69,669 research outputs found

    A Patient-Specific Treatment Model for Graves’ Hyperthyroidism

    Get PDF
    Background: Graves’ is disease an autoimmune disorder of the thyroid gland caused by circulating anti-thyroid receptor antibodies (TRAb) in the serum. TRAb mimics the action of thyroid stimulating hormone (TSH) and stimulates the thyroid hormone receptor (TSHR), which results in hyperthyroidism (overactive thyroid gland) and goiter. Methimazole (MMI) is used for hyperthyroidism treatment for patients with Graves’ disease. Methods: We have developed a model using a system of ordinary differential equations for hyperthyroidism treatment with MMI. The model has four state variables, namely concentration of MMI (in mg/L), concentration of free thyroxine - FT4 (in pg/mL), and concentration of TRAb (in U/mL) and the functional size of the thyroid gland (in mL) with thirteen parameters. With a treatment parameter, we simulate the time-course of patients’ progression from hyperthyroidism to euthyroidism (normal condition). We validated the model predictions with data from four patients. Results: When there is no MMI treatment, there is a unique asymptotically stable hyperthyroid state. After the initiation of MMI treatment, the hyperthyroid state moves towards subclinical hyperthyroidism and then euthyroidism. Conclusion: We can use the model to describe or test and predict patient treatment schedules. More specifically, we can fit the model to individual patients’ data including loading and maintenance doses and describe the mechanism, hyperthyroidism → euthyroidism. The model can be used to predict when to discontinue the treatment based on FT4 levels within the physiological range, which in turn help maintain the remittance of euthyroidism and avoid relapses of hyperthyroidism. Basically, the model can guide with decision-making on oral intake of MMI based on FT4 levels

    Evaluation of the accuracy of a patient-specific instrumentation

    Get PDF
    Patient-specific instruments (PSI) has been introduced with the aim to reduce the overall costs of the implants, minimizing the size and number of instruments required, and also reducing surgery time. The aim of this study was to perform a review of the current literature, as well as to report about our personal experience, to assess reliability and accuracy of patient specific instrument system in total knee arthroplasty (TKA). A literature review was conducted of PSI system reviewing articles related to coronal alignment, clinical knee and function scores, cost, patient satisfaction and complications. Studies have reported incidences of coronal alignment ≥3° from neutral in TKAs performed with patient-specific cutting guides ranging from 6% to 31%. PSI seem not to be able to result in the same degree of accuracy as for the CAS system, while comparing well with standard manual technique with respect to component positioning and overall lower axis, in particular in the sagittal plane. In cases in which custom-made cutting jigs were used, we recommend performing an accurate control of the alignment before and after any cuts and in any further step of the procedure, in order to avoid possible outliers

    Patient-specific polyvinyl alcohol phantom fabrication with ultrasound and x-ray contrast for brain tumor surgery planning

    Get PDF
    Phantoms are essential tools for clinical training, surgical planning and the development of novel medical devices. However, it is challenging to create anatomically accurate head phantoms with realistic brain imaging properties because standard fabrication methods are not optimized to replicate any patient-specific anatomical detail and 3D printing materials are not optimized for imaging properties. In order to test and validate a novel navigation system for use during brain tumor surgery, an anatomically accurate phantom with realistic imaging and mechanical properties was required. Therefore, a phantom was developed using real patient data as input and 3D printing of molds to fabricate a patient-specific head phantom comprising the skull, brain and tumor with both ultrasound and X-ray contrast. The phantom also had mechanical properties that allowed the phantom tissue to be manipulated in a similar manner to how human brain tissue is handled during surgery. The phantom was successfully tested during a surgical simulation in a virtual operating room. The phantom fabrication method uses commercially available materials and is easy to reproduce. The 3D printing files can be readily shared, and the technique can be adapted to encompass many different types of tumor

    Intra-ventricular blood flow simulation with patient specific geometry

    Get PDF

    Patient-specific data fusion for cancer stratification and personalised treatment

    Get PDF
    According to Cancer Research UK, cancer is a leading cause of death accounting for more than one in four of all deaths in 2011. The recent advances in experimental technologies in cancer research have resulted in the accumulation of large amounts of patient-specific datasets, which provide complementary information on the same cancer type. We introduce a versatile data fusion (integration) framework that can effectively integrate somatic mutation data, molecular interactions and drug chemical data to address three key challenges in cancer research: stratification of patients into groups having different clinical outcomes, prediction of driver genes whose mutations trigger the onset and development of cancers, and repurposing of drugs treating particular cancer patient groups. Our new framework is based on graph-regularised non-negative matrix tri-factorization, a machine learning technique for co-clustering heterogeneous datasets. We apply our framework on ovarian cancer data to simultaneously cluster patients, genes and drugs by utilising all datasets.We demonstrate superior performance of our method over the state-of-the-art method, Network-based Stratification, in identifying three patient subgroups that have significant differences in survival outcomes and that are in good agreement with other clinical data. Also, we identify potential new driver genes that we obtain by analysing the gene clusters enriched in known drivers of ovarian cancer progression. We validated the top scoring genes identified as new drivers through database search and biomedical literature curation. Finally, we identify potential candidate drugs for repurposing that could be used in treatment of the identified patient subgroups by targeting their mutated gene products. We validated a large percentage of our drug-target predictions by using other databases and through literature curation

    Building a patient-specific seizure detector without expert input using user triggered active learning strategies

    Get PDF
    Purpose: Patient-specific seizure detectors outperform general seizure detectors, but building them requires lots of consistently marked electroencephalogram (EEG) of a single patient, which is expensive to gather. This work presents a method to bring general seizure detectors up to par with patient-specific seizure detectors without expert input. The user/patient is only required to push a button in case of a false alarm and/or missed seizure. Method: For the experiments the 'CHB-MIT Scalp EEG Database' was used, which contains pre-surgically recorded EEG of 24 patients. The seizure detector used is based on (Buteneers et al. Epilepsy Research 2012:(in press)) combined with the preprocessing technique presented in (Shoeb et al. Epilepsy & Behavior 2004;5:483-598). Button presses mark the corresponding data and add it to the training set of the system. The performance is evaluated using leave-one-hour-out cross-validation to attain statistically relevant results. Results: For the patient-specific seizure detector 34(32)% (average(standard deviation)) of the detections are false, 8(14)% of the seizures are missed and a detection delay of 11(10)s is reached. The general seizure detector achieves: 86(89)%, 28(41)% and -35(82)s, respectively. Adding only false positives, the patient specific performance is achieved in 9 of the 24 patients. Adding missed seizures allows the patient-specific performance to be reached in 21 patients (about 90%). Conclusion: This work shows that in order to build a patient-specific seizure detector, no patient-specific EEG data is required for up to 90% of the patients using the presented technique

    Patient Specific Congestive Heart Failure Detection From Raw ECG signal

    Full text link
    In this study; in order to diagnose congestive heart failure (CHF) patients, non-linear second-order difference plot (SODP) obtained from raw 256 Hz sampled frequency and windowed record with different time of ECG records are used. All of the data rows are labelled with their belongings to classify much more realistically. SODPs are divided into different radius of quadrant regions and numbers of the points fall in the quadrants are computed in order to extract feature vectors. Fisher's linear discriminant, Naive Bayes, Radial basis function, and artificial neural network are used as classifier. The results are considered in two step validation methods as general k-fold cross-validation and patient based cross-validation. As a result, it is shown that using neural network classifier with features obtained from SODP, the constructed system could distinguish normal and CHF patients with 100% accuracy rate. KeywordsComment: Congestive heart failure, ECG, Second-Order Difference Plot, classification, patient based cross-validatio
    • …
    corecore