124 research outputs found

    Patrol Detection for Replica Attacks on Wireless Sensor Networks

    Get PDF
    Replica attack is a critical concern in the security of wireless sensor networks. We employ mobile nodes as patrollers to detect replicas distributed in different zones in a network, in which a basic patrol detection protocol and two detection algorithms for stationary and mobile modes are presented. Then we perform security analysis to discuss the defense strategies against the possible attacks on the proposed detection protocol. Moreover, we show the advantages of the proposed protocol by discussing and comparing the communication cost and detection probability with some existing methods

    Clone Node Detection in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are often deployed in unfavourable situations where an assailant can physically capture some of the nodes, first can reprogram, and then, can replicate them in a large number of clones, easily taking control over the network. This replication node is also called as Clone node. The clone node or replicated node behave as a genuine node. It can damage the network. In node replication attack detecting the clone node important issue in Wireless Sensor Networks. A few distributed solutions have been recently proposed, but they are not satisfactory. First, they are intensity and memory demanding: A serious drawback for any protocol to be used in the WSN- resource constrained environment. In this project first investigate the selection criteria of clone detection schemes with regard to device types, detection methodologies, deployment strategies, and detection ranges. Further, they are vulnerable to the specific assailant models introduced in this paper. In this scenario, a particularly dangerous attack is the replica attack, in which the assailant takes the secret keying materials from a compromised node, generates a large number of assailant-controlled replicas that share the node’s keying materials and ID, and then spreads these replicas throughout the network. With a single captured node, the assailant can create as many replica nodes as he has the hardware to generate.. The replica nodes are controlled by the assailant, but have keying materials that allow them to seem like authorized participants in the network. Our implementation specifies, user will specify its ID, which means client id, secret key will be create, and then include the port number. The witness node will verify the internally bounded user Id and secret key. The witness node means original node. If the verification is success, the information collecting to the packets that packets are send to the destination

    Hybrid Multi-Level Detection and Mitigation of Clone Attacks in Mobile Wireless Sensor Network (MWSN).

    Full text link
    Wireless sensor networks (WSNs) are often deployed in hostile environments, where an adversary can physically capture some of the sensor nodes. The adversary collects all the nodes' important credentials and subsequently replicate the nodes, which may expose the network to a number of other security attacks, and eventually compromise the entire network. This harmful attack where a single or more nodes illegitimately claims an identity as replicas is known as the node replication attack. The problem of node replication attack can be further aggravated due to the mobile nature in WSN. In this paper, we propose an extended version of multi-level replica detection technique built on Danger Theory (DT), which utilizes a hybrid approach (centralized and distributed) to shield the mobile wireless sensor networks (MWSNs) from clone attacks. The danger theory concept depends on a multi-level of detections; first stage (highlights the danger zone (DZ) by checking the abnormal behavior of mobile nodes), second stage (battery check and random number) and third stage (inform about replica to other networks). The DT method performance is highlighted through security parameters such as false negative, energy, detection time, communication overhead and delay in detection. The proposed approach also demonstrates that the hybrid DT method is capable and successful in detecting and mitigating any malicious activities initiated by the replica. Nowadays, crimes are vastly increasing and it is crucial to modify the systems accordingly. Indeed, it is understood that the communication needs to be secured by keen observation at each level of detection. The simulation results show that the proposed approach overcomes the weaknesses of the previous and existing centralized and distributed approaches and enhances the performance of MWSN in terms of communication and memory overhead

    Selected Computing Research Papers Volume 4 June 2015

    Get PDF
    A Critical Study of Current Natural Language Processing Methods for the Semantic Web (Lee Bodak) .................................................................................................................. 1 A Critical Evaluation on Current Wireless Wearable Sensors in Monitoring of Patients (Mmoloki Gogontle Gontse) ................................................................................... 7 Evaluation on Research targeted towards Worm Viruses and Detection Methods (Adam Keith) ...................................................................................................................... 13 Evaluation of Security Techniques in Cloud Storage Systems (Aone Maenge) ................ 21 An Evaluation of Current Power Management Techniques Used In Mobile Devices (Gabriel Tshepho Masabata) ............................................................................................... 27 An Evaluation Of Current Wide Area Network Cyber Attack Detection Methods Aimed At Improving Computer Security (Hayley Roberts) ............................................... 35 Current EMG Pattern Recognition Research Aimed At Improving Upper Limb Prosthesis Control (Molly Sturman) ................................................................................... 41 Positive and Negative: Effects Video Game Use Can Have on Personality Development (Shaun Watson) ............................................................................................ 4

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    Dynamic services in mobile ad hoc networks

    Get PDF
    The increasing diffusion of wireless-enabled portable devices is pushing toward the design of novel service scenarios, promoting temporary and opportunistic interactions in infrastructure-less environments. Mobile Ad Hoc Networks (MANET) are the general model of these higly dynamic networks that can be specialized, depending on application cases, in more specific and refined models such as Vehicular Ad Hoc Networks and Wireless Sensor Networks. Two interesting deployment cases are of increasing relevance: resource diffusion among users equipped with portable devices, such as laptops, smart phones or PDAs in crowded areas (termed dense MANET) and dissemination/indexing of monitoring information collected in Vehicular Sensor Networks. The extreme dynamicity of these scenarios calls for novel distributed protocols and services facilitating application development. To this aim we have designed middleware solutions supporting these challenging tasks. REDMAN manages, retrieves, and disseminates replicas of software resources in dense MANET; it implements novel lightweight protocols to maintain a desired replication degree despite participants mobility, and efficiently perform resource retrieval. REDMAN exploits the high-density assumption to achieve scalability and limited network overhead. Sensed data gathering and distributed indexing in Vehicular Networks raise similar issues: we propose a specific middleware support, called MobEyes, exploiting node mobility to opportunistically diffuse data summaries among neighbor vehicles. MobEyes creates a low-cost opportunistic distributed index to query the distributed storage and to determine the location of needed information. Extensive validation and testing of REDMAN and MobEyes prove the effectiveness of our original solutions in limiting communication overhead while maintaining the required accuracy of replication degree and indexing completeness, and demonstrates the feasibility of the middleware approach
    corecore