103 research outputs found

    Gene expression and pathway bioinformatics analysis detect a potential predictive value of MAP3K8 in thyroid cancer progression

    Full text link
    Thyroid cancer is the commonest endocrine malignancy. Mutation in the BRAF serine/threonine kinase is the most frequent genetic alteration in thyroid cancer. Target therapy for advanced and poorly differentiated thyroid carcinomas include BRAF pathway inhibitors. Here, we evaluated the role of MAP3K8 expression as a potential driver of resistance to BRAF inhibition in thyroid cancer. By analyzing Gene Expression Omnibus data repository, across all thyroid cancer histotypes, we found that MAP3K8 is up-regulated in poorly differentiated thyroid carcinomas and its expression is related to a stem cell like phenotype and a poorer prognosis and survival. Taken together these data unravel a novel mechanism for thyroid cancer progression and chemo-resistance and confirm previous results obtained in cultured thyroid cancer stem cellsComment: 5 page

    Chemoresistance acquisition induces a global shift of expression of aniogenesis-associated genes and increased pro-angogenic activity in neuroblastoma cells

    Get PDF
    BACKGROUND: Chemoresistance acquisition may influence cancer cell biology. Here, bioinformatics analysis of gene expression data was used to identify chemoresistance-associated changes in neuroblastoma biology. RESULTS: Bioinformatics analysis of gene expression data revealed that expression of angiogenesis-associated genes significantly differs between chemosensitive and chemoresistant neuroblastoma cells. A subsequent systematic analysis of a panel of 14 chemosensitive and chemoresistant neuroblastoma cell lines in vitro and in animal experiments indicated a consistent shift to a more pro-angiogenic phenotype in chemoresistant neuroblastoma cells. The molecular mechanims underlying increased pro-angiogenic activity of neuroblastoma cells are individual and differ between the investigated chemoresistant cell lines. Treatment of animals carrying doxorubicin-resistant neuroblastoma xenografts with doxorubicin, a cytotoxic drug known to exert anti-angiogenic activity, resulted in decreased tumour vessel formation and growth indicating chemoresistance-associated enhanced pro-angiogenic activity to be relevant for tumour progression and to represent a potential therapeutic target. CONCLUSION: A bioinformatics approach allowed to identify a relevant chemoresistance-associated shift in neuroblastoma cell biology. The chemoresistance-associated enhanced pro-angiogenic activity observed in neuroblastoma cells is relevant for tumour progression and represents a potential therapeutic target

    Therapeutic target discovery using Boolean network attractors: avoiding pathological phenotypes

    Get PDF
    Target identification, one of the steps of drug discovery, aims at identifying biomolecules whose function should be therapeutically altered in order to cure the considered pathology. This work proposes an algorithm for in silico target identification using Boolean network attractors. It assumes that attractors of dynamical systems, such as Boolean networks, correspond to phenotypes produced by the modeled biological system. Under this assumption, and given a Boolean network modeling a pathophysiology, the algorithm identifies target combinations able to remove attractors associated with pathological phenotypes. It is tested on a Boolean model of the mammalian cell cycle bearing a constitutive inactivation of the retinoblastoma protein, as seen in cancers, and its applications are illustrated on a Boolean model of Fanconi anemia. The results show that the algorithm returns target combinations able to remove attractors associated with pathological phenotypes and then succeeds in performing the proposed in silico target identification. However, as with any in silico evidence, there is a bridge to cross between theory and practice, thus requiring it to be used in combination with wet lab experiments. Nevertheless, it is expected that the algorithm is of interest for target identification, notably by exploiting the inexpensiveness and predictive power of computational approaches to optimize the efficiency of costly wet lab experiments.Comment: Since the publication of this article and among the possible improvements mentioned in the Conclusion, two improvements have been done: extending the algorithm for multivalued logic and considering the basins of attraction of the pathological attractors for selecting the therapeutic bullet

    Granule Cell Dispersion in Human Temporal Lobe Epilepsy: Proteomics investigation of neurodevelopmental migratory pathways

    Get PDF
    Granule cell dispersion (GCD) is a common pathological feature observed in the hippocampus of patients with Mesial Temporal Lobe Epilepsy (MTLE). Pathomechanisms underlying GCD remain to be elucidated, but one hypothesis proposes aberrant reactivation of neurodevelopmental migratory pathways, possibly triggered by febrile seizures. This study aims to compare the proteomes of basal and dispersed granule cells in the hippocampus of eight MTLE patients with GCD to identify proteins that may mediate GCD in MTLE. Quantitative proteomics identified 1882 proteins, of which 29% were found in basal granule cells only, 17% in dispersed only and 54% in both samples. Bioinformatics analyses revealed upregulated proteins in dispersed samples were involved in developmental cellular migratory processes, including cytoskeletal remodelling, axon guidance and signalling by Ras homologous (Rho) family of GTPases (P<0.01). The expression of two Rho GTPases, RhoA and Rac1, was subsequently explored in immunohistochemical and in situ hybridisation studies involving eighteen MTLE cases with or without GCD, and three normal post mortem cases. In cases with GCD, most dispersed granule cells in the outer-granular and molecular layers have an elongated soma and bipolar processes, with intense RhoA immunolabelling at opposite poles of the cell soma, while most granule cells in the basal granule cell layer were devoid of RhoA. A higher density and percentage of cells expressing RhoA was observed in cases with GCD than without GCD (P<0.004). In GCD cases, the density and percentage of cells expressing RhoA was significantly higher in the inner molecular layer than granule cell layer (P<0.026), supporting proteomic findings. In situ hybridisation studies using probes against RHOA and RAC1 mRNAs revealed fine peri- and nuclear puncta in granule cells of all cases. The density of cells expressing RHOA mRNAs were significantly higher in the inner molecular layer of cases with GCD than without GCD(P=0.05). In summary, our study has found limited evidence for ongoing adult neurogenesis in the hippocampus of patients with MTLE, but evidence of differential dysmaturation between dispersed and basal granule cells has been demonstrated, and elevated expression of Rho GTPases in dispersed granule cells may contribute to the pathomechanisms underpinning GCD in MTLE

    ArrayXPath II: mapping and visualizing microarray gene-expression data with biomedical ontologies and integrated biological pathway resources using Scalable Vector Graphics

    Get PDF
    Summary: ArrayXPath () is a web-based service for mapping and visualizing microarray gene-expression data with integrated biological pathway resources using Scalable Vector Graphics (SVG). Deciphering the crosstalk among pathways and integrating biomedical ontologies and knowledge bases may help biological interpretation of microarray data. ArrayXPath is empowered by integrating gene-pathway, disease-pathway, drug-pathway and pathway–pathway correlations with integrated Gene Ontology, Medical Subject Headings and OMIM Morbid Map-based annotations. We applied Fisher's exact test and relative risk to evaluate the statistical significance of the correlations. ArrayXPath produces Javascript-enabled SVGs for web-enabled interactive visualization of gene-expression profiles integrated with gene-pathway-disease interactions enriched by biomedical ontologies
    corecore