116 research outputs found

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    A spectrometer for the investigation of backscattering of 10-20 keV electrons

    Get PDF
    Imperial Users onl

    Theory and Applications of Aperiodic (Random) Phased Arrays

    Get PDF
    A need for network centric topologies using mobile wireless communications makes it important to investigate new distributed beamforming techniques. Platforms such as micro air vehicles (MAVs), unattended ground sensors (UGSs), and unpiloted aerial vehicles (UAVs) can all benefit from advances in this area utilizing advantages in stealth, enhanced survivability and maximum maneuverability. Moreover, in this dissertation, electromagnetic radiation is investigated such that the signal power of each element is coherently added in the far-field region of a specified target direction with net destructive interference occurring in all other regions to suppress sidelobe behavior. This provides superior range and resolution characteristics for a variety of applications including; early warning radar, ballistic missile defense and search and rescue efforts. A wide variety of topologies can be used to confine geometrically these mobile random arrays for analysis. The distribution function for these topologies must be able to generalize the randomness within the geometry. By this means it is feasible to assume the random element distribution of a very large volumetric space will yield either a normal or Gaussian distribution. Therefore the underlying assumption stands that the statistically averaged beam pattern develops from an arrangement of uniformly or Gaussian distrusted elements; both confined to a variety of geometry of radius A and is further generalized using a simple theory based upon the Fourier Transform. Hence, this theory will be derived and serve as the foundation for advanced performance characteristics of these arrays such as its ability for sidelobe tapering, adaptive nulling and multi beam control. In addition it will be shown that for the most ideal of conditions a steerable beam pattern free of sidelobe behavior (better known as a Gaussian distribution) is quite possible. As well these random array structures will be shown to provide superior bandwidth capability over tradiational array structures since they are frequency independent. Last of all a summary of the random array analysis and its results concludes this dissertation

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Three-dimensional point-cloud room model in room acoustics simulations

    Get PDF
    • …
    corecore