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Abstract

Target identification, one of the steps of drug discovery, aims at iden-

tifying biomolecules whose function should be therapeutically altered in

order to cure the considered pathology. This work proposes an algorithm

for in silico target identification using Boolean network attractors. It as-

sumes that attractors of dynamical systems, such as Boolean networks,

correspond to phenotypes produced by the modeled biological system.

Under this assumption, and given a Boolean network modeling a patho-

physiology, the algorithm identifies target combinations able to remove at-

tractors associated with pathological phenotypes. It is tested on a Boolean

model of the mammalian cell cycle bearing a constitutive inactivation of

the retinoblastoma protein, as seen in cancers, and its applications are

illustrated on a Boolean model of Fanconi anemia. The results show that

the algorithm returns target combinations able to remove attractors as-

sociated with pathological phenotypes and then succeeds in performing

the proposed in silico target identification. However, as with any in sil-

ico evidence, there is a bridge to cross between theory and practice, thus

requiring it to be used in combination with wet lab experiments. Never-

theless, it is expected that the algorithm is of interest for target identi-

fication, notably by exploiting the inexpensiveness and predictive power

of computational approaches to optimize the efficiency of costly wet lab

experiments.
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1 Introduction

Drug discovery, as its name indicates, aims at discovering new drugs against
diseases. This process can be segmented into three steps: i) disease model
provision, where experimental models are developed, ii) target identification,
where therapeutic targets are proposed, and iii) target validation, where the
proposed therapeutic targets are assessed. This work focuses on the second step
of drug discovery: target identification [1, 2].

Given an organism suffering from a disease, target identification aims at
finding where to act among its multitude of biomolecules in order to allevi-
ate, or ultimately cure, the physiological consequences of the disease. These
biomolecules on which perturbations should be applied are called targets and
are targeted by drugs [3]. This raises two questions: which target should be
therapeutically perturbed and what type of perturbation should be applied on
it. Broadly, the functional perturbation of a target by a drug can be either
activating or inactivating, regardless the way the drug achieves it.

One solution is to test all, or at least a large number of, biomolecules for ac-
tivation and inactivation. Knowing that targeting several biomolecules is poten-
tially more effective [4,5], the number of possibilities is consequently huge. This
rather brute-force screening can be refined with knowledge about the patho-
physiology of interest by identifying potential targets based on the role they
play in it [6]. Even with this knowledge, experimentally assessing the selected
potential targets through wet lab experiments is far from straightforward since
such experiments are costly in time and resources [7]. Fortunately, owing to
their integrative power and low cost compared to wet lab experiments, in sil-
ico approaches appear as valuable tools in improving the efficiency of target
identification [8–19], as demonstrated through several works using various com-
putational methods [20–30].

However, the stumbling block of in silico approaches is that they are built
from the available knowledge: not all is known about everything. Never-
theless, an impressive and ever increasing amount of biological knowledge is
already available in the scientific literature, databases and knowledge bases
such as, to name a few, DrugBank [31], KEGG [32], PharmGKB [33], Reac-
tome [34] and TTD [35]. In addition to the difficulty of integrating an increasing
body of knowledge comes the inherent complexity of biological systems them-
selves [36]: this is where computational tools can help owing to their integrative
power [37–39]. This interplay between wet lab and computational biology is syn-
ergistic rather than competitive [40]. Since wet lab experiments produce factual
results, they can be considered as trustworthy sources of knowledge. Once these
factual pieces of knowledge are obtained, computational tools can help to in-
tegrate them and infer new ones. This computationally obtained knowledge
can be subsequently used to direct further wet lab experiments, thus mutually
potentiating the whole.

The goal of this work is to propose a computational methodology imple-
mented in an algorithm for in silico therapeutic target discovery using Boolean
network attractors. It assumes that Boolean network attractors correspond to
phenotypes produced by the modeled biological network, an assumption suc-
cessfully applied in several works [41–57]. Assuming that a phenotype is an
observable state, and thus relatively stable, of a biological system and assuming
that the state of a biological system results from its dynamics, a phenotype is
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likely to correspond to an attractor. This assumption can be stated for any dy-
namical model but, in this work, only Boolean networks are considered. Reasons
are that, in their most basic form, Boolean networks do not require quantitative
information [58] and that quantitative information is often not easy to obtain
due to experimental limitations, particularly at the subcellular scale, the scale
where drugs interact with their targets. Moreover, since synchronous Boolean
networks are easier to compute than asynchronous ones [59], this work only con-
siders synchronous Boolean networks. This does not exclude the possibility, at
a later stage, to extend the algorithm for both synchronous and asynchronous
updating schemes.

For a biological network involved in a disease, two possible variants are
considered: the physiological variant, exhibited by healthy organisms, which
produces physiological phenotypes, and the pathological variant, exhibited by
ill organisms, which produces pathological phenotypes or which fails to produce
physiological ones. A physiological phenotype does not impair life quantity/
quality whereas a pathological phenotype does. It should be noted that the loss
of a physiological phenotype is also a pathological condition. The physiological
and pathological variants differ in that the latter results from the occurrence
of some alterations known to be responsible for disorders. With a patholog-
ical variant, there are two non-exclusive pathological scenarios: pathological
phenotypes are gained or physiological phenotypes are lost.

The primary goal of the proposed algorithm is to identify, in a patholog-
ical variant, target combinations together with the perturbations to apply on
them, here called bullets, which render it unable to exhibit pathological pheno-
types. The secondary goal is to classify the obtained bullets according to their
ability at rendering the pathological variant able to exhibit the previously lost
physiological phenotypes, if any.

It should be noted that this work fits into the encompassing field investigat-
ing how to control biological systems, a field with tremendous applications in
biomedicine. Several endeavors based on qualitative modeling approaches have
been made in this way [60–65], demonstrating its utility in investigating how to
take control over pathologically disturbed biological systems.

2 Methods

This section introduces some basic principles, namely biological and Boolean
networks, defines some concepts and then describes the proposed algorithm.
An example network to illustrate how it works plus a case study to illustrate its
intended applications are also described. Finally, details about implementation
and code availability are mentioned.

2.1 Basic principles

2.1.1 Biological networks

A biological network is a way to conceptualize a set of interacting biological enti-
ties where entities are represented by nodes and interactions by edges [66,67]. It
is based on graph theory [68–70], thus bringing formal tools to encode informa-
tion about biological systems, particularly their topology [71]. Moreover, being
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graphs, biological networks offer a convenient visualization [72] of the complex
interconnections lying in biological systems. As said Napoleon Bonaparte:

“A good sketch is better than a long speech.”

Mathematically, a network can be seen as a digraph G = (V,E) where
V = {v1, . . . , vn} is the set of cardinality n containing exactly all the nodes vi
of the network and where E = {(vi,1, vj,1), . . . , (vi,m, vj,m)} ⊆ V 2 is the set of
cardinality m containing exactly all the edges (vi, vj) of the network. In practice,
nodes represent entities and edges represent binary relations R ⊆ V 2 involving
them: vi R vj . For example, in gene regulatory networks, nodes represent gene
products and edges represent gene expression modulations [73, 74].

2.1.2 Boolean networks

While being conceptually simple, Boolean networks [75] are able to predict
and reproduce features of biological systems and then to bring relevant insights
[76–81]. This makes them an attractive and efficient approach, especially when
the complexity of biological systems renders quantitative approaches unfeasible
due to the amount of quantitative details they require. As their name indicates,
Boolean networks are based on Boolean logic [82] and, like biological networks,
are also based on graph theory: nodes represent Boolean variables and edges
represent interdependencies between them.

Mathematically, a Boolean network is a network where nodes are Boolean
variables xi and where edges (xi, xj) represent the binary is input of relation:
xi is input of xj . Each xi has bi ∈ [[0, n]] inputs xi,1, . . . , xi,bi . The variables
which are not inputs of xi have no direct influence on it. If bi = 0 then xi is
a parameter and does not depend on other variables. At each iteration k ∈
[[k0, kend]] of the simulation, the value xi(k) ∈ {0, 1} of each xi is updated to the
value xi(k + 1) using a Boolean function fi and the values xi,1(k), . . . , xi,bi(k)
of its inputs, as in the following pseudocode:

1 for k ∈ [[k0, kend − 1]] do
2 x1(k + 1) = f1(x1,1(k), . . . , x1,b1(k))
3 . . .
4 xn(k + 1) = fn(xn,1(k), . . . , xn,bn(k))
5 end for

which can be written in a more concise form:

1 for k ∈ [[k0, kend − 1]] do
2 x(k + 1) = f(x(k))
3 end for

where f = (f1, . . . , fn) is the Boolean transition function and x = (x1, . . . , xn)
is the state vector. The value x(k) = (x1(k), . . . , xn(k)) ∈ {0, 1}n of x at
k belongs to the state space S = {0, 1}n which is the set of cardinality 2n

containing exactly all the possible states.
If the values of all the xi are updated simultaneously at each k then the net-

work is synchronous, otherwise it is asynchronous. With synchronous Boolean
networks, x(k) has a unique possible successor x(k + 1): synchronous Boolean
networks are deterministic. In the particular case where k = k0, x(k0) = x0 is
the initial state and, in deterministic dynamical systems, determines entirely the
trajectory w = (x(k0), . . . ,x(kend)). In this work, it is assumed that k0 = 1, so
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w is a sequence of length kend resulting from the iterative computation of x(k)
from k0 up to kend. This iterative computation can be seen as the discretization
of a time interval: Boolean networks are discrete dynamical systems as they
simulate discretely the time course of the state vector.

The set A = {a1, . . . , ap} of cardinality p containing exactly all the attractors
ai is called the attractor set. Due to the determinism of synchronous Boolean
networks, all the attractors are cycles. A cycle is a sequence (x1, . . . ,xq) of
length q such that ∀j ∈ [[1, q]], xj+1 = f(xj) and xq+1 = x1: once the sys-
tem reaches a state xj belonging to a cycle, it successively visits its states
xj+1, . . . ,xq,x1, . . . ,xj for infinity. In the particular case where q = 1, ai is a
point attractor. The set Bi ⊆ S containing exactly all the x ∈ S from which ai
can be reached is called its basin of attraction. With deterministic dynamical
systems, the family of sets (B1, . . . , Bp) constitutes a partition of S.

2.2 Definitions

Some concepts used in this work should be formally defined.

• physiological phenotype: A phenotype which does not impair the life
quantity/quality of the organism which exhibits it.

• pathological phenotype: A phenotype which impairs the life quantity/
quality of the organism which exhibits it.

• variant (of a biological network): Given a biological network of in-
terest, a variant is one of its versions, namely the network plus eventually
some modifications. It should be noted that this does not exclude the
possibility that a variant can be the network of interest as is.

• physiological variant: A variant which produces only physiological phe-
notypes. It is the biological network of interest as it should be, namely
the one of healthy organisms.

• pathological variant: A variant which produces at least one pathological
phenotype or which fails to produce at least one physiological phenotype.
It is a dysfunctional version of the biological network of interest, namely
a version found in ill organisms.

• physiological attractor set: The attractor set Aphysio of the physiolog-
ical variant.

• pathological attractor set: The attractor set Apatho of the pathological
variant.

• physiological Boolean transition function: The Boolean transition
function fphysio of the physiological variant.

• pathological Boolean transition function: The Boolean transition
function fpatho of the pathological variant.

• run: An iterative computation of x(k) starting from an x0 until an ai is
reached. It returns w = (x(k0), . . . ,x(kend)) where kend depends on when
ai is reached, and then on x0.
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• physiological attractor: An ai such that ai ∈ Aphysio.

• pathological attractor: An ai such that ai /∈ Aphysio.

• modality: The functional perturbation modai applied on a node vj ∈ V
of the network, either activating (modai = 1) or inactivating (modai = 0):
at each k, modai overwrites fj(x(k)) making xj(k + 1) = modai.

• target: A node targi ∈ V of the network on which a modai is applied.

• bullet: A couple (ctarg, cmoda) where ctarg = (targ1, . . . , targr) is a combi-
nation without repetition of targi and where cmoda = (moda1, . . . ,modar)
is an arrangement with repetition of modai, r ∈ [[1, n]] being the number
of targets in the bullet. Here, modai is intended to be applied on targi.

• therapeutic bullet: A bullet which makes Apatho ⊆ Aphysio.

• silver bullet: A therapeutic bullet which makes Apatho  Aphysio.

• golden bullet: A therapeutic bullet which makes Apatho = Aphysio.

The assumed link between phenotypes and attractors is the reason why at-
tractors are qualified as either physiological or pathological according to the
phenotype they produce. This is also the reason why, in this work, target iden-
tification aims at manipulating attractor sets of pathological variants.

2.3 Steps of the algorithm

The algorithm has two goals: i) finding therapeutic bullets, and ii) classifying
them as either golden or silver. A therapeutic bullet makes the pathological
variant unable at reaching pathological attractors, that is Apatho ⊆ Aphysio. If
such a bullet is applied on a pathological variant, the organism bearing it no
longer exhibits the associated pathological phenotypes. However, a therapeu-
tic bullet does not necessarily preserve/restore the physiological attractors. If
a therapeutic bullet preserves/restores the physiological attractors, that is if
Apatho = Aphysio, then it is a golden one, but if Apatho  Aphysio then it is a
silver one.

Given a physiological and a pathological variant, that is fphysio and fpatho,
the algorithm follows five steps:

1. with fphysio it computes the control attractor set Aphysio

2. it generates bullets and, for each of them, it performs the three following
steps

3. with fpatho plus the bullet, it computes the variant attractor set Apatho

4. it assesses the therapeutic potential of the bullet by comparing Aphysio

and Apatho to detect pathological attractors

5. if the bullet is therapeutic then it is classified as either golden or silver by
comparing Aphysio and Apatho for equality

These steps can be written in pseudocode as:

1 with fphysio compute Aphysio
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2 generate bullet_set
3 for bullet ∈ bullet_set do
4 with fpatho plus bullet compute Apatho

5 if Apatho ⊆ Aphysio then
6 bullet is therapeutic
7 if Apatho = Aphysio then
8 bullet is golden
9 else

10 bullet is silver
11 end if
12 end if
13 end for

The algorithm is described step by step but can be found as one block of pseu-
docode in Appendix 6.1 page 33.

2.3.1 Step 1: computing Aphysio

First of all, Aphysio has to be computed since it is the control and, as such,
determines what is pathological. To do so, runs are performed with fphysio and
the reached ai are stored in Aphysio. However, x0 ∈ S and card S increases
exponentially with n. Even for reasonable values of n, card S explodes: more
than 1 000 000 possible x0 for n = 20. One solution ensuring that all the ai
are reached is to start a run from each of the possible x0, that is from each of
the x ∈ S. Practically, this is unfeasible for an arbitrary value of n since the
required computational capacity can be too demanding. For example, assuming
that a run requires 1 millisecond and that n = 50, performing a run from each
of the 250 x ∈ S requires nearly 36 000 years.

Given that with deterministic dynamical systems (B1, . . . , Bp) is a partition
of S, a solution is to select a subset D ⊆ S of a reasonable cardinality containing
the x0 to start from. In this work, D is randomly selected from a uniform
distribution. The stumbling block of this solution is that it does not ensure
that at least one x0 per Bi is selected and then does not ensure that all the ai
are reached. This stumbling block holds only if card D < card S.

Again given that synchronous Boolean networks are deterministic, if a run
visits a state already visited during a previous run then its destination, that is
the reached attractor, is already found. If so, the run can be stopped and the
algorithm can jump to the next one. To implement this, the previous trajectories
are stored in a set H , the history, and at each k the algorithm checks if ∃w ∈
H : x(k) ∈ w. If this check is positive then the algorithm jumps to the next run.

To detect the attractors, since with deterministic dynamical systems they
are cycles, the algorithm checks at each k if x(k+ 1) is an already visited state
of the current run, namely if ∃k′ ∈ [[1, k]] : x(k + 1) = x(k′). If this check is
positive then ai = (x(k′), . . . ,x(k)).

This step can be written in pseudocode as:

1 prompt card D
2 card D = min(card D, 2n)
3 generate D ⊆ S
4 H = {}
5 Aphysio = {}
6 for x0 ∈ D do
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7 k = 1
8 x(k) = x0

9 while true do
10 if ∃w ∈ H : x(k) ∈ w then
11 break
12 end if
13 x(k + 1) = fphysio(x(k))
14 if ∃k′ ∈ [[1, k]] : x(k + 1) = x(k′) then
15 Aphysio = Aphysio ∪ {(x(k′), . . . ,x(k))}
16 break
17 end if
18 k = k + 1
19 end while
20 H = H ∪ {(x(1), . . . ,x(k))}
21 end for
22 return Aphysio

23 do step 2

Line 2 catches the mistake card D > card S.
It should be noted that the purpose of this work is not to propose an algo-

rithm for finding Boolean network attractors since advanced algorithms for such
tasks are already published [83–87]. The purpose is to propose a computational
methodology exploiting Boolean network attractors for in silico target identi-
fication, a methodology which requires de facto these attractors to be found.
This point is discussed in the Conclusion section page 22.

2.3.2 Step 2: generating bullets

Bullets are candidate perturbations to apply on the pathological variant to
make it unable at reaching pathological attractors and then unable at producing
pathological phenotypes. Generating a bullet requires a choice of targi ∈ V
and associated modai ∈ {0, 1}. In this work, there is no sequencing in target
engagement nor in modality application. This means that, given a bullet and
during a given run, all the modai are applied on their corresponding targi
throughout the run. As a consequence, for a given bullet, choosing the same
targi more than once is senseless while it is possible to choose the same modai
for more than one targi. Therefore, a bullet is a combination ctarg without
repetition of targi together with an arrangement cmoda with repetition of modai.

If bullets containing r targets have to be generated then there are n!/(r!·(n−
r)!) possible ctarg and, for each of them, there are 2r possible cmoda. This raises
the same computational difficulty than with the state space explosion since there
are (n! · 2r)/(r! · (n− r)!) possible bullets. For example, with n = 50 and r = 3
there are more than 150 000 possible bullets. Knowing that the algorithm, as
explained below, computes one attractor set per bullet, the computation time
becomes practically unfeasible.

To overcome this barrier, the algorithm asks for r as an interval [[rmin, rmax]],
asks for a maximum number maxtarg of ctarg to generate and asks for a maxi-
mum number maxmoda of cmoda to test for each ctarg. The algorithm then gener-
ates a set Ctarg of ctarg with card Ctarg ≤ maxtarg by randomly selecting, from
a uniform distribution and without repetition, nodes in the network. In the same
way, the algorithm generates a set Cmoda of cmoda with card Cmoda ≤ maxmoda
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by randomly choosing, from a uniform distribution and with repetition, modal-
ities as either activating (1) or inactivating (0). The result is the bullets: per
r ∈ [[rmin, rmax]], a Ctarg together with a Cmoda. As with the state space explo-
sion, the stumbling block of this method is that it does not ensure that all the
possible ctarg together with all the possible cmoda are tested. This stumbling
block holds only if maxtarg < n!/(r! · (n− r)!) or maxmoda < 2r.

This step can be written in pseudocode as:

1 prompt rmin, rmax,maxtarg,maxmoda

2 rmax = min(rmax, n)
3 golden_set = {}
4 silver_set = {}
5 for r ∈ [[rmin, rmax]] do
6 maxr

targ = min(maxtarg, n!/(r! · (n− r)!))
7 maxr

moda = min(maxmoda, 2
r)

8 Ctarg = {}
9 Cmoda = {}

10 while card Ctarg < maxr
targ do

11 generate ctarg /∈ Ctarg

12 Ctarg = Ctarg ∪ {ctarg}
13 end while
14 while card Cmoda < maxr

moda do
15 generate cmoda /∈ Cmoda

16 Cmoda = Cmoda ∪ {cmoda}
17 end while
18 do steps 3 to 5
19 end for
20 return golden_set, silver_set

Line 2 catches the mistake r > n. Lines 3 and 4 create the sets in which the
therapeutic bullets found in step 4 are classified as either golden or silver in step
5. Lines 6 and 7 catch the mistake where maxtarg or maxmoda is greater than
its maximum, which depends on r, hence the creation of maxr

targ and maxr
moda

to preserve the initially supplied value. Lines 11 and 15 ensure that only new
ctarg and cmoda are generated.

2.3.3 Step 3: computing Apatho

Having the control attractor set Aphysio and a bullet (ctarg, cmoda) ∈ Ctarg ×
Cmoda, the algorithm computes the variant attractor set Apatho under the effect
of (ctarg, cmoda) by almost the same way Aphysio is computed in step 1. How-
ever, fpatho is used instead of fphysio and (ctarg, cmoda) is applied: at each k,
fj(x(k)) is overwritten by modai ∈ cmoda, that is xj(k + 1) = modai, provided
that vj = targi ∈ ctarg. In order to apply all the generated bullets, the algo-
rithm uses two nested for loops. For each ctarg ∈ Ctarg, it uses successively
all the cmoda ∈ Cmoda. For each (ctarg, cmoda), the algorithm computes the
corresponding Apatho and does steps 4 and 5.

This step can be written in pseudocode as:

1 for ctarg ∈ Ctarg do
2 for cmoda ∈ Cmoda do
3 H = {}
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4 Apatho = {}
5 for x0 ∈ D do
6 k = 1
7 x(k) = x0

8 while true do
9 if ∃w ∈ H : x(k) ∈ w then

10 break
11 end if
12 x(k + 1) = fpatho(x(k))
13 for targi ∈ ctarg do
14 for vj ∈ V do
15 if vj = targi then
16 xj(k + 1) = modai
17 end if
18 end for
19 end for
20 if ∃k′ ∈ [[1, k]] : x(k + 1) = x(k′) then
21 Apatho = Apatho ∪ {(x(k′), . . . ,x(k))}
22 break
23 end if
24 k = k + 1
25 end while
26 H = H ∪ {(x(1), . . . ,x(k))}
27 end for
28 do step 4 and 5
29 end for
30 end for

Lines 13–19 are where bullets are applied.

2.3.4 Step 4: identifying therapeutic bullets

To identify therapeutic bullets among the generated ones, for each (ctarg, cmoda)
tested in step 3 and once the corresponding Apatho is obtained, the algorithm
compares it with Aphysio to check if Apatho ⊆ Aphysio. This check ensures that
the pathological attractors are removed and that if new attractors appear then
they are physiological. If this check is positive then the bullet is therapeutic
and the algorithm pursues with step 5.

This step can be written in pseudocode as:

1 if Apatho ⊆ Aphysio then
2 do step 5
3 end if

2.3.5 Step 5: assessing therapeutic bullets

Therapeutic bullets are qualified as either golden or silver according to their
ability at making the pathological variant reaching the physiological attractors.
All therapeutic bullets, being golden or silver, remove the pathological attrac-
tors without creating new ones, that is Apatho ⊆ Aphysio. However, this does
not imply that they preserve/restore the physiological attractors. A golden bul-
let preserves/restores the physiological attractors: Apatho = Aphysio whereas a
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silver bullet does not: Apatho  Aphysio.
In this setting, golden bullets are perfect therapies whereas silver bullets

are not. However, since precious things are rare and just as gold is rarer than
silver, finding golden bullets is less likely than finding silver ones. Indeed, given
that more constraints are required for a therapeutic bullet to be golden, it is
more likely that the found therapeutic bullets are silver, except in one case:
card Aphysio = 1.

Theorem 1. If card Aphysio = 1 then therapeutic bullets are golden.

Proof.

(therapeutic bullet) ⇒ (Apatho ⊆ Aphysio) (1)

(1) ⇒ (Apatho ∈ P(Aphysio)) (2)

(card Aphysio = 1) ⇒ (Aphysio = {a}) (3)

(3) ⇒ (P(Aphysio) = {∅, {a}}) (4)

((2) ∧ (4)) ⇒ ((Apatho = {a}) ∨ (Apatho = ∅)) (5)

(deterministic dynamical systems) ⇒ (A 6= ∅)(6)

(6) ⇒ (Apatho 6= ∅) (7)

((5) ∧ (7)) ⇒ (Apatho = {a}) (8)

((3) ∧ (8)) ⇒ (Apatho = Aphysio) (9)

(9) ⇒ (therapeutic bullet is golden) (10)

Practically, an organism bearing a pathological variant treated with a ther-
apeutic bullet no longer exhibits the associated pathological phenotypes. More-
over, if the therapeutic bullet is golden then the organism exhibits the same
phenotypes than its healthy counterpart. However, if the therapeutic bullet is
silver then the organism fails to exhibit at least one physiological phenotype.
With a silver bullet this is a matter of choice: what is the less detrimental
between a silver bullet and no therapeutic bullet at all?

This step can be written in pseudocode as:

1 if Apatho = Aphysio then
2 golden_set = golden_set ∪ {(ctarg, cmoda)}
3 else
4 silver_set = silver_set ∪ {(ctarg, cmoda)}
5 end if

2.4 Example network

To illustrate the algorithm, it is used on a Boolean model of the mammalian
cell cycle published by Faure et al [55]. This model is chosen for several rea-
sons: i) a synchronous updating is performed: to date, the algorithm focuses
on synchronous Boolean networks, ii) a mammalian biological system is mod-
eled: the closer to human physiology the model is the better it illustrates the
intended applications, iii) the cell cycle is a at the heart of cancer: this gives
relevancy to the example network, iv) the network comprises ten nodes: easily
computable in face of its state space, and v) attractors are already computed:
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useful to validate the algorithm in finding them. A graphical representation of
the example network is shown in Figure 1 page 15. Below are the corresponding
Boolean functions where, for the sake of readability, xi stands for xi(k) and xi+

stands for xi(k + 1):

CycD+ = CycD

Rb+ = (¬CycD ∧ ¬CycE ∧ ¬CycA ∧ ¬CycB) ∨ (p27 ∧ ¬CycD ∧ ¬CycB)

E2F+ = (¬Rb ∧ ¬CycA ∧ ¬CycB) ∨ (p27 ∧ ¬Rb ∧ ¬CycB)

CycE+ = E2F ∧ ¬Rb

CycA+ = (E2F ∧ ¬Rb ∧ ¬Cdc20 ∧ ¬(Cdh1 ∧ UbcH10))

∨(CycA ∧ ¬Rb ∧ ¬Cdc20 ∧ ¬(Cdh1 ∧ UbcH10))

p27+ = (¬CycD ∧ ¬CycE ∧ ¬CycA ∧ ¬CycB)

∨(p27 ∧ ¬(CycE ∧ CycA) ∧ ¬CycB ∧ ¬CycD)

Cdc20+ = CycB

Cdh1+ = (¬CycA ∧ ¬CycB) ∨ Cdc20 ∨ (p27 ∧ ¬CycB)

UbcH10+ = ¬Cdh1 ∨ (Cdh1 ∧ UbcH10 ∧ (Cdc20 ∨ CycA ∨ CycB))

CycB+ = ¬Cdc20 ∧ ¬Cdh1

Having the example network, two variants are needed: the physiological one
and the pathological one. The physiological variant is the network as is while the
pathological variant is the network plus a constitutive activation/inactivation
of at least one of its nodes. For simplicity, and given the relatively small num-
ber of entities, only one is chosen: the retinoblastoma protein Rb for which a
constitutive inactivation is applied. To implement this, the corresponding fi
becomes:

Rb(k + 1) = 0

in fpatho. Rb is chosen because its inactivation occurs in many cancers [88].
Therefore, a network bearing a constitutive inactivation of it should be a relevant
example of a pathological variant.

2.5 Case study

To illustrate the intended usage of the proposed methodology, the algorithm is
used on a Boolean model of the Fanconi Anemia/Breast Cancer (FA/BRCA)
pathway published by Rodriguez et al [46]. This model is chosen for several rea-
sons: i) two pathological conditions are studied: required for a case study of an
in silico target identification, ii) the physiological and pathological variants are
clearly described: required by the algorithm, iii) it is nearly three times bigger
than the example network: representative of a more comprehensive biological
model while remaining computationally tractable, iv) synchronous updating is
used: to date, the algorithm focuses on synchronous Boolean networks, and v)
attractors are already interpreted in terms of phenotypes.

The FA/BRCA pathway is dedicated to DNA repair, more precisely to in-
terstrand cross-link (ICL) removal. As expected with any DNA repair impair-
ment, individuals suffering from FA/BRCA pathway malfunction are subjected
to increased risk of cancer, such as in Fanconi anemia, a rare genetic disor-
der causing bone marrow failure, congenital abnormalities and increased risk
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Figure 1 – Graphical representation of the example network adapted from [55]. CDKs
(cyclin-dependent kinases) are the catalytic partners of cyclins and, in this model, are not
explicitly shown since the activity of CDK-cyclin complexes essentially depends on cyclins.
Furthermore, the inhibition of E2F by Rb is modeled by opposing Rb to the effects of E2F
on its targets. The same applies to the inhibition of CycE and CycA by p27. For a complete
description of the model, see [55]. CycD: CDK4/6-cyclin D complex, input of the model, ini-
tiates the cell cycle, activated by positive signals such as growth factors; CycE: CDK2-cyclin
E complex; CycA: CDK2-cyclin A complex; CycB: CDK1-cyclin B complex; Rb: retinoblas-
toma protein, a tumor suppressor; E2F: a family of transcription factors divided into activator
and repressor members, in this model E2F represents the activator members; p27: p27/Kip1,
a CKI (CDK inhibitor); Cdc20: an APC (Anaphase Promoting Complex, an E3 ubiquitin
ligase) activator; Cdh1: an APC activator; UbcH10: an E2 ubiquitin conjugating enzyme.

of cancer [89–91]. Rodriguez et al propose a Boolean model comprising the
FA/BRCA pathway and three types of DNA damages commonly observed in
Fanconi anemia, namely ICLs, double-strand breaks (DSBs) and DNA adducts
(ADDs). It should be noted that the ICL repair process creates DSBs and ADDs
before removing them, thus leaving an undamaged DNA ready for the cell cycle.
For a complete description of the model, see [46]. Below are the corresponding
Boolean functions where, for the sake of readability, xi stands for xi(k) and xi+

stands for xi(k + 1):
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ICL+ = ICL ∧ ¬DSB

FANCM+ = ICL ∧ ¬CHKREC

FAcore+ = FANCM ∧ (ATR ∨ ATM) ∧ ¬CHKREC

FANCD2I+ = FAcore ∧ ((ATM ∨ ATR) ∨ (H2AX ∧DSB)) ∧ ¬USP1

MUS81+ = ICL

FANCJBRCA1+ = (ICL ∨ ssDNARPA) ∧ (ATM ∨ATR)

XPF+ = (MUS81 ∧ p53 ∧ ¬(FAcore ∧ FANCD2I ∧ FAN1))

∨(MUS81 ∧ ¬FANCM)

FAN1+ = MUS81 ∧ FANCD2I

ADD+ = (ADD ∨ (MUS81 ∧ (FAN1 ∨XPF ))) ∧ ¬PCNATLS

DSB+ = (DSB ∨ FAN1 ∨XPF ) ∧ ¬(NHEJ ∨HRR)

PCNATLS+ = (ADD ∨ (ADD ∧ FAcore)) ∧ ¬(USP1 ∨ FAN1)

MRN+ = DSB ∧ ATM ∧ ¬((KU ∧ FANCD2I) ∨RAD51 ∨ CHKREC)

BRCA1+ = DSB ∧ (ATM ∨ CHK2 ∨ ATR) ∧ ¬CHKREC

ssDNARPA+ = DSB ∧ ((FANCD2I ∧ FANCJBRCA1) ∨MRN) ∧ ¬(RAD51 ∨KU)

FANCD1N+ = (FANCD2I ∧ ssDNARPA ∧ ¬CHKREC)

∨(ssDNARPA ∧BRCA1)

RAD51+ = ssDNARPA ∧ FANCD1N ∧ ¬CHKREC

HRR+ = DSB ∧ RAD51 ∧ FANCD1N ∧ BRCA1 ∧ ¬CHKREC

USP1+ = ((FANCD1N ∧ FANCD2I) ∨ PCNATLS) ∧ ¬FANCM

KU+ = DSB ∧ ¬(MRN ∨ FANCD2I ∨ CHKREC)

DNAPK+ = (DSB ∧KU) ∧ ¬CHKREC

NHEJ+ = ((DSB ∧DNAPK ∧KU) ∧ ¬(ATM ∧ ATR))

∨(¬((FANCJBRCA1 ∧ ssDNARPA) ∨CHKREC)

∧DSB ∧DNAPK ∧XPF )

ATR+ = (ssDNARPA ∨ FANCM ∨ ATM) ∧ ¬CHKREC

ATM+ = (ATR ∨DSB) ∧ ¬CHKREC

p53+ = (((ATM ∧ CHK2) ∨ (ATR ∧CHK1)) ∨DNAPK) ∧ ¬CHKREC

CHK1+ = (ATM ∨ ATR ∨DNAPK)∧ ¬CHKREC

CHK2+ = (ATM ∨ ATR ∨DNAPK)∧ ¬CHKREC

H2AX+ = DSB ∧ (ATM ∨ ATR ∨DNAPK) ∧ ¬CHKREC

CHKREC+ = ((PCNATLS ∨NHEJ ∨HRR) ∧ ¬DSB)

∨((¬ADD) ∧ (¬ICL) ∧ (¬DSB) ∧ ¬CHKREC)

The physiological variant is the FA/BRCA pathway model as is. To it, Ro-
driguez et al propose two pathological variants, here called patho1 and patho2,
modeling two mutations involving genes of the FA/BRCA pathway. These mu-
tations are observed in patients suffering from Fanconi anemia [92]. The first
one involves the FANCA gene, corresponding to the FAcore variable, and the
second one involves the FANCD1/BRCA2 or FANCN/PALB2 gene, correspond-
ing to the FANCD1N variable. These mutations are of loss-of-function kind:
to simulate them, the corresponding fi become

FAcore(k + 1) = 0

for FANCA gene null mutation in fpatho1 and
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FANCD1N(k + 1) = 0

for FANCD1/BRCA2 or FANCN/PALB2 gene null mutation in fpatho2.

2.6 Implementation

The algorithm is implemented in Fortran compiled with GFortran1. The code
is available on GitHub2 at https://github.com/arnaudporet/kali-targ.

3 Results

In this section, results produced with the algorithm on the example network are
exposed to illustrate how it works. Next, results produced with the algorithm
on the case study are exposed to illustrate its intended applications for target
identification.

3.1 Results of step 1

Owing to the relatively small size of the example network, card D is set to
card S = 1024. Since card D = card S, all the attractors are found. Attractors
are presented as matrices where, for an attractor of length q, lines correspond to
the xi(k), k ∈ [[1, q]], and columns to x(k). The algorithm returns the following
attractors:

a1 =

CycD 1 1 1 1 1 1 1
Rb 0 0 0 0 0 0 0
E2F 0 1 1 1 0 0 0
CycE 0 0 1 1 1 0 0
CycA 0 0 0 1 1 1 1
p27 0 0 0 0 0 0 0
Cdc20 1 0 0 0 0 0 1
Cdh1 1 1 1 1 0 0 0
UbcH10 1 1 0 0 0 1 1
CycB 0 0 0 0 0 1 1

a2 =

CycD 0
Rb 1
E2F 0
CycE 0
CycA 0
p27 1
Cdc20 0
Cdh1 1
UbcH10 0
CycB 0

1http://www.gnu.org/software/gcc/fortran/
2https://github.com/

https://github.com/arnaudporet/kali-targ
http://www.gnu.org/software/gcc/fortran/
https://github.com/
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each of them attracting 50% of the x ∈ S under fphysio. Then, Aphysio =
{a1, a2} and corresponds to the results obtained by Faure et al. In terms of
phenotypes, a1 corresponds to cell cycle whereas a2 corresponds to quiescence.

3.2 Results of steps 2 to 5

Results of steps 2 to 5 are grouped since only the therapeutic bullets found
in step 4 and classified in step 5 are returned. The algorithm is launched with
rmin = 1 and rmax = 2. Due to the relatively small size of the example network,
maxtarg and maxmoda are set to their maximum, namely maxtarg = 45 and
maxmoda = 4. Consequently, all the possible bullets made of 1 to 2 targets are
tested. The algorithm returns the following therapeutic bullets:

+CycD silver
+CycD −p27 silver
−CycD +Rb silver
+CycD −Rb silver

where + means therapeutic activation and − means therapeutic inactivation.
It should be noted that no golden bullets are found, an unsurprising result since
they are rarer than silver ones.

Given these results, therapeutic activation of Rb, which is inactivated in
the pathological variant, is not enough to remove the pathological attractors.
Indeed, as seen in the third bullet, therapeutic activation of Rb must be ac-
companied by therapeutic inactivation of CycD. To better illustrate what is
performed to obtain these therapeutic bullets, below is Apatho without any bul-
let:

a3 =

CycD 0 0 0 0 0 0 0 0
Rb 0 0 0 0 0 0 0 0
E2F 1 1 1 1 0 0 0 0
CycE 0 1 1 1 1 0 0 0
CycA 0 0 1 1 1 1 1 0
p27 1 1 1 0 0 0 0 0
Cdc20 0 0 0 0 0 0 1 1
Cdh1 1 1 1 1 0 0 0 1
UbcH10 1 0 0 0 0 1 1 1
CycB 0 0 0 0 0 1 1 0

a4 =

CycD 1 1 1 1 1 1 1
Rb 0 0 0 0 0 0 0
E2F 1 1 1 0 0 0 0
CycE 0 1 1 1 0 0 0
CycA 0 0 1 1 1 1 0
p27 0 0 0 0 0 0 0
Cdc20 0 0 0 0 0 1 1
Cdh1 1 1 1 0 0 0 1
UbcH10 1 0 0 0 1 1 1
CycB 0 0 0 0 1 1 0

each of these two attractors attracting 50% of the x ∈ S under fpatho. It
should be noted that a4 = a1 ∈ Aphysio: a4 is a physiological attractor which
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also belongs to Apatho. Indeed, it is possible that the pathological variant ex-
hibits physiological attractors: Apatho is not the set containing exactly all the
pathological attractors, it is the attractor set of the pathological variant, so
Aphysio ∩ Apatho 6= ∅ is possible. However, a3 /∈ Aphysio: it is a pathological
attractor and is what a therapeutic bullet, being golden or silver, is intended to
remove.

Again to better illustrate what is performed to obtain these therapeutic
bullets, below is Apatho under the third bullet:

CycD 0
Rb 1
E2F 0
CycE 0
CycA 0
p27 1
Cdc20 0
Cdh1 1
UbcH10 0
CycB 0

which is a2. As expected for a therapeutic bullet, the pathological attractor a3
is removed. However, the physiological attractor a1 is not restored: the third
therapeutic bullet is silver. Consequently, with this therapeutic bullet no cell
cycle occurs and the only reachable phenotype is quiescence. While disabling
the cell cycle of cancer cells is beneficial, disabling the cell cycle of healthy cells
is not. As mentioned above, with silver bullets this is a matter of choice.

3.3 Results of the case study

With the case study, card S = 268 435 456: computing attractors from all the
x ∈ S becomes too demanding. Indeed, it should be recalled that the algorithm
computes one attractor set per bullet, namely Apatho under the tested bullet.
Consequently, card D is set to a more reasonable value: card D = 10 000.
Despite that card D < card S, it seems sufficient for the algorithm to find all
the attractors, just as Rodriguez et al whose the computation covers the whole
state space. Below are the computed attractors:

• Aphysio = {a1}

• Apatho1 = {a1}

• Apatho2 = {a1, a2}, a1 and a2 attracting respectively 29.5% and 70.5% of
the x ∈ D under fpatho2

where
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a1 =

ICL 0 0
FANCM 0 0
FAcore 0 0
FANCD2I 0 0
MUS81 0 0
FANCJBRCA1 0 0
XPF 0 0
FAN1 0 0
ADD 0 0
DSB 0 0
PCNATLS 0 0
MRN 0 0
BRCA1 0 0
ssDNARPA 0 0
FANCD1N 0 0
RAD51 0 0
HRR 0 0
USP1 0 0
KU 0 0
DNAPK 0 0
NHEJ 0 0
ATR 0 0
ATM 0 0
p53 0 0
CHK1 0 0
CHK2 0 0
H2AX 0 0
CHKREC 0 1

a2 =

ICL 0
FANCM 0
FAcore 0
FANCD2I 0
MUS81 0
FANCJBRCA1 1
XPF 0
FAN1 0
ADD 0
DSB 1
PCNATLS 0
MRN 1
BRCA1 1
ssDNARPA 1
FANCD1N 0
RAD51 0
HRR 0
USP1 0
KU 0
DNAPK 0
NHEJ 0
ATR 1
ATM 1
p53 1
CHK1 1
CHK2 1
H2AX 1
CHKREC 0

and their biological interpretation:

• a1: cell cycle progression

• a2: cell cycle arrest

In physiological conditions, in case of a damaged DNA, cells repair it be-
fore performing the cell cycle, or die if repair fails. Such checkpoints enable
cells to ensure genomic integrity by preventing damaged DNA to be replicated
and then propagated [93, 94]. Otherwise, genetic instability may appears, po-
tentially leading to cancer [95]. The results show that the physiological vari-
ant is able to ensure genomic integrity since its unique attractor is a1 where
ICL = DSB = ADD = 0: DNA damages are repaired, if any, and the cell
cycle can safely occur. Interestingly, the same physiological phenotype is com-
puted for patho1 where Apatho1 = Aphysio. This suggests that cells bearing
FANCA gene null mutation are nonetheless able to repair DNA. With patho2,
a pathological attractor appears: a2, where DSB = 1. This suggests that cells
bearing FANCD1/BRCA2 or FANCN/PALB2 gene null mutation are unable to
repair DSBs, explaining why a2 corresponds to cell cycle arrest: DNA remains
damaged. It should be noted that a1 ∈ Apatho2, suggesting that from some x0,
that is under some conditions, such cells could be able to repair DNA. How-
ever, a1 attracts only 29.5% of the x ∈ D under fpatho2, indicating that the
pathological phenotype associated with a2 is the most likely.
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Altogether, according to the computed attractors and their phenotypic in-
terpretation, and limited to the scope studied by the model of Rodriguez et al,
FANCA gene null mutation may not induce pathological phenotypes. However,
with FANCD1/BRCA2 or FANCN/PALB2 gene null mutation, two phenotypes
are predicted: a physiological one and a pathological one, the latter being the
most likely. Therefore, the algorithm has to operate on patho2 to find bullets
able to remove the pathological attractor a2. By comprehensively testing all the
bullets made of 1 to 3 targets, the algorithm returns the following results:

number of all possible bullets number of therapeutic bullets
r = 1 56 1 (1.786%)
r = 2 1 512 20 (1.323%)
r = 3 26 208 191 (0.729%)

all therapeutic bullets being golden since card Aphysio = 1, as demonstrated
in the Theorem 1 page 13. A list of the computed therapeutic bullets can be
found in Appendix 6.2 page 35. Given that in a1, what the pathological variant
is forced to reach by means of therapeutic bullets, almost all variables are valued
at 0, it is unsurprising that all targets in the computed therapeutic bullets have
to be inhibited, that is set to 0.

Below is the frequency of each node in the found therapeutic bullets:

node frequency in the found therapeutic bullets
ATM 87.736%
ICL 22.170%

BRCA1 18.396%
DSB 11.792%
MRN 10.377%

FANCM 9.906%
ADD 9.906%

FANCJBRCA1 9.434%
ssDNARPA 9.434%
FANCD1N 9.434%

RAD51 9.434%
HRR 9.434%
USP1 9.434%
CHK2 9.434%
H2AX 9.434%
FAcore 8.019%

FANCD2I 8.019%
FAN1 8.019%
p53 8.019%

CHK1 8.019%
XPF 7.547%
ATR 2.358%

MUS81 0.943%
PCNATLS 0.472%

KU 0.472%
DNAPK 0.472%
NHEJ 0.472%

CHKREC 0%
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In this case study, DNA damages such as ICLs and DSBs are the pathological
events. Unsurprisingly, the algorithm suggests them to be targeted: this is a
logical consequence. However, DNA damages are not biomolecules in themselves
and directly targeting them by means of drugs appears senseless. What is
relevant are the biomolecules of the FA/BRCA pathway suggested as therapeutic
targets. Interestingly, ATM dominates all the other candidates, predicting it to
be a pivotal therapeutic target for the patho2 condition, namely the FA/BRCA
pathway bearing FANCD1/BRCA2 or FANCN/PALB2 gene null mutation, as
observed in Fanconi anemia.

4 Conclusion

Under the assumption that attractors of dynamical systems and phenotypes of
biological networks are linked when the former models the latter, the results
show that the algorithm succeeds in performing the proposed in silico target
identification. It returns therapeutic bullets for a pathological variant of the
mammalian cell cycle relevant in cancer and for a pathological variant modeling
Fanconi anemia. Consequently, the algorithm can be used on other synchronous
Boolean models of biological networks involved in diseases for in silico target
identification. It is intended to be of use in the early steps of target identification
by providing an efficient way to identify candidate targets prior to costly wet lab
experiments. However, both the physiological and pathological variants have to
be known. This can constitute a limit of the proposed methodology since not
all the pathophysiologies are known.

Target identification, whether performed in silico or not, is a step belonging
to a wider process: drug discovery. Having demonstrated a potential target
in silico, or even in vitro, is far from having a medication. Further work and
many years are necessary before obtaining a drug which is effective in vivo. For
example, and among other characteristics, such a drug has to be absorbed by
the organism, has to reach its target and has to be non-toxic at therapeutic
dosages. Furthermore, as with any in silico evidence, it should be validated
through wet lab experiments: there is a bridge to cross between theory and
practice. Indeed, mathematical models approximate reality without reproducing
it and theory must meet practice. For example, targeting ATM should restore
a physiological running of the FA/BRCA pathway bearing FANCD1/BRCA2
or FANCN/PALB2 gene null mutation. However, if ATM operates in other
pathways, targeting it may disturb them, thus potentially creating de novo
non-physiological conditions. Nevertheless, it is expected that the algorithm is
of interest for target identification, notably by exploiting the inexpensiveness
and predictive power of computational approaches to optimize the efficiency of
costly wet lab experiments..

While finding Boolean network attractors of biological networks is not the
purpose of this work, it is a necessary step which is in itself a challenging field
of computational biology. Therefore, incorporating advances made in this field
could be an interesting improvement. Another possible improvement could be
to extend the algorithm for asynchronous Boolean networks since such models
are likely to more accurately describe the dynamics of biological systems [96,97].
Indeed, in biological systems, events may be subjected to stochasticity, may not
occur simultaneously or may not belong to the same time scale, three points
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that a synchronous updating scheme does not take into account.
Yet another possible improvement could be to use a finer logic, such as multi-

valued logic. One of the main limitations of Boolean models is that variables can
take only two values. In reality, things are not necessarily binary and variables
should be able to take more values. Multivalued logic enables it in a discrete
manner where variables can take a finite number of values between 0 (false) and
1 (true). For example, one can state that Rb is partly impaired rather than to-
tally. Such a statement is not implementable with Boolean models but is with
multivalued ones such as, for example, a three-valued logic where true = 1,
moderate = 0.5 and false = 0.

Finally, considering the basin of attraction of the pathological attractors
could be an interesting extension of the criterion for selecting therapeutic bullets.
In that case, the therapeutic potential of bullets could be assessed by estimating
their ability at reducing the basin of the pathological attractors, as performed
by Fumia et al with their Boolean model of cancer pathways [42]. Such a
criterion enables to consider the particular case where pathological attractors
are removed, that is where pathological basins are reduced to the empty set,
but also the other cases where pathological basins are not necessarily reduced
to the empty set. Such a less restrictive selection of therapeutic bullets would
enable to consider more targeting strategies for counteracting diseases.

5 Additional improvements

First of all, some additional definitions should be stated:

• physiological state space: The state space Sphysio of the physiological
variant.

• pathological state space: The state space Spatho of the pathological
variant.

• testing state space: The state space Stest of the pathological variant
under the effect of a bullet.

• physiological basin: The basin of attraction Bphysio,i of a physiological
attractor aphysio,i.

• pathological basin: The basin of attraction Bpatho,i of a pathological
attractor apatho,i.

• n-bullet: A bullet made of n targets.

Among the possible improvements mentioned in the Conclusion section page
22, two are done: extending the algorithm for multivalued logic and considering
pathological basins for selecting therapeutic bullets.

5.1 Multivalued logic

5.1.1 Introduction

One of the main limitations of Boolean networks is that variables can take only
two values, which can be quite simplistic. Depending on what variables model,



5 ADDITIONAL IMPROVEMENTS 24

such as activity level of enzymes or abundance of gene products, considering
more than two possible levels should enable models to be more realistic. Without
leaving the logic-based modeling formalism, one solution is to extend Boolean
logic to multivalued logic [98]. As with Boolean logic, variables of multivalued
logic are discrete, their value belonging to [[0; 1]] where 0 means false and 1 means
true. With Boolean logic, only 0 and 1 can be used to valuate variables. With
multivalued logic, an arbitrary finite number h of values in [[0; 1]] can be used.
Therefore, variables of multivalued logic can model more than only two possible
levels, enabling models to be more realistic than those based on Boolean logic.

5.1.2 Methods

Boolean logic can be seen as a particular case of multivalued logic: it is a bi-
valued logic where variables take their value in {0, 1}. While Boolean operators
work well in this case, multivalued logic requires suitable logical operators to be
introduced. One solution is to use a mathematical formulation of the Boolean
operators which also works with any multivalued logic, just as the Zadeh oper-
ators. These logical operators are a mathematical generalization of the Boolean
ones proposed for fuzzy logic by its pioneer Lotfi Zadeh. Their mathematical
formulation is as follow:

AND(x, y) = min(x, y)

OR(x, y) = max(x, y)

NOT (x) = 1− x

With a h-valued logic, card S = hn. If h = 2 then this is the Boolean
case, where card S already raises computational difficulties. With an arbitrary
h > 2, card S raises even more computational difficulties. The same applies to
the testable bullets since there are hr possible cmoda and then (n!·hr)/(r!·(n−r)!)
possible bullets. To illustrate how the algorithm works with a multivalued logic
without overloading it, a 3-valued logic is used with {0, 0.5, 1} as domain of
value: xi(k) ∈ {0, 0.5, 1}. 0 and 1 have the same meaning as in Boolean logic,
namely false and true respectively. 0.5 is an intermediate truth degree which can
be seen as an intermediate level of activity or abundance, depending on what
is modeled. Consequently, S = {0, 0.5, 1}n implying x0,x(k) ∈ {0, 0.5, 1}n,
D ⊆ {0, 0.5, 1}n and modai ∈ {0, 0.5, 1}. Moreover, the Boolean operators of
the fi are replaced by the Zadeh operators. This results in the following minor
changes in the pseudocode of the algorithm described in Appendix 6.1 page 33:

line Boolean logic h-valued logic
2 card D = min(card D, 2n) card D = min(card D, hn)
29 maxr

moda = min(maxmoda, 2
r) maxr

moda = min(maxmoda, h
r)

How the algorithm works with this 3-valued logic is illustrated with the
example network, whose the logical functions become:



5 ADDITIONAL IMPROVEMENTS 25

CycD+ = CycD

Rb+ = max(min(1 − CycD, 1− CycE, 1− CycA, 1− CycB),

min(p27, 1− CycD, 1− CycB))

E2F+ = max(min(1 − Rb, 1− CycA, 1− CycB), min(p27, 1− Rb, 1− CycB))

CycE+ = min(E2F, 1− Rb)

CycA+ = max(min(E2F, 1− Rb, 1− Cdc20, 1−min(Cdh1, UbcH10)),

min(CycA, 1− Rb, 1− Cdc20, 1−min(Cdh1, UbcH10)))

p27+ = max(min(1 − CycD, 1− CycE, 1− CycA, 1− CycB),

min(p27, 1−min(CycE, CycA), 1− CycB, 1− CycD))

Cdc20+ = CycB

Cdh1+ = max(min(1 − CycA, 1− CycB), Cdc20,min(p27, 1− CycB))

UbcH10+ = max(1 − Cdh1, min(Cdh1, UbcH10, max(Cdc20, CycA,CycB)))

CycB+ = min(1− Cdc20, 1− Cdh1)

which is fphysio. For fpatho, owing to this 3-valued logic, a constitutive but
partial inactivation of Rb is simulated. The corresponding fi becomes:

Rb+ = 0.5

in fpatho.

5.1.3 Results

With the example network modeled by this 3-valued logic, card S = 59 049,
which remains computationally tractable. Therefore, card D = card S: all the
attractors are found. With the physiological variant, the algorithm returns:

Aphysio = {aphysio1, aphysio2, aphysio3, aphysio4, aphysio5, aphysio6}

where

aphysio1 =

CycD 0
Rb 0.5
E2F 0.5
CycE 0.5
CycA 0.5
p27 0.5
Cdc20 0.5
Cdh1 0.5
UbcH10 0.5
CycB 0.5

aphysio2 =

CycD 0
Rb 1
E2F 0
CycE 0
CycA 0
p27 1
Cdc20 0
Cdh1 1
UbcH10 0
CycB 0
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aphysio3 =

CycD 0.5
Rb 0.5
E2F 0.5
CycE 0.5
CycA 0.5
p27 0.5
Cdc20 0.5
Cdh1 0.5
UbcH10 0.5
CycB 0.5

aphysio4 =

CycD 1
Rb 0
E2F 0.5
CycE 0.5
CycA 0.5
p27 0
Cdc20 0.5
Cdh1 0.5
UbcH10 0.5
CycB 0.5

aphysio5 =

CycD 0 0
Rb 0.5 1
E2F 0 0.5
CycE 0 0
CycA 0 0
p27 0.5 1
Cdc20 0.5 0
Cdh1 0.5 1
UbcH10 0.5 0.5
CycB 0 0.5

aphysio6 =

CycD 1 1 1 1 1 1 1
Rb 0 0 0 0 0 0 0
E2F 0 1 1 1 0 0 0
CycE 0 0 1 1 1 0 0
CycA 0 0 0 1 1 1 1
p27 0 0 0 0 0 0 0
Cdc20 1 0 0 0 0 0 1
Cdh1 1 1 1 1 0 0 0
UbcH10 1 1 0 0 0 1 1
CycB 0 0 0 0 0 1 1

and their corresponding basin of attraction:

ai Bi (in % of card Sphysio)
aphysio1 9.9%
aphysio2 20.1%
aphysio3 33.3%
aphysio4 24.5%
aphysio5 3.4%
aphysio6 8.8%

It should be noted that aphysio2 and aphysio6 are the two physiological attractors
found in the Boolean case. Indeed, since {0, 1} ⊂ {0, 0.5, 1} and since the
Zadeh operators also work with Boolean logic, Boolean logic is included in this
three-valued logic. This means that results obtainable with the former are
also obtainable with the latter. With the pathological variant, where Rb is
constitutively but partially inactivated, the algorithm returns:

Apatho = {aphysio1, aphysio3, apatho1}
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where

apatho1 =

CycD 1
Rb 0.5
E2F 0.5
CycE 0.5
CycA 0.5
p27 0
Cdc20 0.5
Cdh1 0.5
UbcH10 0.5
CycB 0.5

ans their corresponding basin of attraction:

ai Bi (in % of card Spatho)
aphysio1 33.3%
aphysio3 33.3%
apatho1 33.3%

Only aphysio1 and aphysio3 remain, while apatho1 appears and is what therapeutic
bullets have to remove from Stest.

As in the Boolean case, the algorithm is launched with rmin = 1 and rmax =
2. maxtarg and maxmoda are set to their maximum, namely maxtarg = 45
and maxmoda = 9: all the 1, 2-bullets are tested. The algorithm returns the
following therapeutic bullets:

CycD[0] silver
CycD[0.5] silver
CycD[0] Rb[0.5] silver
CycD[0.5] Rb[0.5] silver
CycD[1] Rb[0] silver
CycD[0] E2F [0.5] silver
CycD[0.5] E2F [0.5] silver
CycD[0] CycE[0.5] silver
CycD[0.5] CycE[0.5] silver
CycD[0] CycA[0.5] silver
CycD[0.5] CycA[0.5] silver
CycD[0] p27[0.5] silver
CycD[0.5] p27[0.5] silver
CycD[0] Cdc20[0.5] silver
CycD[0.5] Cdc20[0.5] silver
CycD[0] Cdh1[0.5] silver
CycD[0.5] Cdh1[0.5] silver
CycD[0] UbcH10[0.5] silver
CycD[0.5] UbcH10[0.5] silver
CycD[0] CycB[0.5] silver
CycD[0.5] CycB[0.5] silver

where X [y] means that the node X ∈ V has to be set to the value y ∈ {0, 0.5, 1}.
For example, the third therapeutic bullet is made of the targets CycD and Rb
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whose the value has to be set to 0 and 0.5 respectively. As in the Boolean case,
it should be noted that no golden bullets are found, an unsurprising result since
they are rarer than silver ones.

5.1.4 Conclusion

The algorithm is now extended for multivalued logic, which includes the Boolean
one. This means that the previous strictly Boolean version of the algorithm is
included in this new one. Moreover, allowing variables to take an arbitrary finite
number of values should enable to more accurately model biological processes
and produce more fine-tuned therapeutic bullets. However, this accuracy and
fine-tuning are at the cost of an increased computational requirement. Indeed, in
this work, the computational requirement essentially depends on the cardinality
of the state space, which itself depends on the size of the model and the used
multivalued logic. Therefore, the size of the model and the used multivalued
logic should be balanced: the smaller the model is, the more variables should
be finely valued. For example, for a fine therapeutic investigation, the model
should only contain the essential and specific pieces of the pathophysiology of
interest, modeled by a finely valued logic. On the other hand, for a gross
therapeutic investigation, an exhaustive model could be used but modeled by a
coarse-grained logic, such as the Boolean one. Finally, it should be noted that
the ultimate multivalued logic is the infinitely valued one, which is fuzzy logic.
With fuzzy logic, the whole [0; 1] ⊂ R is used to valuate variables, which should
bring the best accuracy for the qualitative modeling formalism [99].

5.2 Therapeutic bullet assessment

5.2.1 Introduction

Till now, the algorithm requires therapeutic bullets to remove all the patho-
logical attractors from the pathological state space, so that the pathological
variant no longer exhibits pathological phenotypes. This criterion for selecting
therapeutic bullets can appear somewhat drastic since it is all or nothing. A
less strict criterion should enable to consider more targeting strategies, and then
more possibilities for counteracting diseases. Certainly, a less restrictive crite-
rion could bring less “powerful” therapeutic bullets, but being too demanding
potentially leads to no results and loss of nonetheless interesting findings.

The therapeutic potential of bullets could be assessed by estimating their
ability at reducing the cardinality of the pathological basins. This is a more
permissive criterion since therapeutic bullets no longer have to necessarily re-
move the pathological attractors. Reducing the cardinality of a pathological
basin renders the corresponding pathological attractor less reachable, and then
the associated pathological phenotype less likely. This new criterion includes
the previous one: removing an attractor means reducing its basin of attraction
to the empty set. Therefore, therapeutic bullets obtainable with the previous
criterion are also obtainable with this new one.

5.2.2 Methods

To implement this new criterion for selecting therapeutic bullets, the algo-
rithm considers a bullet as therapeutic if it increases card

⋃
Bphysio,i in Stest
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without creating de novo attractors. Since the attractors are either physio-
logical or pathological, increasing card

⋃
Bphysio,i is equivalent to decreasing

card
⋃
Bpatho,i. The goal of this new criterion is to increase the physiological

part of Stest, which is equivalent to decreasing its pathological part. Conse-
quently, a pathological variant treated by such a therapeutic bullet tends to, but
not necessarily reaches, an overall physiological behavior. However, as with the
previous criterion, it does not ensure that the aphysio,i are preserved/restored.
A fortiori, it does not ensure that the Bphysio,i in Stest are as in Sphysio. This
means that it does not ensure that the reachability of the aphysio,i is preserved/
restored. Nevertheless, as with the previous criterion, this is a matter of choice
between a therapeutic bullet or not. To assist this choice and better visualize
the effects of therapeutic bullets, the card Bphysio,i and card Bpatho,i in Stest

are computed.
Implementing this new criterion for selecting therapeutic bullets is a major

change. Therefore, the pseudocode of the algorithm presented in Appendix 6.1
page 33 is rewritten and structured into three modules:

• the compute_A function, which computes Aphysio or Apatho, depending
on which of the fphysio or fpatho is passed

• the compute_cover function, which for two attractor sets A1 and A2 com-
putes the covering of S2 by

⋃
B1,i, expressed in percents of card S2

• the compute_T function, which computes a set T of therapeutic bullets

Below is the corresponding pseudocode:

function A = compute_A(f , ctarg, cmoda, D, V )

1 A = {}
2 for x0 ∈ D do
3 k = 1
4 x(k) = x0

5 while true do
6 x(k + 1) = f(x(k))
7 for targi ∈ ctarg do
8 for vj ∈ V do
9 if vj = targi then

10 xj(k + 1) = modai
11 end if
12 end for
13 end for
14 if ∃k′ ∈ [[1, k]] : x(k + 1) = x(k′) then
15 ai.seq = (x(k′), . . . ,x(k))
16 if ∃aj ∈ A : ai.seq = aj .seq then
17 aj .freq = aj .freq + 1
18 else
19 ai.freq = 1
20 A = A ∪ {ai}
21 end if
22 break
23 end if
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24 k = k + 1
25 end while
26 end for
27 for a ∈ A do
28 a.freq = a.freq · 100/card D
29 end for
30 return A

end function
For Aphysio and Apatho, which are computed without bullet, the empty bullet
((), ()) has to be passed. The ai are represented as structures composed of two
fields: ai.seq, which is the sequence of ai (line 15), and ai.freq, which is the
corresponding card Bi, expressed in percents of card D. To compute ai.freq,
the algorithm counts the number of times ai is reached (line 19 if this is the
first time ai is reached, line 17 otherwise) and then, once all the x0 ∈ D are
computed, translates ai.freq in percents of card D (line 28).

function y = compute_cover(A1, A2)

1 cover = 0
2 for a1 ∈ A1 do
3 if ∃a2 ∈ A2 : a1.seq = a2.seq then
4 cover = cover + a2.freq
5 end if
6 end for
7 return cover

end function
If a1 also belongs to A2 (line 3) then the cardinality of its basin in S2 is used
to compute the covering of S2 by

⋃
B1,i (line 4).

function T = compute_T (fphysio,fpatho, rmin, rmax,maxtarg,maxmoda,
maxD, h, V )

1 n = card V
2 D = {}
3 while card D < maxD do
4 generate x0 /∈ D
5 D = D ∪ {x0}
6 end while
7 Aphysio = compute_A(fphysio, (), (), D, V )
8 Apatho = compute_A(fpatho, (), (), D, V )
9 T = {}

10 coverpatho = compute_cover(Aphysio, Apatho)
11 for r ∈ [[rmin, rmax]] do
12 Ctarg = {}
13 Cmoda = {}
14 while card Ctarg < min(maxtarg, n!/(r! · (n− r)!)) do
15 generate ctarg /∈ Ctarg

16 Ctarg = Ctarg ∪ {ctarg}
17 end while
18 while card Cmoda < min(maxmoda, h

r) do
19 generate cmoda /∈ Cmoda
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20 Cmoda = Cmoda ∪ {cmoda}
21 end while
22 for ctarg ∈ Ctarg do
23 for cmoda ∈ Cmoda do
24 Atest = compute_A(fpatho, ctarg, cmoda, D, V )
25 if Atest ⊆ Aphysio ∪ Apatho then
26 covertest = compute_cover(Aphysio, Atest)
27 if covertest > coverpatho then
28 T = T ∪ {(ctarg, cmoda)}
29 end if
30 end if
31 end for
32 end for
33 end for
34 return T

end function
maxD is the desired card D and h is the cardinality of the domain of value,
which depends on the used multivalued logic. Aphysio and Apatho are computed
without bullet, so the empty bullet ((), ()) is passed to compute_A (lines 7 and
8). coverpatho is the covering of Spatho by

⋃
Bphysio,i (line 10) and covertest is

the covering of Stest by
⋃
Bphysio,i (line 26). Atest is the pathological attractor

set under the effect of the tested bullet (line 24). A therapeutic bullet has to
avoid the appearance of de novo attractors (line 25) and has to increase the
covering of Stest by

⋃
Bphysio,i (line 27).

5.2.3 Results

This new criterion for selecting therapeutic bullets is illustrated on the case
study modeled by Boolean logic: h = 2. Since patho1 has the same attractor
set than the physiological variant, only patho2 is computed. As previously,
wholly computing S is too demanding. Therefore, D is intended to have a
reasonable cardinality: maxD = 100 000. All the 1, 2-bullets are tested: rmin =
1, rmax = 2, maxtarg = 378 and maxmoda = 4. However, their therapeutic
potential is no longer expressed as golden or silver but by their gain. It is
displayed as follow: x% → y% where card

⋃
Bphysio,i = x% in Spatho and y%

in Stest. Consequently, in order to increase the physiological part of Stest, a
therapeutic bullet has to make y > x. The card Bphysio,i and card Bpatho,i in
Stest are also computed and expressed in percents of card Stest. The algorithm
returns 59 therapeutic bullets whose the list can be found in Appendix 6.3 page
39.

A therapeutic bullet as defined by the previous criterion, that is which re-
moves all the apatho,i from Stest, makes de facto card

⋃
Bphysio,i = 100% in

Stest. As already mentioned, the previous criterion is included in this new one:
therapeutic bullets obtainable with the former are also obtainable with the lat-
ter. This can be checked by noting that the 1, 2-therapeutic bullets found with
the previous criterion are also found with this new one.

With this case study, Aphysio = {aphysio1}, so
⋃
Bphysio,i = Bphysio1. There-

fore, in this particular case where card Aphysio = 1, therapeutic bullets have to
increase card Bphysio1 in Stest. It should be recalled that card Bphysio1 = 29.4%
in Spatho, so therapeutic bullets have to make card Bphysio1 > 29.4% in Stest.
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For example, below are the computed 1-therapeutic bullets:

bullet gain Bphysio1 Bpatho1

−FANCM 29.4% → 44.6% 44.6% 55.4%
−FANCD2I 29.4% → 30.4% 30.4% 69.6%
−XPF 29.4% → 46.2% 46.2% 53.8%
−FAN1 29.4% → 32.9% 32.9% 67.1%
−ATM 29.4% → 100% 100% 0%

−ATM is a therapeutic bullet also found with the previous criterion since
it removes all the apatho,i, namely apatho1, from Stest. However, the other four
therapeutic bullets are only obtainable with this new criterion since they do not
remove apatho1 from Stest. Nevertheless, as therapeutic bullets, they increase
card Bphysio1 in Stest. This highlight the ability of this new criterion to unravel
more therapeutic bullets of varying therapeutic potential, thus opening the way
for more targeting strategies of varying theoretical efficacy. Of course, thera-
peutic bullets of poor potential are also unraveled, such as −FANCD2I which
only increases card Bphysio1 from 29.4% in Spatho to 30.4% in Stest. However,
in silico tools should not restrict their predictions to only those exhibiting a
high theoretical potency since predicted does not necessarily mean true. In-
deed, a prediction of apparently poor interest can reveal itself of great interest
in practice, and vice versa.

5.2.4 Conclusion

The algorithm now uses a new criterion for selecting therapeutic bullets which
brings a wider range of targeting strategies intended to push pathological be-
haviors toward physiological ones with varying predicted efficacy. Moreover,
no information is lost from the previous criterion since results obtainable with
the previous one are also obtainable with this new one. This new criterion is
based on a more permissive assumption stating that reducing the reachability
of pathological attractors is therapeutic. For an in silico tool such as this al-
gorithm, a more permissive assumption is important since theoretical findings
have to outlive the bottleneck separating prediction to reality. With a too strict
criterion, the risk of highlighting too few candidate targets or to miss some
interesting ones is too hight. Indeed, results predicted in silico have to be vali-
dated in vitro and/or in vivo. Therefore, requiring only perfect predictions such
as therapeutic bullets removing all the pathological attractors could left insuf-
ficient results after validation. All the more so that a prediction of apparently
poor interest could reveal itself as an insight of great interest and vice versa.

This new criterion for selecting therapeutic bullets also brings a finer as-
sessment of their potential since all the percentages between card

⋃
Bphysio,i in

Spatho and 100% are considered. With the previous criterion, the only therapeu-
tic potential is card

⋃
Bphysio,i = 100% in Stest, thus reducing the assessment

to therapeutic or not. However, things are not necessarily black or white but
rather a continuum of gray nuances, so the assessment of therapeutic potentials
should be nuanced too, just as it is now.
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6 Appendices

6.1 Appendix 1

The algorithm in one block of pseudocode.

1 prompt card D
2 card D = min(card D, 2n)
3 generate D ⊆ S
4 H = {}
5 Aphysio = {}
6 for x0 ∈ D do
7 k = 1
8 x(k) = x0

9 while true do
10 if ∃w ∈ H : x(k) ∈ w then
11 break
12 end if
13 x(k + 1) = fphysio(x(k))
14 if ∃k′ ∈ [[1, k]] : x(k + 1) = x(k′) then
15 Aphysio = Aphysio ∪ {(x(k′), . . . ,x(k))}
16 break
17 end if
18 k = k + 1
19 end while
20 H = H ∪ {(x(1), . . . ,x(k))}
21 end for
22 return Aphysio

23 prompt rmin, rmax,maxtarg,maxmoda

24 rmax = min(rmax, n)
25 golden_set = {}
26 silver_set = {}
27 for r ∈ [[rmin, rmax]] do
28 maxr

targ = min(maxtarg, n!/(r! · (n− r)!))
29 maxr

moda = min(maxmoda, 2
r)

30 Ctarg = {}
31 Cmoda = {}
32 while card Ctarg < maxr

targ do
33 generate ctarg /∈ Ctarg

34 Ctarg = Ctarg ∪ {ctarg}
35 end while
36 while card Cmoda < maxr

moda do
37 generate cmoda /∈ Cmoda

38 Cmoda = Cmoda ∪ {cmoda}
39 end while
40 for ctarg ∈ Ctarg do
41 for cmoda ∈ Cmoda do
42 H = {}
43 Apatho = {}
44 for x0 ∈ D do
45 k = 1
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46 x(k) = x0

47 while true do
48 if ∃w ∈ H : x(k) ∈ w then
49 break
50 end if
51 x(k + 1) = fpatho(x(k))
52 for targi ∈ ctarg do
53 for vj ∈ V do
54 if vj = targi then
55 xj(k + 1) = modai
56 end if
57 end for
58 end for
59 if ∃k′ ∈ [[1, k]] : x(k + 1) = x(k′) then
60 Apatho = Apatho ∪ {(x(k′), . . . ,x(k))}
61 break
62 end if
63 k = k + 1
64 end while
65 H = H ∪ {(x(1), . . . ,x(k))}
66 end for
67 if Apatho ⊆ Aphysio then
68 if Apatho = Aphysio then
69 golden_set = golden_set ∪ {(ctarg, cmoda)}
70 else
71 silver_set = silver_set ∪ {(ctarg, cmoda)}
72 end if
73 end if
74 end for
75 end for
76 end for
77 return golden_set, silver_set
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6.2 Appendix 2

Therapeutic bullets found for the case study.

−ATM golden
−ATM −CHK2 golden
−HRR −ATM golden
−ssDNARPA −ATM golden
−BRCA1 −ATM golden
−MRN −ATM golden
−FAN1 −ATM golden
−ICL −DSB golden
−FAcore −ATM golden
−USP1 −ATM golden
−ATM −H2AX golden
−ADD −ATM golden
−RAD51 −ATM golden
−XPF −ATM golden
−FANCM −ATM golden
−FANCD1N −ATM golden
−ATM −CHK1 golden
−ICL −ATM golden
−ATM −p53 golden
−FANCJBRCA1 −ATM golden
−FANCD2I −ATM golden
−ICL −FANCD1N −ATM golden
−ICL −FAcore −DSB golden
−BRCA1 −USP1 −ATM golden
−BRCA1 −ssDNARPA −ATM golden
−BRCA1 −ATM −CHK1 golden
−ADD −ATM −H2AX golden
−FAN1 −MRN −ATM golden
−ATM −CHK2 −H2AX golden
−ICL −DSB −MRN golden
−XPF −MRN −ATM golden
−FAcore −FANCD2I −ATM golden
−FANCM −ATM −CHK2 golden
−RAD51 −ATM −p53 golden
−ICL −ssDNARPA −ATM golden
−FANCM −ATR −ATM golden
−RAD51 −ATM −H2AX golden
−ADD −FANCD1N −ATM golden
−ICL −USP1 −ATM golden
−FANCM −MRN −ATR golden
−MRN −USP1 −ATM golden
−FAN1 −HRR −ATM golden
−BRCA1 −ATM −H2AX golden
−FANCJBRCA1 −ADD −ATM golden
−MRN −ssDNARPA −ATM golden
−FAcore −ssDNARPA −ATM golden
−FAcore −FANCD1N −ATM golden
−FANCD2I −BRCA1 −ATM golden
−ADD −MRN −ATM golden
−ATM −p53 −CHK2 golden
−RAD51 −ATM −CHK2 golden
−FANCM −ATM −H2AX golden
−ADD −PCNATLS −ATM golden
−FANCJBRCA1 −ATM −p53 golden
−FANCM −MRN −ATM golden
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−FANCJBRCA1 −ATM −CHK2 golden
−FANCD2I −USP1 −ATM golden
−ADD −ATM −CHK2 golden
−FANCD2I −FANCD1N −ATM golden
−MRN −HRR −ATM golden
−ICL −DSB −USP1 golden
−FAN1 −FANCD1N −ATM golden
−FAN1 −ATM −H2AX golden
−FANCJBRCA1 −FAN1 −ATM golden
−ssDNARPA −ATM −H2AX golden
−ATM −CHK1 −CHK2 golden
−ADD −HRR −ATM golden
−ATM −p53 −CHK1 golden
−FAcore −ATM −H2AX golden
−FANCD2I −ATM −CHK2 golden
−FAN1 −RAD51 −ATM golden
−FANCD2I −RAD51 −ATM golden
−FANCJBRCA1 −XPF −ATM golden
−ICL −FANCJBRCA1 −DSB golden
−ssDNARPA −HRR −ATM golden
−MRN −BRCA1 −ATM golden
−FANCM −FAN1 −ATM golden
−ssDNARPA −ATM −p53 golden
−FAN1 −ATM −CHK2 golden
−FANCD2I −ssDNARPA −ATM golden
−FANCD2I −FAN1 −ATM golden
−XPF −HRR −ATM golden
−FAN1 −BRCA1 −ATM golden
−ADD −ATM −CHK1 golden
−FAcore −HRR −ATM golden
−XPF −ATM −CHK1 golden
−ADD −BRCA1 −ATM golden
−ICL −FAN1 −DSB golden
−ADD −ATM −p53 golden
−ICL −MUS81 −ATM golden
−FAcore −RAD51 −ATM golden
−ATM −CHK1 −H2AX golden
−ICL −MRN −ATM golden
−ssDNARPA −ATM −CHK2 golden
−XPF −RAD51 −ATM golden
−FANCM −ATM −CHK1 golden
−ICL −DSB −KU golden
−ICL −MRN −ATR golden
−ssDNARPA −RAD51 −ATM golden
−FANCJBRCA1 −ssDNARPA −ATM golden
−XPF −ATM −p53 golden
−FAcore −MRN −ATM golden
−HRR −ATM −H2AX golden
−HRR −ATM −p53 golden
−FANCJBRCA1 −FANCD1N −ATM golden
−FANCM −ADD −ATM golden
−FAcore −ATM −CHK2 golden
−ICL −ATM −CHK1 golden
−MRN −FANCD1N −ATM golden
−ADD −ssDNARPA −ATM golden
−MRN −RAD51 −ATM golden
−FANCD1N −ATM −p53 golden
−FANCD1N −RAD51 −ATM golden
−BRCA1 −ATM −CHK2 golden
−ADD −RAD51 −ATM golden
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−ICL −DSB −FANCD1N golden
−ICL −RAD51 −ATM golden
−ICL −ATM −CHK2 golden
−FANCD1N −ATM −H2AX golden
−MRN −ATM −H2AX golden
−FAcore −FAN1 −ATM golden
−ICL −XPF −ATM golden
−FANCD2I −ADD −ATM golden
−FANCD2I −ATM −H2AX golden
−ICL −ATR −ATM golden
−FANCM −HRR −ATM golden
−USP1 −ATM −H2AX golden
−ICL −DSB −RAD51 golden
−ICL −ATM −H2AX golden
−FANCD1N −USP1 −ATM golden
−FANCM −FANCD2I −ATM golden
−FANCD2I −MRN −ATM golden
−FAcore −ADD −ATM golden
−ICL −FAcore −ATM golden
−FANCM −ssDNARPA −ATM golden
−XPF −ATM −H2AX golden
−FAcore −USP1 −ATM golden
−HRR −ATM −CHK1 golden
−BRCA1 −RAD51 −ATM golden
−FAN1 −ADD −ATM golden
−FANCJBRCA1 −MRN −ATM golden
−FANCM −USP1 −ATM golden
−FANCJBRCA1 −ATM −H2AX golden
−FANCM −FAcore −ATM golden
−HRR −USP1 −ATM golden
−ICL −FANCM −ATM golden
−ICL −DSB −ssDNARPA golden
−FAN1 −USP1 −ATM golden
−FANCM −FANCJBRCA1 −ATM golden
−ssDNARPA −ATM −CHK1 golden
−FAcore −FANCJBRCA1 −ATM golden
−FANCD2I −HRR −ATM golden
−FANCD2I −FANCJBRCA1 −ATM golden
−XPF −ssDNARPA −ATM golden
−USP1 −ATM −CHK1 golden
−ICL −DSB −ATM golden
−ICL −ADD −DSB golden
−USP1 −ATM −CHK2 golden
−XPF −BRCA1 −ATM golden
−RAD51 −ATM −CHK1 golden
−FANCD1N −ATM −CHK2 golden
−RAD51 −HRR −ATM golden
−ICL −ATM −p53 golden
−ICL −DSB −DNAPK golden
−FANCM −FANCD1N −ATM golden
−BRCA1 −FANCD1N −ATM golden
−ICL −HRR −ATM golden
−FANCJBRCA1 −HRR −ATM golden
−USP1 −ATM −p53 golden
−XPF −ATM −CHK2 golden
−ICL −DSB −CHK2 golden
−ICL −XPF −DSB golden
−ssDNARPA −FANCD1N −ATM golden
−FANCJBRCA1 −RAD51 −ATM golden
−ICL −DSB −ATR golden
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−HRR −ATM −CHK2 golden
−ADD −USP1 −ATM golden
−FANCM −RAD51 −ATM golden
−FANCJBRCA1 −ATM −CHK1 golden
−FANCM −ATM −p53 golden
−XPF −FANCD1N −ATM golden
−FAcore −BRCA1 −ATM golden
−ICL −DSB −NHEJ golden
−BRCA1 −ATM −p53 golden
−BRCA1 −HRR −ATM golden
−FANCJBRCA1 −USP1 −ATM golden
−ssDNARPA −USP1 −ATM golden
−ICL −DSB −H2AX golden
−FANCM −BRCA1 −ATM golden
−MRN −ATM −CHK1 golden
−ICL −FANCJBRCA1 −ATM golden
−FANCD1N −ATM −CHK1 golden
−ICL −DSB −BRCA1 golden
−MRN −ATM −CHK2 golden
−FANCJBRCA1 −BRCA1 −ATM golden
−FAN1 −ssDNARPA −ATM golden
−MRN −ATM −p53 golden
−FANCD1N −HRR −ATM golden
−ICL −MUS81 −DSB golden
−ICL −DSB −p53 golden
−XPF −USP1 −ATM golden
−XPF −ADD −ATM golden
−ATM −p53 −H2AX golden
−ICL −FANCM −DSB golden
−ICL −DSB −HRR golden
−ICL −BRCA1 −ATM golden
−RAD51 −USP1 −ATM golden
−ICL −FAN1 −ATM golden
−ICL −ADD −ATM golden
−ICL −DSB −CHK1 golden
−ICL −FANCD2I −DSB golden
−ICL −FANCD2I −ATM golden
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6.3 Appendix 3

Therapeutic bullets found for the case study using the new criterion.

bullet gain Bphysio1 Bpatho1

−FANCM 29.4% → 44.6% 44.6% 55.4%
−FANCD2I 29.4% → 30.4% 30.4% 69.6%
−XPF 29.4% → 46.2% 46.2% 53.8%
−FAN1 29.4% → 32.9% 32.9% 67.1%
−ATM 29.4% → 100% 100% 0%
−ICL −FANCD2I 29.4% → 30.9% 30.9% 69.1%
−ICL −MUS81 29.4% → 53% 53% 47%
−ICL −XPF 29.4% → 58.6% 58.6% 41.4%
−ICL −FAN1 29.4% → 33.9% 33.9% 66.1%
−ICL −DSB 29.4% → 100% 100% 0%
−ICL −ATM 29.4% → 100% 100% 0%
−FANCM −FAcore 29.4% → 45.8% 45.8% 54.2%
−FANCM −FANCD2I 29.4% → 46.3% 46.3% 53.7%
−FANCM −FAN1 29.4% → 47.3% 47.3% 52.7%
−FANCM −ADD 29.4% → 47.3% 47.3% 52.7%
−FANCM −FANCD1N 29.4% → 44.6% 44.6% 55.4%
−FANCM −RAD51 29.4% → 44.6% 44.6% 55.4%
−FANCM −HRR 29.4% → 44.1% 44.1% 55.9%
−FANCM −USP1 29.4% → 44.3% 44.3% 55.7%
−FANCM −ATM 29.4% → 100% 100% 0%
−FAcore −FANCD2I 29.4% → 30.4% 30.4% 69.6%
−FAcore −FAN1 29.4% → 33% 33% 67%
−FAcore −ATM 29.4% → 100% 100% 0%
−FANCD2I −FAN1 29.4% → 33.2% 33.2% 66.8%
−FANCD2I −ADD 29.4% → 30.5% 30.5% 69.5%
−FANCD2I −FANCD1N 29.4% → 30.4% 30.4% 69.6%
−FANCD2I −RAD51 29.4% → 30.4% 30.4% 69.6%
−FANCD2I −USP1 29.4% → 30.4% 30.4% 69.6%
−FANCD2I −ATM 29.4% → 100% 100% 0%
−FANCJBRCA1 −ATM 29.4% → 100% 100% 0%
−XPF −ADD 29.4% → 46.2% 46.2% 53.8%
−XPF −FANCD1N 29.4% → 46.2% 46.2% 53.8%
−XPF −RAD51 29.4% → 46.2% 46.2% 53.8%
−XPF −HRR 29.4% → 45.3% 45.3% 54.7%
−XPF −USP1 29.4% → 46.2% 46.2% 53.8%
−XPF −KU 29.4% → 46.1% 46.1% 53.9%
−XPF −DNAPK 29.4% → 46.1% 46.1% 53.9%
−XPF −NHEJ 29.4% → 41.6% 41.6% 58.4%
−XPF −ATM 29.4% → 100% 100% 0%
−FAN1 −ADD 29.4% → 32.9% 32.9% 67.1%
−FAN1 −FANCD1N 29.4% → 32.9% 32.9% 67.1%
−FAN1 −RAD51 29.4% → 32.9% 32.9% 67.1%
−FAN1 −HRR 29.4% → 32.2% 32.2% 67.8%
−FAN1 −USP1 29.4% → 32.9% 32.9% 67.1%
−FAN1 −KU 29.4% → 31.7% 31.7% 68.2%
−FAN1 −DNAPK 29.4% → 31% 31% 69%
−FAN1 −ATM 29.4% → 100% 100% 0%
−ADD −ATM 29.4% → 100% 100% 0%
−MRN −ATM 29.4% → 100% 100% 0%
−BRCA1 −ATM 29.4% → 100% 100% 0%
−ssDNARPA −ATM 29.4% → 100% 100% 0%
−FANCD1N −ATM 29.4% → 100% 100% 0%
−RAD51 −ATM 29.4% → 100% 100% 0%
−HRR −ATM 29.4% → 100% 100% 0%
−USP1 −ATM 29.4% → 100% 100% 0%
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bullet gain Bphysio1 Bpatho1

−ATM −p53 29.4% → 100% 100% 0%
−ATM −CHK1 29.4% → 100% 100% 0%
−ATM −CHK2 29.4% → 100% 100% 0%
−ATM −H2AX 29.4% → 100% 100% 0%
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