < τ ′. As in the proof of Lemma D.10, we can argue
by induction over the length of the longest path from v to the sink zh of H that zh must also be pebbled
before time τ ′. Note that such a path exists since the sink zh is unique, and that any path starting in v must
hit zh sooner or later, since this vertex is the only way out of H into the rest of G. Since H is empty at times
0 and τ ′, we conclude that P makes a complete visiting pebbling of H during [0, τ ′].
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Let us now establish that the size and pebbling price of Γc
r are as claimed.

Proof of Lemma D.17. The base case Γc
1 for the Carlson-Savage graph in Definition D.16 has size c + 2. A

pyramid of height h has (h + 1)(h + 2)/2 vertices, so the c pyramids of height 2(r − 1) in Γc
r contribute

cr(2r−1) vertices. The c spines with cr sections of 2c vertices each contribute a total of 2c3r vertices. And
then there are the vertices in Γc

r−1. Summing up, the total number of vertices in Γc
r is

(c + 2) +
r∑

i=2

(
ci(2i− 1) + 2c3i

)
= Θ

(
cr3 + c3r2

)
(21)

as is stated in the lemma.
Clearly, BW-Peb∅(Γc

1) = Peb∅(Γc
1) = 3, since pebbling a vertex with fan-in 2 requires 3 pebbles

and Γc
1 can be completely pebbled in this way by placing pebbles on the two sources and then pebble and

unpebble the sinks one by one.
Suppose inductively that BW-Peb∅(Γc

r) = r + 2 and consider Γc
r+1. It is straightforward to see that

BW-Peb∅(Γc
r+1) ≤ r + 3. Every pyramid Πj

2r can be completely pebbled with r + 2 pebbles (Theo-
rem D.12). We can pebble each spine bottom-up in the following way, section by section. Suppose by
induction that we have a black pebble on the last vertex v[i− 1]2c in the (i − 1)st section. Keeping the
pebble on v[i− 1]2c, perform a complete visiting pebbling of Π1

2r. At some point during this pebbling we
must have a pebble on the pyramid sink z1 and at most r other pebbles on the pyramid (simply because
without loss of generality some pebble placement on z1 must be followed by a removal or placement of
a pebble on some other vertex). At this time, place a black pebble on v[i]1 and remove the pebble from
v[i− 1]2c. Complete the pebbling of Π1

2r, leaving the pyramid empty. Performing complete visiting peb-
blings of Π2

2r, . . . ,Π
c
2r in the same way allows us to move the black pebble along v[i]2, . . . , v[i]c, never

exceeding total pebbling space r + 3. It is easy to see that in the same way, for every visiting pebbling
P of Γc

r there must exist times σi for all i = 1, . . . , c, when space(Pσi) < space(P) and the sink γi

contains a pebble. Performing a minimum-space pebbling of Γc
r, possibly c times if necessary, this allows

us to advance the black pebble along v[i]c+1, . . . , v[i]2c, never exceeding total pebbling space r + 3. This
show that Γc

r+1 can be completely pebbled with r + 3 pebbles. A simple pattern-matching of this argu-
ments for black pebbling (appealing to Theorem D.12 for the black pebbling price of pyramids) also yields
Peb∅(Γc

r) ≤ 2r + 3.
To prove that there are matching lower bounds for the pebbling constructed above, it is sufficient to show

that some pyramid Πj
2r must be completely pebbled while there is at least one pebble on Γc

r+1 outside of Πj
2r.

To see why, note that if we can prove this, then simply by using the the fact that BW-Peb∅(Π2r) = r + 2
and BW-Peb∅(Π2r) = 2r + 2 and adding an additive constant 1 for the pebble outside of Πj

2r we have the
matching lower bounds that we need. We present the argument for black-white pebbling, which is the harder
case. The black-only pebbling case is handled completely analogously.

Suppose in order to get a contradiction that there is a complete visiting pebbling strategy P for Γc
r+1 in

space r + 2. By Observation D.2, P performs a complete visiting pebbling of every pyramid Πj
2r. Consider

the first time τ1 when some pyramid has been completely pebbled and let this pyramid be Πj1
2r. Then at some

time σ1 < τ1 there are r + 2 pebbles on Πj1
2r and the rest of the graph Γc

r+1 must be empty of pebbles at this
point.

We claim that this implies that no vertex in Γc
r+1 outside of the pyramid Πj1

2r has been pebbled before
time σ1. Let us prove this crucial fact by a case analysis.

1. No vertex v in any other pyramid Πj′

2r can have been pebbled before time σ1. For if so, Lemma D.21
says that Πj′

2r has been completely pebbled before time σ1, contradicting that Πj1
2r is the first pyramid

completely pebbled by P .
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2. No vertex on a spine has been pebbled before time σ1. This is so since Lemma D.20 tells us that if
some vertex on a spine has been pebbled, then the whole spine must have been pebbled in view of the
fact that it is empty at time σ1. But then Lemma D.10 implies that all pyramid sinks must have been
pebbled. This case has already been excluded.

3. Finally, no vertex v in Γc
r can have been pebbled before time σ1. Otherwise the frugality of P implies

(by pattern matching on the arguments in the proofs of Lemmas D.10 and D.20) that some successor
of v must have been pebbled as well, and some successor of that successor et cetera, all the way up to
where Γc

r connects with the spines. But we have ruled out the possibility that a spine vertex has been
pebbled.

This establishes the claim, and we are now almost done. Before clinching the argument, we need to
make a couple of observations. Note first that by frugality, we can conclude that at some time in the interval
(σ1, τ1) some vertex in some spine must be pebbled. This is so since the pyramid sink zj1 has been pebbled
before time τ1 and all of Πj1

2r is empty at time τ1 but all spines are empty at time σ1 < τ1. But then
Lemma D.20 tells us that there will remain a pebble on this spine until all of the spine has been completely
pebbled.

Consider now the second pyramid Πj2
2r completely pebbled by P , say, at time τ2. At some point in time

σ2 < τ2 we have r + 2 pebbles on Πj2
2r, and moreover σ2 > τ1 since Πj2

2r is empty at time τ1. But now it
must hold that either there is a pebble on a spine at this point, or, if all spines are completely empty, that
some spine has been completely pebbled. If some spine has been completely pebbled, however, this in turn
implies (appealing to Lemma D.10 again) that there must be some pebble somewhere in some other pyramid
Πj′

2r at time σ2. Thus the pebbling space exceeds r + 2 and we have obtained our contradiction. The lemma
follows.

Studying the pebbling strategies in the proof of Lemma D.17, it is not hard to see that they are terribly
inefficient. The subgraphs in Γc

r will be pebbled over and over again, and for every step in the recursion the
time required multiples. We next show that if we are just a bit more generous with the pebbling space, then
we can get down to linear time.

Proof of Lemma D.18. We want to prove that Γc
r has a persistent black pebbling strategy P in linear time

and in space O(c + r). Suppose that there is such a pebbling strategy Pr for Γc
r. We show how to construct

a pebbling Pr+1 for Γc
r+1 inductively. Note that the base case for Γc

1 is trivial.
The construction of Pr+1 is very straightforward. First use Pr to make a persistent pebbling of Γc

r in
space O(c + r). At the end of Pr, we have c pebbles on the sinks γ1, . . . , γc. Keeping these pebbles in
place, pebble the pyramids Π1

2r, . . . ,Π
c
2r persistently one by one in linear time and space O(r). We leave

pebbles on all pyramid sinks z1, . . . , zc. This stage of the pebbling only requires space O(c + r) and at the
end we have 2c black pebbles on all pyramid sinks z1, . . . , zc and all sinks γ1, . . . , γc of Γc

r. Keeping all
these pebbles in place, we can pebble all c spines in parallel in linear time with c + 1 extra pebbles.

It remains to prove the trade-off result in Theorem D.19. It is clear that this theorem follows if we can
prove the next, slightly stronger, statement.

Lemma D.22. Suppose that P = {Pσ, . . . , Pτ} is a conditional black-white pebbling on Γc
r and that s is a

constant satisfying the following properties:

1. 0 < s ≤ c/8− 1.

2. P pebbles all sinks in Γc
r during the time interval [σ, τ ].

3. max
{

space(Pσ), space(Pτ )
}

< s.
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4. space(P) < BW-Peb∅
(
Γc

r

)
+ s = (r + 2) + s.

Then it holds that time(P) = τ − σ ≥
(

c−2s
4s+4

)r · r! .

We will have to spend some time working on this lemma before the proof is complete, though. We start
by establishing two additional auxiliary lemmas that upper-bound how many pyramids and spine sections
can contain pebbles simultaneously at any one given time in a pebbling subjected to space constraints as in
Lemma D.22. The claims in the two lemmas are very similar in spirit, as are the proofs, so we state the
lemmas together and then present the proofs together.

Lemma D.23. Suppose that P = {Pσ, . . . , Pτ} is a conditional black-white pebbling on Γc
r and that s is a

constant satisfying the conditions in Lemma D.22. Then at all times during the pebbling P strictly less than
4(s + 1) pyramids Πj

2r contain pebbles simultaneously.

Lemma D.24. Suppose that P = {Pσ, . . . , Pτ} is a conditional black-white pebbling on Γc
r and that s is a

constant satisfying the conditions in Lemma D.22. Then at all times during the pebbling P strictly less than
4(s + 1) spine sections contain pebbles simultaneously.

Note that Lemma D.24 provides a total bound on the number of pebbled sections in all c spines. There
might be spines containing several sections being pebbled simultaneously (in fact, this is exactly what one
would expect a black-white pebbling to do to optimize the time given the space constraints), but what
Lemma D.24 says that if we fix an arbitrary time t ∈ [σ, τ ], add up the number of sections containing
pebbles at time t in each spine, and sum over all spines, we never exceed 4(s + 1) sections in total at any
point in time t ∈ [σ, τ ].

Proof of Lemma D.23. Suppose that on the contrary, there is some time t∗ ∈ (σ, τ) when at least 4s + 4
pyramids Πj in Γc

r contain pebbles. Of these pyramids, at least 2s + 4 are empty both at time σ and at
time τ since space(Pσ) < s and space(Pτ ) < s. By Lemma D.21, these pyramids, which we denote
Π1, . . . ,Π2s+4, are completely pebbled. We conclude that for every Πj , j = 1, . . . , 2s + 4, there is an
interval [σj , τj ] such that t∗ ∈ (σj , τj) and Πj is empty at times σj and τj but contains pebbles throughout
the interval (σj , τj) during which it is completely pebbled.

For each Πj there must exist some time t∗j ∈ (σi, τi) when there are at least r + 1 = BW-Peb∅
(
Πj

)
pebbles. Fix such a time t∗j for every pyramid Πj and assume that all t∗j , j = 1, . . . , 2s + 4, are sorted in
increasing order. We have two possible cases:

1. At least half of all t∗j occur before (or at) time t∗, i.e., they satisfy t∗j ≤ t∗. If so, look at the largest
t∗j ≤ t∗. At this time there are at least r + 1 pebbles on Πj and at least 2s+4

2 − 1 = s + 1 pebbles on
other pyramids, which means that space

(
Pt∗j

)
≥ (r + 2) + s. In other words, P exceeds the space

restrictions contradicting our assumptions.

2. At least half of all t∗j occur after time t∗, i.e., they satisfy t∗j > t∗. If we consider the smallest t∗j larger
than t∗ we can again conclude that space

(
Pt∗j

)
≥ (r + 1) + (s + 1), which is a contradiction.

Hence, if P is a pebbling that complies with the restrictions in Lemma D.22, it can never be the case that
4s + 4 pyramids Πj in Γc

r contain pebbles simultaneously during P .

Proof of Lemma D.24. Suppose in order to get a contradiction that at some time t∗ ∈ (σ, τ) at least 4s + 4
sections contain pebbles. At least 2s + 4 of these sections are empty at times σ and τ . Let us denote
these sections R1, . . . , R2s+4. Appealing to Lemma D.20, we conclude that there are intervals [σj , τj ] for
j = 1, . . . , 2s+4, such that t∗ ∈ (σj , τj) and Rj is empty at times σj and τj but contains pebbles throughout
the interval (σj , τj) during which it is completely pebbled.
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By Lemma D.23 we know that less than 4s + 4 pyramids contain pebbles at time σj and similarly
at time τj . Since all c pyramids in Γc

r must have their sinks pebbled during (σj , τj) by y but we have
2 · (4s + 4) < c by the assumptions in Lemma D.22, we conclude from Lemma D.21 that for every interval
(σj , τj) we can find some pyramid Πj that is completely pebbled during this interval. This, in turn, implies
that there is some time t∗j ∈ (σj , τj) when the pyramid Πj contains at least BW-Peb∅

(
Πj

)
= r +1 pebbles.

(We note that many t∗j can be equal and even refer to the same pyramid which has just happened to receive
a lot of different labels, but this is not a problem as we shall see.)

As in the proof of Lemma D.23, we now sort the t∗j , j = 1, . . . , 2s + 4, in increasing order and consider
the two possible cases. If at least half of all t∗j satisfy t∗j ≤ t∗, we look at the largest t∗j ≤ t∗. At this time
there are at least r + 1 pebbles on Πj and at least 2s+4

2 = s + 2 pebbles on different sections, which means
that space

(
Pt∗j

)
≥ rs + 3 exceeds the space restrictions. If, on the other hand, at least half of all t∗j satisfy

t∗j > t∗, then for the smallest t∗j larger than t∗ we can again conclude that space
(
Pt∗j

)
≥ r + s + 3, which

is a contradiction. The lemma follows.

Putting together everything that has been proven so far in this section, we are able to establish the
pebbling trade-off result.

Proof of Lemma D.22. Suppose that P = {Pσ, . . . , Pτ} is a conditional black-white pebbling on Γc
r peb-

bling all sinks and that max
{

space(Pσ), space(Pτ )
}

< s and space(P) < (r+2)+s for 0 < s ≤ c/8−1.
Let us define

T (c, r, s) =
(

c− 2s

4s + 4

)r

· r! . (22)

We show that time(P) ≥ T (c, r, s) by induction over r.
For r = 1, the assumptions in the lemma imply that more than c− 2s sinks are empty at times σ and τ .

These sinks must be pebbled, which trivially requires strictly more than c− 2s >
(

c−2s
4s+4

)
= T (c, 1, s) time

steps.
Assume that the lemma holds for Γc

r−1 and consider any pebbling of Γc
r. Less than 2s spines contain

pebbles at time σ or time τ . All the other strictly more than c − 2s spines are empty at times σ and τ but
must be completely pebbled during [σ, τ ] by Lemma D.10.

Consider the first time σ′ when any spine gets a pebble for the first time. Let us denote this spine
by Q′. By Lemma D.20 we know that Q′ contains pebbles during a contiguous time interval until it is
completely pebbled and emptied at, say, time τ ′. During this whole interval [σ′, τ ′] less than 4s + 4 sections
contain pebbles at any one given time, so in particular less then 4s + 4 spines contain pebbles. Moreover,
Lemma D.20 says that every spine containing pebbles will remain pebbled until completed. What this means
is that if we order the spines with respect to the time when they first receive a pebble in groups of size 4s+4,
no spine in the second group can be pebbled until the at least one spine in the first group has been completed.

We remark that this divides the spines that are empty at the beginning and end of P into strictly more
than

c− 2s

4s + 4
(23)

groups. Furthermore, we claim that completely pebbling just one empty spine requires at least

r · T (c, r − 1, s) (24)

time steps. Given this claim we are done, since combining (23) and (24) we can deduce that the total
pebbling time is lower-bounded by

c− 2s

4s + 4
r · T (c, r − 1, s) = T (c, r, s) (25)
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since at least one spine from each group is pebbled in a time interval totally disjoint from the time intervals
for all spines in the next group.

It remains to establish the claim. To this end, fix any spine Q∗ empty at times σ∗ and τ∗ but completely
pebbled in [σ∗, τ∗]. Consider the first time τ1 ∈ [σ∗, τ∗] when any section in Q∗, let us denote it by R1, has
been completely pebbled (i.e., , all vertices has been touched by pebbles but are now empty again). During
[σ∗, τ1] all pyramid sinks z1, . . . , zc are pebbled (Lemma D.10), and since less than 2·(4s+4) < c pyramids
contain pebbles at times σ∗ or τ1 (Lemma D.23), at least one pyramid is pebbled completely (Lemma D.21),
which requires r + 1 pebbles. Moreover, there is at least one pebble on R1 during this whole interval.
Hence, there is a time σ1 ∈ [σ∗, τ1] when there are strictly less than (r + 2) + s− (r + 1)− 1 = s pebbles
on Γc

r−1. Also, at this time σ1 less than 4s + 4 sections contain pebbles (Lemma D.24), and in particular
this means that there are pebbles on less than 4s + 3 other section of our spine Q∗. This puts an upper
bound on the number of sections of Q∗ pebbled this far, since every section is completely pebbled during
a contiguous time interval before being emptied again, and we chose to focus on the first section R1 in Q∗

that was finished.
Look now at the first section R2 in Q∗ other than the less than 4s + 4 sections containing pebbles at

time σ1 that is completely pebbled, and let the time when R2 is finished be denoted τ2 (clearly, τ2 > τ1).
During [σ1, τ2] all sinks of Γc

r−1 must have been pebbled, and at time τ2 − 1 less than 4s + 3 other section
in Q∗ contain pebbles.

Wrapping up, consider the first new section R3 in our spine Q∗ to be completely pebbled among those
that has not yet been touched at time τ2 − 1. Suppose that R3 is finished at time τ3. Then during [τ2, τ3]
some pyramid is completely pebbled, and thus there must exist a time σ3 ∈ (τ2, τ3) when there are at least
r + 1 pebbles on this pyramid and at least one pebble on the spine Q∗, leaving less than s pebbles for
Γc

r−1. But this means that we can apply the induction hypothesis on the interval [σ1, σ3] and deduce that
σ3 − σ1 ≥ T (c, r − 1, s). Note also that at time σ3 less than 8s + 8 < c sections in Q∗ have been finished.

Continuing in this way, for every group of 8s + 8 < c finished sections in Q∗ we get one pebbling of
Γc

r−1 in space less than BW-Peb∅
(
Γc

r−1

)
+s and with less than s pebbles in the start and end configurations,

which allows us to apply the induction hypothesis a total number of at least cr
8s+8 > r times. (Just to argue

that we get the constants right, note that 8s + 8 < c implies that after the final pebbling of the sinks of Γc
r−1

has been done, there is still some empty section left in Q∗. When this final section is taken care of, we will
again get at least r+1 pebbles on some pyramid while at least one pebble resides on Q∗, so we get the space
on Γc

r−1 down below s as is needed for the induction hypothesis.)
This proves our claim that pebbling one spine takes time at least r·T (c, r−1, s). The lemma follows.

As we already noted, this completes the proof of Theorem D.19, since this theorem follows immediately
from Lemma D.22 for the special case when Pσ = Pτ = (∅, ∅).

D.3 Recapitulation of Some Known Pebbling Trade-off Results

All the material in Section D.3 is from [LT82]. The statements of the results below differ slightly in the
constants in that paper, though, since there are some (minor) technical differences in the definitions as
compared to the present paper.

D.3.1 Pebbling Trade-offs for Constant Space

This material is from [LT82, Section 2].

Definition D.25 (Permutation graph ([LT82])). Let π denote some permutation of {0, 1, . . . , n− 1}. Then
the permutation graph ∆n

π over n elements with respect to the permutation π is defined as follows. ∆n
π

has 2n vertices divided into a lower row u0, u1, . . . , un−1 and an upper row w0, w1, . . . , wn−1. For all
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Figure 5: Bit reversal graph ∆8
rev on 8 elements.
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Figure 6: Bit reversal graph ∆16
rev on 16 elements.

i = 0, 1, . . . , n− 2, there are directed edges (ui, ui+1) and (wi, wi+1), and for all i = 0, 1, . . . , n− 1, there
are edges

(
ui, wπ(i)

)
from the lower row to the upper row.

The only source vertex in ∆n
π is u0 and wn−1 is the unique sink. The maximal indegree is 2.

Any DAG of fan-in 2 must have pebbling price at least 3. It is not too hard to see that permutation graphs
∆n

π have pebbling strategies in this minimal space: keeping one pebble on vertex wi of the upper row, move
two pebbles consecutively on the lower row until uπ−1(i+1) is reached, and then pebble wi+1. This pebbling
requires quadratic time, however. The pebbling sketched above can be generalized to yield the following
result.

Lemma D.26 ([LT82]). Let ∆n
π be the permutation graph over n elements for any permutation π. Then the

black pebbling price of π is Peb(∆n
π) = 3, and for any space s ≥ 3 there is a black pebbling strategy P for

∆n
π with space(P) ≤ s and time(P) ≤ 2n2

s−2 + 2n.

We will be particularly interested in permutations defined in terms of reversing the binary representation
of the integers {0, 1, . . . , n− 1}.

Definition D.27 (Bit reversal graph ([LT82])). The m-bit reversal of the non-negative integer i, i < 2m−1,
is the non-negative integer revm(i) obtained by writing the m-bit binary representation of i in reverse order.
The bit reversal graph ∆2m

revm
is the permutation graph over n = 2m with respect to the permutation revm.

For instance, we have rev3(1) = 4, rev3(2) = 2, and rev3(3) = 6. We will denote the bit reversal graph
by ∆n

rev for simplicity, implicitly assuming that n = 2m. Two examples of bit reversal graphs can be found
in Figures 5 and 6.

For bit reversal graphs, the trade-off in Lemma D.26 for black pebbling is asymptotically tight.
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Theorem D.28 ([LT82]). Suppose that P is any complete black pebbling of ∆n
rev with space(P) = s for

s ≥ 3. Then time(P) ≥ n2

8s .

Note, in particular, that if we want to black-pebble ∆n
rev in linear time, then linear space is needed. If

we are also alowed to use white pebbles, however, the argument in the proof of Theorem D.28 breaks down,
and the best lower bound we can get is as follows.

Theorem D.29 ([LT82]). Suppose that P is any complete black-white pebbling of ∆n
rev with space(P) = s

for s ≥ 3. Then time(P) ≥ n2

18s2 + 2n.

The reason for the discrepancy between Theorem D.28 and Theorem D.29 turns out to be that in fact,
it is possible to do better using white pebbles in addition to the black ones (essentially mimicking the proof
of the lower bound in Theorem D.29). In particular, there is a linear-time black-white pebbling strategy for
∆n

rev using only order of
√

n pebbles.

Theorem D.30 ([LT82]). Let ∆n
rev be the bit reversal graph over n = 2m elements. Then for all s ≥ 3,

there is a complete black-white pebbling P of ∆n
rev with space(P) ≤ s and time(P) ≤ 144n2

s2 + 18n.

On a high level, the reason that black-white pebblings can do much better than black-only pebblings on
bit reversal graphs is that these graphs have such a regular structure. Lengauer and Tarjan raise the question
whether there are other permutations for which the lower bound in Theorem D.28 holds also for black-white
pebbling, and conjecture that the answer is yes. To the best of our knowledge, this problem is still open. One
obvious question is whether anything interesting can be said about what holds for a random permutation in
this respect. If the conjecture turns out to be true for a random permutation (with high probability, say), then
such a result, although non-constructive, would be interesting.

D.3.2 DAGs Yielding Robust Pebbling Trade-offs

To get robust pebbling trade-offs, i.e., trade-offs that hold over a large space interval, we use a DAG family
studied in [LT82, Section 4].

Definition D.31 (Stack of superconcentrators ([LT82])). Let SCm denote any (explicitly constructible)
linear-size m-superconcentrator with bounded indegree and depth log m. We let Φm

r denote the graph con-
structed by stacking r copies SC 1

m, . . . ,SC r
m of SCm on top of one another, with the sinks zj

1, z
j
2, . . . , z

j
m

of SC j
m connected to the sources sj+1

1 , sj+1
2 , . . . , sj+1

m of SC j+1
m by edges

(
zj
i , s

j+1
i

)
for all i = 1, . . . ,m

and all j = 1, . . . , r − 1.

Clearly, Φm
r has size Θ(rm). Figure 7 gives a schematic illustration of the construction.

Lengauer and Tarjan establish fairly detailed trade-off results for stacks of superconcentrators using
different explicit and non-explicit constructions for the superconcentrator building blocks. All of these
results can be translated into corresponding trade-off results in resolution. For simplicity and conciseness,
however, we only state a special case of their results in this conference version, deferring a more detailed
treatment to the coming full-length version of the paper.

Theorem D.32 ([LT82]). Let Φm
r denote a stack of (explicitly constructible) linear-size m-superconcentrator

with bounded indegree and depth log m. Then the following holds:

1. Peb
(
Φm

r

)
= O(r log m).

2. There is a linear-time black pebbling strategy P for Φm
r with space(P) = O(m).

3. If P is a black-white pebbling strategy for Φm
r in space s ≤ m/20, then time(P) ≥ m ·

(
rm
64s

)r.
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r.

43



UNDERSTANDING SPACE IN RESOLUTION

Proof sketch. The upper bound on black pebbling price follows from Observation D.9, since the depth of
Φm

r is O(r log m).
The linear-time black pebbling strategy is obtained by applying the trivial pebbling strategy in Obser-

vation D.7 consecutively to each superconcentrator, keeping pebbles on the sinks of SC j
m while pebbling

SC j+1
m .
The reason that the final trade-off result holds is, very loosely put, that the lower bounds in Lemma D.14

and Corollary D.15 propagate through the stack of superconcentrators and get multiplied at each level. If
the pebbling strategy is restricted to keeping s/r pebbles on each copy SC j

m of the superconcentrator, this is
not hard to prove directly from Lemma D.14. Establishing that this intuition holds also in the general case,
when pebbles may be unevenly distributed over the superconcentrator copies, is much more technically
challenging, however.

D.3.3 Exponential Pebbling Trade-offs

To get exponential trade-offs, i.e., trade-offs with lower bounds on the length on the form 2nε
for some

constant ε > 0, the graphs in Section D.3.2 are not sufficient. Instead, we need to appeal to stronger results
from [LT82, Section 5].

Theorem D.33 ([LT82]). For every ` ∈ N+ there exist constants c, c′ > 1 such that the following holds
for all sufficiently large n. Let G be a DAG with n vertices and maximal indegree `. Then for any space
constraint s satisfying cn/ log n ≤ s ≤ n, there is a black pebbling strategy P for G with space(P) ≤ s

and time(P) ≤ s · 22c′n/s
.

By stacking superconcentrators of defferent sizes on top of one another, Lengauer and Tarjan are able to
prove a matching lower bound. We refer to [LT82, Section 5] for the details of the construction.

Theorem D.34 ([LT82]). There exists a constant ε > 0 such that the following holds for all sufficiently large
integers n, s satisfying cn/ log n ≤ s ≤ n: There exists a DAG G with maximal indegree 2 and number
of vertices at most n such that any black-white pebbling strategy P for G with space(P) ≤ s must have
time(P) ≥ s · 22εn/s

.

Note that the graph G in Theorem D.34 depends on the pebbling space parameter s. Lengauer and
Tarjan conjecture that no single graph gives an exponential time-space tradeoff for the whole range of s ∈
[n/ log n, n], but to the best of our knowledge this problem is still open.

E Time-Space Trade-offs for Resolution

We have finally reached the point where we can state and prove our results for resolution. Given all the
work done so far, the proofs are mostly simple variations of the following pattern: pick some graph family in
Appendix D, make the appropriate choices of parameters, consider the corresponding pebbling contradiction
CNF formulas, do f-substitution for some non-authoritarian function f, and apply Theorem C.4 (which we
obtained with the help of Theorem 3.2).

Note that all the pebbling trade-off results are for explicit formulas (since they are pebbling formulas
over explicitly constructible graphs). Note also that all trade-offs hold for variable space and clause space
simultaneously, since the upper bounds are for variable space and the lower bounds for clause space.

E.1 Trade-offs for Constant Space

Time-space trade-offs in resolution occur even for formulas refuted in (very small) constant space. What is
more, here we can specify the whole trade-off curve. (The rest of the results are more of a threshold type.)
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Theorem E.1. There are explicitly constructible families of minimally unsatisfiable k-CNF formulas {Fn}∞n=1

of size Θ(n) such that:

1. Every formula Fn is refutable in resolution in length L(Fn ` 0) = O(n) and also in variable space
VarSp(Fn ` 0) = O(1) (but not simultaneously).

2. For any s > 0 there is a resolution refutation πn : Fn ` 0 in simultaneous variable space VarSp(πn) =
O(s) and length L(π) = O

(
(n/s)2 + n

)
.

3. Any resolution refutation πn : Fn ` 0 in clause space Sp(πn) = s for s ≥ Sp(Fn ` 0) must have
length L(π)Ω

(
(n/s)2 + n

)
.

The constants hidden in the asymptotic notation are independent of n and s.

Proof. Fix any non-authoritarian function f and consider the pebbling formulas Peb∆m
rev

[f] defined over bit
reversal DAGs (Definition D.27) for m = log n.

Appealing to Theorem C.4 will get us a long way but not quite to our final destination. More precisely,
the upper bounds on length and space follow from Lemma D.26 in this way, and the lower bound in the
trade-off follows from Theorem D.29.

However, we cannot get the upper bound in the same manner, since Theorem D.28 tells us that there
cannot exist black pebblings with parameters matching the lower bounds for black-white pebblings. How-
ever, in this particular case it turns out that we can mimic the asymptotically optimal black-white pebbling
in Theorem D.30 in resolution in a space-preserving way. The details are not hard and will appear in the
full-length version of this paper.

E.2 Superpolynomial Trade-offs for any Non-constant Space

It is clear that we can never get superpolynomial trade-offs from DAGs pebblable in constant space, since
such graphs must have constant-space pebbling strategies in polynomial time by a simple counting argu-
ment. However, perhaps somewhat surprisingly, as soon as we study arbitrarily slowly growing space, we
can obtain superpolynomial trade-offs for formulas whose refutation space grows this slowly. This is a
consequence of our new pebbling trade-off result in Section D.2.

Theorem E.2. Let g(n) be any arbitrarily slowly growing monotone function ω(1) = g(n) = O
(
n1/7

)
,

and let ε > 0 be an arbitrarily small positive constant. Then there are explicitly constructible families of
minimally unsatisfiable k-CNF formulas {Fn}∞n=1 of size Θ(n) such that:

1. Every formula Fn is refutable in resolution in length L(Fn ` 0) = O(n) and also in variable space
VarSp(Fn ` 0) = O(g(n)) (but not simultaneously).

2. There are refutations πn : Fn ` 0 in simultaneous variable space VarSp(πn) = O
(

3
√

n/g2(n)
)

and
length L(πn) = O(n).

3. There is a constant K > 0 such that any resolution refutation πn : Fn ` 0 in clause space Sp(πn) ≤
K

(
n/g2(n)

)1/3−ε must have length L(πn) superpolynomial in n.

The constant K as well as the constants hidden in the asymptotic notation are independent of n (but depend
on g and ε).

We remark that the upper-bound condition g(n) = O
(
n1/7

)
is very mild and is there only for technical

reasons in this theorem. If we allow the minimal space to grow as fast as nε for some ε > 0, then there are
other pebbling trade-off results that can give even stronger results for resolution than the one stated above
(see, for instance, Section E.4). Thus the interesting part is that g(n) is allowed to grow arbitrarily slowly.
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Proof of Theorem E.2. Consider the graphs Γc
r in Definition D.16. We want to choose the parameters c and

r in a suitable way so that get a family of graphs in size n = Θ
(
cr3 + c3r2

)
(using the bound on the size of

Γc
r from Lemma D.17). If we choose

r = r(n) = g(n) (26)

for g(n) = O
(
n1/7

)
, this forces

c = c(n) = Θ
(

3
√

n/g2(n)
)

. (27)

Consider the graph family {Gn}∞n=1 defined by Gn = Γc(n)
r(n) as in (26) and (27), which is a family of

size Θ(n). Construct the single-sink version Ĝn of Gn, fix any any non-authoritarian function f, consider
the pebbling formulas Fn = Peb cGn

[f], and appeal to the translation between pebbling and resolution in
Theorem C.4.

Lemma D.17 yields that VarSp(Fn ` 0) = O(g(n)). Also, the persistent black pebbling of Gn in
Lemma D.18 yields a linear-time refutation πn : Fn ` 0 with VarSp(πn) = O

(
3
√

n/g2(n)
)
.

Now set the parameter s in Theorem D.19 to s = c1−ε′ for ε′ = 3ε. Then for large enough n we have
s ≤ c/8− 1 and Theorem D.19 can be applied. Combining the pebbling trade-off there with Theorem C.4,
we get that if the clause space is less than

(
n/g2(n)

)1/3−ε, then the required length of the refutation grows

as
(
Ω

(
cε′

))r =
(
Ω

(
n/g2(n)

))εg(n) which is superpolynomial in n for any g(n) = ω(1). The theorem
follows.

E.3 Robust Superpolynomial Trade-offs

We now know that there are polynomial trade-offs in resolution for constant space, and that going ever so
slightly above constant space we can get superpolynomial trade-offs. The next question we want to focus on
is how robust trade-offs we can get. That is, over how large a range of space does the trade-off hold? Given
minimal refutation space s, how much larger space is needed in order to obtain the linear length refutation
that we know exists for any pebbling contradiction?

The answer is that we can get superpolynomial trade-offs that span almost the whole range between
constant and linear space. We present to different results

Theorem E.3. There are explicitly constructible families of minimally unsatisfiable k-CNF formulas {Fn}∞n=1

of size Θ(n) such that:

1. Every formula Fn is refutable in length L(Fn ` 0) = O(n) and also in variable space VarSp(Fn `
0) = O(log n).

2. There is a resolution refutation πn : Fn ` 0 in variable space VarSp(πn) = O
(

3

√
n/ log2 n

)
and

length L(πn) = O(n).

3. There is a constant K > 0 such that any resolution refutation πn : Fn ` 0 in clause space Sp(πn) ≤
K 3

√
n/ log2 n must have length L(πn) = nΩ(log log n).

The constant K as well as the constants hidden in the asymptotic notation are independent of n.

Proof. Consider the graphs Γc
r in Definition D.16 with parameters chosen so that c = 2r. Then the size of

Γc
r is Θ

(
r223r

)
by Lemma D.17. Let r(n) = max{r : r223r ≤ n} and define the graph family {Gn}∞n=1 by

Gn = Γ2r

r for r = r(n). Finally, construct the single-sink version Ĝn of Gn, fix any any non-authoritarian
function f and consider the pebbling formulas Fn = Peb cGn

[f] with the help of Theorem C.4.
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Translating from Gn back to Γc
r we have parameters r = Θ(log n) and c = Θ

(
(n/ log2 n)1/3

)
, so

Lemma D.17 yields that VarSp(Fn ` 0) = O(log n). Also, the persistent black pebbling of Gn in
Lemma D.18 yields a linear-time refutation πn : Fn ` 0 with VarSp(πn) = O

(
(n/ log2 n)1/3

)
.

Setting s = c/8− 1 in Theorem D.19 shows that there is a constant K such that if the clause space of a
refutation πn : Fn ` 0 drops below K · (n/ log2 n)1/3 ≤ (r + 2) + s, then we must have

L(πn) ≥ O(1)r · r! = nΩ(log log n) (28)

(where we used that r = Θ(log n) for the final equality). The theorem follows.

Sacrificing a square at the lower end of the interval, we can improve the upper end to n/ log n.

Theorem E.4. There are explicitly constructible families of minimally unsatisfiable k-CNF formulas {Fn}∞n=1

of size Θ(n) such that:

1. Every formula Fn is refutable in resolution in length L(Fn ` 0) = O(n) and also in variable space
VarSp(Fn ` 0) = O(log2 n).

2. There is a resolution refutation πn : Fn ` 0 in variable space VarSp(πn) = O(n/ log n) and length
L(πn) = O(n).

3. There is a constant K > 0 such that any resolution refutation πn : Fn ` 0 in clause space Sp(πn) ≤
Kn/ log n must have length L(πn) = nΩ(log log n).

The constant K and the constants hidden in the asymptotic notation are independent of n.

Proof. Pick any non-authoritarian function f and consider the pebbling formulas PebdΦm
r

[f] defined over

single-sink versions of stacks of superconcentrators Φm
r as in Definition D.31 with m = 20T and r = bn/T c

for T = Θ(n/ log n). The theorem now follows by combining Theorem D.32 with Theorem C.4.

We remark that the results in Theorem E.4 can perhaps be considered to be slightly stronger than those
in Theorem E.3, but they require a very much more involved graph construction with worse hidden constants
than the very simple and clean construction underlying Theorem E.3.

E.4 Exponential Trade-offs

Superpolynomial trade-offs are all fine and well, but can we get exponential trade-offs? In this final subsec-
tion we answer this question in the affirmative.

The same counting argument that was mentioned in the beginning of Section E.2 tells us that we can
never expect to get exponential trade-offs from DAGs with polylogarithmic pebbling price. However, if we
move to graphs with pebbling price Ω(nε) for some constant ε > 0, pebbling formulas over such graphs can
exhibit exponential trade-offs.

We obtain our first such exponential trade-off, which also exhibits a certain robustness, by again studying
the DAGs in Definition D.16.

Theorem E.5. There are explicitly constructible families of minimally unsatisfiable k-CNF formulas {Fn}∞n=1

of size Θ(n) such that:

1. Every formula Fn is refutable in resolution in length L(Fn ` 0) = O(n) and also in variable space
VarSp(Fn ` 0) = O

(
8
√

n
)
.

2. There is a resolution refutation πn : Fn ` 0 in variable space VarSp(πn) = O
(

4
√

n
)

and length
L(πn) = O(n).
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3. There is a constant K > 0 such that any resolution refutation πn : Fn ` 0 in clause space Sp(πn) ≤
K 4
√

n must have length L(πn) =
(

8
√

n
)
! .

The constant K as well as the constants hidden in the asymptotic notation are independent of n.

Proof. Combine Theorem C.4 and Theorem D.19 in the same way as in the other proofs above for Γc
r with

c = 4
√

n and r = 8
√

n.

We remark that there is nothing magic in our particular choice of parameters c and r in Theorem E.5.
Other parameters could be plugged in instead and yield slightly different results.

Now that we know that there are robust exponential trade-offs for resolution, we want to obtain expo-
nential trade-offs for formulas with their minimal refutation space being as large as possible.

The higher the lower bound on space is, the more interesting the trade-off gets. Remember that a SAT
solver refuting the formula will very likely use at least linear space to do so. It is unclear why the SAT
solver would work hard on optimizing lower order terms in the memory consumption and thus get stuck in
a trade-off for relatively small space. Ideally, therefore, we would like to obtain trade-offs for superlinear
space (if there are such trade-offs, that is). For such formulas, we would be more confident that the trade-off
phenomena should also show up in practise (although the case can certainly be made that even sublinear
space trade-offs could possibly be relevant for real life applications).

It is clear that pebbling contradictions can never yield any trade-off results in the superlinear regime,
since they are always refutable in linear length and linear space simultaneously. Also, all trade-offs obtain-
able from the graphs in Definition D.16 will be for space far below linear. However, using results from
Section D.3.3 we can get exponential trade-offs for space almost linear, or more precisely for space as large
as Θ(n/ log n).

Theorem E.6. There are explicitly constructible families of minimally unsatisfiable k-CNF formulas {Fn}∞n=1

of size Θ(n) such that:

1. Every formula Fn is refutable in length L(Fn ` 0) = O(n) and variable space VarSp(Fn ` 0) =
O(n/ log n).

2. There is a resolution refutation πn : Fn ` 0 in variable space VarSp(πn) = O(n) and length L(π) =
O(n).

3. There is a constant K > 0 such that any resolution refutation πn : Fn ` 0 in clause space Sp(πn) ≤
Kn/ log n, where Kn/ log n ≥ Sp(Fn ` 0), must have length L(π) = exp

(
nε

)
.

All constants, including those hidden in the asymptotic notation, are independent of n.

Proof. Use Theorem D.34 and Theorem C.4.

We remark that again, Theorem D.34 in combination with Theorem D.33 can be used to obtain DAGs
(and thus CNF formulas) with other trade-offs as well for different space parameters in the range between
n/ log n and n. For simplicity and conciseness, however, we only state the special case above in this
conference version, deferring a more detailed treatment to the coming full-length version of the paper.
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