691,850 research outputs found

    On the optimal decision rule for sequential interactive structured prediction

    Full text link
    This is the author’s version of a work that was accepted for publication in Pattern Recognition Letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Pattern Recognition Letters [Volume 33, Issue 16, 1 December 2012, Pages 2226–2231] DOI: 10.1016/j.patrec.2012.07.010[EN] Interactive structured prediction (ISP) is an emerging framework for structured prediction (SP) where the user and the system collaborate to produce a high quality output. Typically, search algorithms applied to ISP problems have been based on the algorithms for fully-automatic SP systems. However, the decision rule applied should not be considered as optimal since the goal in ISP is to reduce human effort instead of output errors. In this work, we present some insight into the theory of the sequential ISP search problem. First, it is formulated as a decision theory problem from which a general analytical formulation of the opti- mal decision rule is derived. Then, it is compared with the standard formulation to establish under what conditions the standard algorithm should perform similarly to the optimal decision rule. Finally, a general and practical implementation is given and evaluated against three classical ISP problems: interactive machine translation, interactive handwritten text recognition, and interactive speech recognition.The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant agreement no. 287576 (CasMaCat), and from the Spanish MEC/MICINN under the MIPRCV "Consolider Ingenio 2010" program (CSD2007-00018) and iTrans2 (TIN2009-14511) project. It is also supported by the Generalitat Valenciana under grant ALMPR (Prometeo/2009/01) and GV/2010/067. The authors thank the anonymous reviewers for their criticisms and suggestions.Alabau, V.; Sanchis Navarro, JA.; Casacuberta Nolla, F. (2012). On the optimal decision rule for sequential interactive structured prediction. Pattern Recognition Letters. 33(16):2226-2231. https://doi.org/10.1016/j.patrec.2012.07.010S22262231331

    On the Recognition of Emotion from Physiological Data

    Get PDF
    This work encompasses several objectives, but is primarily concerned with an experiment where 33 participants were shown 32 slides in order to create ‗weakly induced emotions‘. Recordings of the participants‘ physiological state were taken as well as a self report of their emotional state. We then used an assortment of classifiers to predict emotional state from the recorded physiological signals, a process known as Physiological Pattern Recognition (PPR). We investigated techniques for recording, processing and extracting features from six different physiological signals: Electrocardiogram (ECG), Blood Volume Pulse (BVP), Galvanic Skin Response (GSR), Electromyography (EMG), for the corrugator muscle, skin temperature for the finger and respiratory rate. Improvements to the state of PPR emotion detection were made by allowing for 9 different weakly induced emotional states to be detected at nearly 65% accuracy. This is an improvement in the number of states readily detectable. The work presents many investigations into numerical feature extraction from physiological signals and has a chapter dedicated to collating and trialing facial electromyography techniques. There is also a hardware device we created to collect participant self reported emotional states which showed several improvements to experimental procedure

    STV-based Video Feature Processing for Action Recognition

    Get PDF
    In comparison to still image-based processes, video features can provide rich and intuitive information about dynamic events occurred over a period of time, such as human actions, crowd behaviours, and other subject pattern changes. Although substantial progresses have been made in the last decade on image processing and seen its successful applications in face matching and object recognition, video-based event detection still remains one of the most difficult challenges in computer vision research due to its complex continuous or discrete input signals, arbitrary dynamic feature definitions, and the often ambiguous analytical methods. In this paper, a Spatio-Temporal Volume (STV) and region intersection (RI) based 3D shape-matching method has been proposed to facilitate the definition and recognition of human actions recorded in videos. The distinctive characteristics and the performance gain of the devised approach stemmed from a coefficient factor-boosted 3D region intersection and matching mechanism developed in this research. This paper also reported the investigation into techniques for efficient STV data filtering to reduce the amount of voxels (volumetric-pixels) that need to be processed in each operational cycle in the implemented system. The encouraging features and improvements on the operational performance registered in the experiments have been discussed at the end
    • …
    corecore