148,871 research outputs found

    Adaptive Smoothing in fMRI Data Processing Neural Networks

    Full text link
    Functional Magnetic Resonance Imaging (fMRI) relies on multi-step data processing pipelines to accurately determine brain activity; among them, the crucial step of spatial smoothing. These pipelines are commonly suboptimal, given the local optimisation strategy they use, treating each step in isolation. With the advent of new tools for deep learning, recent work has proposed to turn these pipelines into end-to-end learning networks. This change of paradigm offers new avenues to improvement as it allows for a global optimisation. The current work aims at benefitting from this paradigm shift by defining a smoothing step as a layer in these networks able to adaptively modulate the degree of smoothing required by each brain volume to better accomplish a given data analysis task. The viability is evaluated on real fMRI data where subjects did alternate between left and right finger tapping tasks.Comment: 4 pages, 3 figures, 1 table, IEEE 2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI

    Pattern Classification of Large-Scale Functional Brain Networks: Identification of Informative Neuroimaging Markers for Epilepsy

    Get PDF
    The accurate prediction of general neuropsychiatric disorders, on an individual basis, using resting-state functional magnetic resonance imaging (fMRI) is a challenging task of great clinical significance. Despite the progress to chart the differences between the healthy controls and patients at the group level, the pattern classification of functional brain networks across individuals is still less developed. In this paper we identify two novel neuroimaging measures that prove to be strongly predictive neuroimaging markers in pattern classification between healthy controls and general epileptic patients. These measures characterize two important aspects of the functional brain network in a quantitative manner: (i) coordinated operation among spatially distributed brain regions, and (ii) the asymmetry of bilaterally homologous brain regions, in terms of their global patterns of functional connectivity. This second measure offers a unique understanding of brain asymmetry at the network level, and, to the best of our knowledge, has not been previously used in pattern classification of functional brain networks. Using modern pattern-recognition approaches like sparse regression and support vector machine, we have achieved a cross-validated classification accuracy of 83.9% (specificity: 82.5%; sensitivity: 85%) across individuals from a large dataset consisting of 180 healthy controls and epileptic patients. We identified significantly changed functional pathways and subnetworks in epileptic patients that underlie the pathophysiological mechanism of the impaired cognitive functions. Specifically, we find that the asymmetry of brain operation for epileptic patients is markedly enhanced in temporal lobe and limbic system, in comparison with healthy individuals. The present study indicates that with specifically designed informative neuroimaging markers, resting-state fMRI can serve as a most promising tool for clinical diagnosis, and also shed light onto the physiology behind complex neuropsychiatric disorders. The systematic approaches we present here are expected to have wider applications in general neuropsychiatric disorders

    A Deep Probabilistic Spatiotemporal Framework for Dynamic Graph Representation Learning with Application to Brain Disorder Identification

    Full text link
    Recent applications of pattern recognition techniques on brain connectome classification using functional connectivity (FC) neglect the non-Euclidean topology and causal dynamics of brain connectivity across time. In this paper, a deep probabilistic spatiotemporal framework developed based on variational Bayes (DSVB) is proposed to learn time-varying topological structures in dynamic brain FC networks for autism spectrum disorder (ASD) identification. The proposed framework incorporates a spatial-aware recurrent neural network to capture rich spatiotemporal patterns across dynamic FC networks, followed by a fully-connected neural network to exploit these learned patterns for subject-level classification. To overcome model overfitting on limited training datasets, an adversarial training strategy is introduced to learn graph embedding models that generalize well to unseen brain networks. Evaluation on the ABIDE resting-state functional magnetic resonance imaging dataset shows that our proposed framework significantly outperformed state-of-the-art methods in identifying ASD. Dynamic FC analyses with DSVB learned embeddings reveal apparent group difference between ASD and healthy controls in network profiles and switching dynamics of brain states

    Distance Metric Learning using Graph Convolutional Networks: Application to Functional Brain Networks

    Full text link
    Evaluating similarity between graphs is of major importance in several computer vision and pattern recognition problems, where graph representations are often used to model objects or interactions between elements. The choice of a distance or similarity metric is, however, not trivial and can be highly dependent on the application at hand. In this work, we propose a novel metric learning method to evaluate distance between graphs that leverages the power of convolutional neural networks, while exploiting concepts from spectral graph theory to allow these operations on irregular graphs. We demonstrate the potential of our method in the field of connectomics, where neuronal pathways or functional connections between brain regions are commonly modelled as graphs. In this problem, the definition of an appropriate graph similarity function is critical to unveil patterns of disruptions associated with certain brain disorders. Experimental results on the ABIDE dataset show that our method can learn a graph similarity metric tailored for a clinical application, improving the performance of a simple k-nn classifier by 11.9% compared to a traditional distance metric.Comment: International Conference on Medical Image Computing and Computer-Assisted Interventions (MICCAI) 201

    Identification and Differential Vulnerability of a Neural Network in Sleep Deprivation

    Get PDF
    The study aimed to identify task-related brain activation networks whose change in expression exhibits subject differences as a function of differential susceptibility to sleep deprivation. Brain activity during a non-verbal recognition memory task was investigated in an event-related functional MRI paradigm both prior to and after 48 h of sleep deprivation. Nineteen healthy subjects participated. Regional covariance analysis was applied to data. An activation network pattern was identified whose expression decreased from pre- to post-sleep deprivation in 15 out 19 subjects (P < 0.05). Differential decrease in expression correlated with worsening performance in recognition accuracy (P < 0.05). Sites of de-activation were found in the posterior cerebellum, right fusiform gyrus and precuneus, and left lingual and inferior temporal gyri; increased activation was found in the bilateral insula, claustrum and right putamen. A network whose expression decreased after sleep deprivation and correlated with memory performance was identified. We conclude that this activation network plays a role in cognitive function during sleep deprivation

    Ultrafast optical integration and pattern classification for neuromorphic photonics based on spiking VCSEL neurons

    Get PDF
    In today’s data-driven world, the ability to process large data volumes is crucial. Key tasks, such as pattern recognition and image classification, are well suited for artificial neural networks (ANNs) inspired by the brain. Neuromorphic computing approaches aimed towards physical realizations of ANNs have been traditionally supported by micro-electronic platforms, but recently, photonic techniques for neuronal emulation have emerged given their unique properties (e.g. ultrafast operation, large bandwidths, low cross-talk). Yet, hardware-friendly systems of photonic spiking neurons able to perform processing tasks at high speeds and with continuous operation remain elusive. This work provides a first experimental report of Vertical-Cavity Surface-Emitting Laser-based spiking neurons demonstrating different functional processing tasks, including coincidence detection and pattern recognition, at ultrafast rates. Furthermore, our approach relies on simple hardware implementations using off-the-shelf components. These results therefore hold exciting prospects for novel, compact and high-speed neuromorphic photonic platforms for future computing and Artificial Intelligence systems

    Visual pathways from the perspective of cost functions and multi-task deep neural networks

    Get PDF
    Vision research has been shaped by the seminal insight that we can understand the higher-tier visual cortex from the perspective of multiple functional pathways with different goals. In this paper, we try to give a computational account of the functional organization of this system by reasoning from the perspective of multi-task deep neural networks. Machine learning has shown that tasks become easier to solve when they are decomposed into subtasks with their own cost function. We hypothesize that the visual system optimizes multiple cost functions of unrelated tasks and this causes the emergence of a ventral pathway dedicated to vision for perception, and a dorsal pathway dedicated to vision for action. To evaluate the functional organization in multi-task deep neural networks, we propose a method that measures the contribution of a unit towards each task, applying it to two networks that have been trained on either two related or two unrelated tasks, using an identical stimulus set. Results show that the network trained on the unrelated tasks shows a decreasing degree of feature representation sharing towards higher-tier layers while the network trained on related tasks uniformly shows high degree of sharing. We conjecture that the method we propose can be used to analyze the anatomical and functional organization of the visual system and beyond. We predict that the degree to which tasks are related is a good descriptor of the degree to which they share downstream cortical-units.Comment: 16 pages, 5 figure
    • …
    corecore