4,488 research outputs found

    Methodological considerations in quantification of oncological FDG PET studies

    Get PDF
    Contains fulltext : 87741.pdf (publisher's version ) (Closed access) Contains fulltext : 87741-1.pdf (postprint version ) (Open Access)PURPOSE: This review aims to provide insight into the factors that influence quantification of glucose metabolism by FDG PET images in oncology as well as their influence on repeated measures studies (i.e. treatment response assessment), offering improved understanding both for clinical practice and research. METHODS: Structural PubMed searches have been performed for the many factors affecting quantification of glucose metabolism by FDG PET. Review articles and references lists have been used to supplement the search findings. RESULTS: Biological factors such as fasting blood glucose level, FDG uptake period, FDG distribution and clearance, patient motion (breathing) and patient discomfort (stress) all influence quantification. Acquisition parameters should be adjusted to maximize the signal to noise ratio without exposing the patient to a higher than strictly necessary radiation dose. This is especially challenging in pharmacokinetic analysis, where the temporal resolution is of significant importance. The literature is reviewed on the influence of attenuation correction on parameters for glucose metabolism, the effect of motion, metal artefacts and contrast agents on quantification of CT attenuation-corrected images. Reconstruction settings (analytical versus iterative reconstruction, post-reconstruction filtering and image matrix size) all potentially influence quantification due to artefacts, noise levels and lesion size dependency. Many region of interest definitions are available, but increased complexity does not necessarily result in improved performance. Different methods for the quantification of the tissue of interest can introduce systematic and random inaccuracy. CONCLUSIONS: This review provides an up-to-date overview of the many factors that influence quantification of glucose metabolism by FDG PET.01 juli 201

    Role of noninvasive molecular imaging in determining response

    Get PDF
    The intersection of immunotherapy and radiation oncology is a rapidly evolving area of preclinical and clinical investigation. The strategy of combining radiation and immunotherapy to enhance local and systemic antitumor immune responses is intriguing yet largely unproven in the clinical setting because the mechanisms of synergy and the determinants of therapeutic response remain undefined. In recent years, several noninvasive molecular imaging approaches have emerged as a platform to interrogate the tumor immune microenvironment. These tools have the potential to serve as robust biomarkers for cancer immunotherapy and may hold several advantages over conventional anatomic imaging modalities and contemporary invasive tissue acquisition techniques. Given the key and expanding role of precision imaging in radiation oncology for patient selection, target delineation, image guided treatment delivery, and response assessment, noninvasive molecular-specific imaging may be uniquely suited to evaluate radiation/immunotherapy combinations. Herein, we describe several experimental imaging-based strategies that are currently being explored to characterize in vivo immune responses, and we review a growing body of preclinical data and nascent clinical experience with immuno-positron emission tomography molecular imaging as a putative biomarker for cancer immunotherapy. Finally, we discuss practical considerations for clinical translation to implement noninvasive molecular imaging of immune checkpoint molecules, immune cells, or associated elements of the antitumor immune response with a specific emphasis on its potential application at the interface of radiation oncology and immuno-oncology

    PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques

    Get PDF
    Historically, anatomical CT and MR images were used to delineate the gross tumour volumes (GTVs) for radiotherapy treatment planning. The capabilities offered by modern radiation therapy units and the widespread availability of combined PET/CT scanners stimulated the development of biological PET imaging-guided radiation therapy treatment planning with the aim to produce highly conformal radiation dose distribution to the tumour. One of the most difficult issues facing PET-based treatment planning is the accurate delineation of target regions from typical blurred and noisy functional images. The major problems encountered are image segmentation and imperfect system response function. Image segmentation is defined as the process of classifying the voxels of an image into a set of distinct classes. The difficulty in PET image segmentation is compounded by the low spatial resolution and high noise characteristics of PET images. Despite the difficulties and known limitations, several image segmentation approaches have been proposed and used in the clinical setting including thresholding, edge detection, region growing, clustering, stochastic models, deformable models, classifiers and several other approaches. A detailed description of the various approaches proposed in the literature is reviewed. Moreover, we also briefly discuss some important considerations and limitations of the widely used techniques to guide practitioners in the field of radiation oncology. The strategies followed for validation and comparative assessment of various PET segmentation approaches are described. Future opportunities and the current challenges facing the adoption of PET-guided delineation of target volumes and its role in basic and clinical research are also addresse

    Functional Imaging of Malignant Gliomas with CT Perfusion

    Get PDF
    The overall survival of patients with malignant gliomas remains dismal despite multimodality treatments. Computed tomography (CT) perfusion is a functional imaging tool for assessing tumour hemodynamics. The goals of this thesis are to 1) improve measurements of various CT perfusion parameters and 2) assess treatment outcomes in a rat glioma model and in patients with malignant gliomas. Chapter 2 addressed the effect of scan duration on the measurements of blood flow (BF), blood volume (BV), and permeability-surface area product (PS). Measurement errors of these parameters increased with shorter scan duration. A minimum scan duration of 90 s is recommended. Chapter 3 evaluated the improvement in the measurements of these parameters by filtering the CT perfusion images with principal component analysis (PCA). From computer simulation, measurement errors of BF, BV, and PS were found to be reduced. Experiments showed that CT perfusion image contrast-to-noise ratio was improved. Chapter 4 investigated the efficacy of CT perfusion as an early imaging biomarker of response to stereotactic radiosurgery (SRS). Using the C6 glioma model, we showed that responders to SRS (surviving \u3e 15 days) had lower relative BV and PS on day 7 post-SRS when compared to controls and non-responders (P \u3c 0.05). Relative BV and PS on day 7 post-SRS were predictive of survival with 92% accuracy. Chapter 5 examined the use of multiparametric imaging with CT perfusion and 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) to identify tumour sites that are likely to correlate with the eventual location of tumour progression. We developed a method to generate probability maps of tumour progression based on these imaging data. Chapter 6 investigated serial changes in tumour volumetric and CT perfusion parameters and their predictive ability in stratifying patients by overall survival. Pre-surgery BF in the non-enhancing lesion and BV in the contrast-enhancing lesion three months after radiotherapy had the highest combination of sensitivities and specificities of ≥ 80% in predicting 24 months overall survival. iv Optimization and standardization of CT perfusion scans were proposed. This thesis also provided corroborating evidence to support the use of CT perfusion as a biomarker of outcomes in patients with malignant gliomas

    Assessing and monitoring intratumor heterogeneity in glioblastoma: how far has multimodal imaging come?

    Get PDF
    Glioblastoma demonstrates imaging features of intratumor heterogeneity that result from underlying heterogeneous biological properties. This stems from variations in cellular behavior that result from genetic mutations that either drive, or are driven by, heterogeneous microenvironment conditions. Among all imaging methods available, only T1-weighted contrast-enhancing and T2-weighted fluid-attenuated inversion recovery are used in standard clinical glioblastoma assessment and monitoring. Advanced imaging modalities are still considered emerging techniques as appropriate end points and robust methodologies are missing from clinical trials. Discovering how these images specifically relate to the underlying tumor biology may aid in improving quality of clinical trials and understanding the factors involved in regional responses to treatment, including variable drug uptake and effect of radiotherapy. Upon validation and standardization of emerging MR techniques, providing information based on the underlying tumor biology, these images may allow for clinical decision-making that is tailored to an individual's response to treatment.Stephen Price is funded by a Clinician Scientist Award from the National Institute for Health Research.This is the author accepted manuscript. The final version is available from Future Medicine via http://dx.doi.org/10.2217/cns.15.2
    • …
    corecore