506 research outputs found

    Transforming planar graph drawings while maintaining height

    Full text link
    There are numerous styles of planar graph drawings, notably straight-line drawings, poly-line drawings, orthogonal graph drawings and visibility representations. In this note, we show that many of these drawings can be transformed from one style to another without changing the height of the drawing. We then give some applications of these transformations

    Superpatterns and Universal Point Sets

    Full text link
    An old open problem in graph drawing asks for the size of a universal point set, a set of points that can be used as vertices for straight-line drawings of all n-vertex planar graphs. We connect this problem to the theory of permutation patterns, where another open problem concerns the size of superpatterns, permutations that contain all patterns of a given size. We generalize superpatterns to classes of permutations determined by forbidden patterns, and we construct superpatterns of size n^2/4 + Theta(n) for the 213-avoiding permutations, half the size of known superpatterns for unconstrained permutations. We use our superpatterns to construct universal point sets of size n^2/4 - Theta(n), smaller than the previous bound by a 9/16 factor. We prove that every proper subclass of the 213-avoiding permutations has superpatterns of size O(n log^O(1) n), which we use to prove that the planar graphs of bounded pathwidth have near-linear universal point sets.Comment: GD 2013 special issue of JGA

    The Effect of Planarization on Width

    Full text link
    We study the effects of planarization (the construction of a planar diagram DD from a non-planar graph GG by replacing each crossing by a new vertex) on graph width parameters. We show that for treewidth, pathwidth, branchwidth, clique-width, and tree-depth there exists a family of nn-vertex graphs with bounded parameter value, all of whose planarizations have parameter value Ω(n)\Omega(n). However, for bandwidth, cutwidth, and carving width, every graph with bounded parameter value has a planarization of linear size whose parameter value remains bounded. The same is true for the treewidth, pathwidth, and branchwidth of graphs of bounded degree.Comment: 15 pages, 6 figures. To appear at the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Circumference and Pathwidth of Highly Connected Graphs

    Full text link
    Birmele [J. Graph Theory, 2003] proved that every graph with circumference t has treewidth at most t-1. Under the additional assumption of 2-connectivity, such graphs have bounded pathwidth, which is a qualitatively stronger result. Birmele's theorem was extended by Birmele, Bondy and Reed [Combinatorica, 2007] who showed that every graph without k disjoint cycles of length at least t has bounded treewidth (as a function of k and t). Our main result states that, under the additional assumption of (k + 1)- connectivity, such graphs have bounded pathwidth. In fact, they have pathwidth O(t^3 + tk^2). Moreover, examples show that (k + 1)-connectivity is required for bounded pathwidth to hold. These results suggest the following general question: for which values of k and graphs H does every k-connected H-minor-free graph have bounded pathwidth? We discuss this question and provide a few observations.Comment: 11 pages, 4 figure

    EPG-representations with small grid-size

    Full text link
    In an EPG-representation of a graph GG each vertex is represented by a path in the rectangular grid, and (v,w)(v,w) is an edge in GG if and only if the paths representing vv an ww share a grid-edge. Requiring paths representing edges to be x-monotone or, even stronger, both x- and y-monotone gives rise to three natural variants of EPG-representations, one where edges have no monotonicity requirements and two with the aforementioned monotonicity requirements. The focus of this paper is understanding how small a grid can be achieved for such EPG-representations with respect to various graph parameters. We show that there are mm-edge graphs that require a grid of area Ω(m)\Omega(m) in any variant of EPG-representations. Similarly there are pathwidth-kk graphs that require height Ω(k)\Omega(k) and area Ω(kn)\Omega(kn) in any variant of EPG-representations. We prove a matching upper bound of O(kn)O(kn) area for all pathwidth-kk graphs in the strongest model, the one where edges are required to be both x- and y-monotone. Thus in this strongest model, the result implies, for example, O(n)O(n), O(nlogn)O(n \log n) and O(n3/2)O(n^{3/2}) area bounds for bounded pathwidth graphs, bounded treewidth graphs and all classes of graphs that exclude a fixed minor, respectively. For the model with no restrictions on the monotonicity of the edges, stronger results can be achieved for some graph classes, for example an O(n)O(n) area bound for bounded treewidth graphs and O(nlog2n)O(n \log^2 n) bound for graphs of bounded genus.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017
    corecore