6,518 research outputs found

    The Strucplot Framework: Visualizing Multi-way

    Get PDF
    This paper describes the “strucplot” framework for the visualization of multi-way contingency tables. Strucplot displays include hierarchical conditional plots such as mosaic, association, and sieve plots, and can be combined into more complex, specialized plots for visualizing conditional independence, GLMs, and the results of independence tests. The framework’s modular design allows flexible customization of the plots’ graphical appearance, including shading, labeling, spacing, and legend, by means of “graphical appearance control” functions. The framework is provided by the R package vcd

    Data Cube Approximation and Mining using Probabilistic Modeling

    Get PDF
    On-line Analytical Processing (OLAP) techniques commonly used in data warehouses allow the exploration of data cubes according to different analysis axes (dimensions) and under different abstraction levels in a dimension hierarchy. However, such techniques are not aimed at mining multidimensional data. Since data cubes are nothing but multi-way tables, we propose to analyze the potential of two probabilistic modeling techniques, namely non-negative multi-way array factorization and log-linear modeling, with the ultimate objective of compressing and mining aggregate and multidimensional values. With the first technique, we compute the set of components that best fit the initial data set and whose superposition coincides with the original data; with the second technique we identify a parsimonious model (i.e., one with a reduced set of parameters), highlight strong associations among dimensions and discover possible outliers in data cells. A real life example will be used to (i) discuss the potential benefits of the modeling output on cube exploration and mining, (ii) show how OLAP queries can be answered in an approximate way, and (iii) illustrate the strengths and limitations of these modeling approaches

    Multiple Correspondence Analysis & the Multilogit Bilinear Model

    Full text link
    Multiple Correspondence Analysis (MCA) is a dimension reduction method which plays a large role in the analysis of tables with categorical nominal variables such as survey data. Though it is usually motivated and derived using geometric considerations, in fact we prove that it amounts to a single proximal Newtown step of a natural bilinear exponential family model for categorical data the multinomial logit bilinear model. We compare and contrast the behavior of MCA with that of the model on simulations and discuss new insights on the properties of both exploratory multivariate methods and their cognate models. One main conclusion is that we could recommend to approximate the multilogit model parameters using MCA. Indeed, estimating the parameters of the model is not a trivial task whereas MCA has the great advantage of being easily solved by singular value decomposition and scalable to large data

    Contents

    Get PDF
    package

    Comparative genomics of Burkholderia multivorans, a ubiquitous pathogen with a highly conserved genomic structure

    Get PDF
    The natural environment serves as a reservoir of opportunistic pathogens. A well-established method for studying the epidemiology of such opportunists is multilocus sequence typing, which in many cases has defined strains predisposed to causing infection. Burkholderia multivorans is an important pathogen in people with cystic fibrosis (CF) and its epidemiology suggests that strains are acquired from non-human sources such as the natural environment. This raises the central question of whether the isolation source (CF or environment) or the multilocus sequence type (ST) of B. multivorans better predicts their genomic content and functionality. We identified four pairs of B. multivorans isolates, representing distinct STs and consisting of one CF and one environmental isolate each. All genomes were sequenced using the PacBio SMRT sequencing technology, which resulted in eight high-quality B. multivorans genome assemblies. The present study demonstrated that the genomic structure of the examined B. multivorans STs is highly conserved and that the B. multivorans genomic lineages are defined by their ST. Orthologous protein families were not uniformly distributed among chromosomes, with core orthologs being enriched on the primary chromosome and ST-specific orthologs being enriched on the second and third chromosome. The ST-specific orthologs were enriched in genes involved in defense mechanisms and secondary metabolism, corroborating the strain-specificity of these virulence characteristics. Finally, the same B. multivorans genomic lineages occur in both CF and environmental samples and on different continents, demonstrating their ubiquity and evolutionary persistence

    Sequential category aggregation and partitioning approaches for multi-way contingency tables based on survey and census data

    Full text link
    Large contingency tables arise in many contexts but especially in the collection of survey and census data by government statistical agencies. Because the vast majority of the variables in this context have a large number of categories, agencies and users need a systematic way of constructing tables which are summaries of such contingency tables. We propose such an approach in this paper by finding members of a class of restricted log-linear models which maximize the likelihood of the data and use this to find a parsimonious means of representing the table. In contrast with more standard approaches for model search in hierarchical log-linear models (HLLM), our procedure systematically reduces the number of categories of the variables. Through a series of examples, we illustrate the extent to which it can preserve the interaction structure found with HLLMs and be used as a data simplification procedure prior to HLL modeling. A feature of the procedure is that it can easily be applied to many tables with millions of cells, providing a new way of summarizing large data sets in many disciplines. The focus is on information and description rather than statistical testing. The procedure may treat each variable in the table in different ways, preserving full detail, treating it as fully nominal, or preserving ordinality.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS175 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Study of Components of Pearson's Chi-Square Based on Marginal Distributions of Cross-Classified Tables for Binary Variables

    Get PDF
    abstract: The Pearson and likelihood ratio statistics are well-known in goodness-of-fit testing and are commonly used for models applied to multinomial count data. When data are from a table formed by the cross-classification of a large number of variables, these goodness-of-fit statistics may have lower power and inaccurate Type I error rate due to sparseness. Pearson's statistic can be decomposed into orthogonal components associated with the marginal distributions of observed variables, and an omnibus fit statistic can be obtained as a sum of these components. When the statistic is a sum of components for lower-order marginals, it has good performance for Type I error rate and statistical power even when applied to a sparse table. In this dissertation, goodness-of-fit statistics using orthogonal components based on second- third- and fourth-order marginals were examined. If lack-of-fit is present in higher-order marginals, then a test that incorporates the higher-order marginals may have a higher power than a test that incorporates only first- and/or second-order marginals. To this end, two new statistics based on the orthogonal components of Pearson's chi-square that incorporate third- and fourth-order marginals were developed, and the Type I error, empirical power, and asymptotic power under different sparseness conditions were investigated. Individual orthogonal components as test statistics to identify lack-of-fit were also studied. The performance of individual orthogonal components to other popular lack-of-fit statistics were also compared. When the number of manifest variables becomes larger than 20, most of the statistics based on marginal distributions have limitations in terms of computer resources and CPU time. Under this problem, when the number manifest variables is larger than or equal to 20, the performance of a bootstrap based method to obtain p-values for Pearson-Fisher statistic, fit to confirmatory dichotomous variable factor analysis model, and the performance of Tollenaar and Mooijaart (2003) statistic were investigated.Dissertation/ThesisDoctoral Dissertation Statistics 201

    Family size and intergenerational social mobility during the fertility transition: evidence of resource dilution from the city of Antwerp in nineteenth century Belgium

    Get PDF
    It has been argued in sociology, economics, and evolutionary anthropology that family size limitation enhances the intergenerational upward mobility chances in modernized societies. If parents have a large flock, family resources get diluted and intergenerational mobility is bound to head downwards. Yet, the empirical record supporting this resource dilution hypothesis is limited. This article investigates the empirical association between family size limitation and intergenerational mobility in an urban, late nineteenth century population in Western Europe. It uses life course data from the Belgian city of Antwerp between 1846 and 1920. Findings are consistent with the resource dilution hypothesis: after controlling for confounding factors, people with many children were more likely to end up in the lower classes. Yet, family size limitation was effective as a defensive rather than an offensive strategy: it prevented the next generation from going down rather than helping them to climb up the social ladder. Also, family size appears to have been particularly relevant for the middle classes. Implications for demographic transition theory are discussed
    • 

    corecore