148 research outputs found

    Digraphs and homomorphisms: Cores, colorings, and constructions

    Get PDF
    A natural digraph analogue of the graph-theoretic concept of an `independent set\u27 is that of an acyclic set, namely a set of vertices not spanning a directed cycle. Hence a digraph analogue of a graph coloring is a decomposition of the vertex set into acyclic sets

    Uniquely D-colourable digraphs with large girth

    Full text link
    Let C and D be digraphs. A mapping f:V(D)→V(C)f:V(D)\to V(C) is a C-colouring if for every arc uvuv of D, either f(u)f(v)f(u)f(v) is an arc of C or f(u)=f(v)f(u)=f(v), and the preimage of every vertex of C induces an acyclic subdigraph in D. We say that D is C-colourable if it admits a C-colouring and that D is uniquely C-colourable if it is surjectively C-colourable and any two C-colourings of D differ by an automorphism of C. We prove that if a digraph D is not C-colourable, then there exist digraphs of arbitrarily large girth that are D-colourable but not C-colourable. Moreover, for every digraph D that is uniquely D-colourable, there exists a uniquely D-colourable digraph of arbitrarily large girth. In particular, this implies that for every rational number r≥1r\geq 1, there are uniquely circularly r-colourable digraphs with arbitrarily large girth.Comment: 21 pages, 0 figures To be published in Canadian Journal of Mathematic

    Distance-two labelings of digraphs

    Full text link
    For positive integers j≥kj\ge k, an L(j,k)L(j,k)-labeling of a digraph DD is a function ff from V(D)V(D) into the set of nonnegative integers such that ∣f(x)−f(y)∣≥j|f(x)-f(y)|\ge j if xx is adjacent to yy in DD and ∣f(x)−f(y)∣≥k|f(x)-f(y)|\ge k if xx is of distant two to yy in DD. Elements of the image of ff are called labels. The L(j,k)L(j,k)-labeling problem is to determine the λ⃗j,k\vec{\lambda}_{j,k}-number λ⃗j,k(D)\vec{\lambda}_{j,k}(D) of a digraph DD, which is the minimum of the maximum label used in an L(j,k)L(j,k)-labeling of DD. This paper studies λ⃗j,k\vec{\lambda}_{j,k}- numbers of digraphs. In particular, we determine λ⃗j,k\vec{\lambda}_{j,k}- numbers of digraphs whose longest dipath is of length at most 2, and λ⃗j,k\vec{\lambda}_{j,k}-numbers of ditrees having dipaths of length 4. We also give bounds for λ⃗j,k\vec{\lambda}_{j,k}-numbers of bipartite digraphs whose longest dipath is of length 3. Finally, we present a linear-time algorithm for determining λ⃗j,1\vec{\lambda}_{j,1}-numbers of ditrees whose longest dipath is of length 3.Comment: 12 pages; presented in SIAM Coference on Discrete Mathematics, June 13-16, 2004, Loews Vanderbilt Plaza Hotel, Nashville, TN, US

    New Bounds for the Dichromatic Number of a Digraph

    Full text link
    The chromatic number of a graph GG, denoted by χ(G)\chi(G), is the minimum kk such that GG admits a kk-coloring of its vertex set in such a way that each color class is an independent set (a set of pairwise non-adjacent vertices). The dichromatic number of a digraph DD, denoted by χA(D)\chi_A(D), is the minimum kk such that DD admits a kk-coloring of its vertex set in such a way that each color class is acyclic. In 1976, Bondy proved that the chromatic number of a digraph DD is at most its circumference, the length of a longest cycle. Given a digraph DD, we will construct three different graphs whose chromatic numbers bound χA(D)\chi_A(D). Moreover, we prove: i) for integers k≥2k\geq 2, s≥1s\geq 1 and r1,…,rsr_1, \ldots, r_s with k≥ri≥0k\geq r_i\geq 0 and ri≠1r_i\neq 1 for each i∈[s]i\in[s], that if all cycles in DD have length rr modulo kk for some r∈{r1,…,rs}r\in\{r_1,\ldots,r_s\}, then χA(D)≤2s+1\chi_A(D)\leq 2s+1; ii) if DD has girth gg and there are integers kk and pp, with k≥g−1≥p≥1k\geq g-1\geq p\geq 1 such that DD contains no cycle of length rr modulo ⌈kp⌉p\lceil \frac{k}{p} \rceil p for each r∈{−p+2,…,0,…,p}r\in \{-p+2,\ldots,0,\ldots,p\}, then χA(D)≤⌈kp⌉\chi_A (D)\leq \lceil \frac{k}{p} \rceil; iii) if DD has girth gg, the length of a shortest cycle, and circumference cc, then χA(D)≤⌈c−1g−1⌉+1\chi_A(D)\leq \lceil \frac{c-1}{g-1} \rceil +1, which improves, substantially, the bound proposed by Bondy. Our results show that if we have more information about the lengths of cycles in a digraph, then we can improve the bounds for the dichromatic number known until now.Comment: 14 page

    D-colorable digraphs with large girth

    Get PDF
    In 1959 Paul Erdos (Graph theory and probability, Canad. J. Math. 11 (1959), 34-38) famously proved, nonconstructively, that there exist graphs that have both arbitrarily large girth and arbitrarily large chromatic number. This result, along with its proof, has had a number of descendants (D. Bokal, G. Fijavz, M. Juvan, P.M. Kayll and B. Mohar, The circular chromatic number of a digraph, J. Graph Theory 46 (2004), 227-240; B. Bollobas and N. Sauer, Uniquely colourable graphs with large girth, Canad. J. Math. 28 (1976), 1340-1344; J. Nesetril and X. Zhu, On sparse graphs with given colorings and homomorphisms, J. Combin. Theory Ser. B 90 (2004), 161-172; X. Zhu, Uniquely H-colorable graphs with large girth, J. Graph Theory 23 (1996), 33-41) that have extended and generalized the result while strengthening the techniques used to achieve it. We follow the lead of Xuding Zhu (op. cit.) who proved that, for a suitable graph H, there exist graphs of arbitrarily large girth that are uniquely H-colorable. We establish an analogue of Zhu\u27s results in a digraph setting. Let C and D be digraphs. A mapping f:V(D)&rarr V(C) is a C-coloring if for every arc uv of D, either f(u)f(v) is an arc of C or f(u)=f(v), and the preimage of every vertex of C induces an acyclic subdigraph in D. We say that D is C-colorable if it admits a C-coloring and that D is uniquely C-colorable if it is surjectively C-colorable and any two C-colorings of D differ by an automorphism of C. We prove that if D is a digraph that is not C-colorable, then there exist graphs of arbitrarily large girth that are D-colorable but not C-colorable. Moreover, for every digraph D that is uniquely D-colorable, there exists a uniquely D-colorable digraph of arbitrarily large girth

    On the Complexity of Digraph Colourings and Vertex Arboricity

    Full text link
    It has been shown by Bokal et al. that deciding 2-colourability of digraphs is an NP-complete problem. This result was later on extended by Feder et al. to prove that deciding whether a digraph has a circular pp-colouring is NP-complete for all rational p>1p>1. In this paper, we consider the complexity of corresponding decision problems for related notions of fractional colourings for digraphs and graphs, including the star dichromatic number, the fractional dichromatic number and the circular vertex arboricity. We prove the following results: Deciding if the star dichromatic number of a digraph is at most pp is NP-complete for every rational p>1p>1. Deciding if the fractional dichromatic number of a digraph is at most pp is NP-complete for every p>1,p≠2p>1, p \neq 2. Deciding if the circular vertex arboricity of a graph is at most pp is NP-complete for every rational p>1p>1. To show these results, different techniques are required in each case. In order to prove the first result, we relate the star dichromatic number to a new notion of homomorphisms between digraphs, called circular homomorphisms, which might be of independent interest. We provide a classification of the computational complexities of the corresponding homomorphism colouring problems similar to the one derived by Feder et al. for acyclic homomorphisms.Comment: 21 pages, 1 figur
    • …
    corecore