research

Circumference and Pathwidth of Highly Connected Graphs

Abstract

Birmele [J. Graph Theory, 2003] proved that every graph with circumference t has treewidth at most t-1. Under the additional assumption of 2-connectivity, such graphs have bounded pathwidth, which is a qualitatively stronger result. Birmele's theorem was extended by Birmele, Bondy and Reed [Combinatorica, 2007] who showed that every graph without k disjoint cycles of length at least t has bounded treewidth (as a function of k and t). Our main result states that, under the additional assumption of (k + 1)- connectivity, such graphs have bounded pathwidth. In fact, they have pathwidth O(t^3 + tk^2). Moreover, examples show that (k + 1)-connectivity is required for bounded pathwidth to hold. These results suggest the following general question: for which values of k and graphs H does every k-connected H-minor-free graph have bounded pathwidth? We discuss this question and provide a few observations.Comment: 11 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions